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Abstract

We have constructed a system for recognizing multi-character images 1.
This is a nontrivial extension of our previous work on single-character im-
ages. It is somewhat surprising that a very good single-character recognizer
does not in general form a good basis for a multi-character recognizer. The
correct solution depends on three key ideas:
1) A method for normalizing probabilities correctly, to preserve information
on the quality of the segmentation;
2) A method for giving credit for multiple segmentations that assign the same
interpretation to the image; and
3) A method that combines recognition and segmentation into a single adap-
tive process, trained to maximize the score of the right answer.

We also discuss improved ways of analyzing recognizer performance.
A major part of this technical report is devoted to giving our methods

a good theoretical footing. In particular, we do not start by asserting that
maximum likelihood is obviously the right thing to do. Instead, the problem
is formalized in terms of a probability measure; the learning algorithm must
then be arranged to make this probability conform to the customer’s needs.

This formulation can be applied to other segmentation problems such as
speech recognition.

Our recognizer using these principles works noticeably better than the
previous state of the art.

1This work also appeared, with the same title and authors, in The Mathematics of Generalization:
Proceedings of the SFI/CNLS Workshop on Formal Approaches to Supervised Learning, Addison
Wesley, 1994.
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1 Overview

We begin with a terse overview. Many of the buzzwords used here will be
defined more clearly in the following sections.

The task at hand is to build an image recognizer. The input to the recog-
nizer is a multi-character image, such as the ZIP Code shown in figure 1. The
desired output of our recognizer is the best interpretation of the image (e.g.
“35133”) along with a good estimate of the probability that that interpretation
is correct.

Figure 1: A typical image

As mentioned in the abstract, we have constructed a character recognizer
that incorporates three key ideas, as discussed in the following three subsec-
tions.

Our first design for a multi-character recognizer (MCR) naturally used
our trusty single-character recognizer (SCR) as a building block. We have
since discovered that this is not quite optimal. Specifically, the normalization
which is appropriate for an SCR throws away information which is needed
for proper segmentation.

The correct strategy has two steps:
1) Compute a score for each possible multi-character path (where a “path”
specifies the interpretation and segmentation) by combining the scores of the
individual characters (and whatever other information is available).
2) Normalize these scores by dividing by the sum over all paths.

We present below a firm theoretical support for this scheme. In particular,
it would be clearly non-optimal to perform the required operations in the
reverse order:
1’) Normalize on a per-character basis.
2’) Form a multi-character score by multiplying the normalized per-character
scores.

2



Multiple Segmentations

The normalized score for a path gives the joint probability of a given interpre-
tation and segmentation. But at the end of the day, the customer cares about
the correct intepretation; the segmentation problem is just a step along the
way. Therefore we compute the score for a given interpretation by summing
over all paths that give that interpretation. This, too, has a firm theoretical
foundation. The required sum can be performed very efficiently using the
“forward”[10] algorithm.

The difficult step is that we must find the best interpretation, i.e. the in-
terpretation that maximizes the aforementioned sum over paths. The Viterbi
algorithm[2, 3] can efficiently find the best-scoring path, but it is harder to
find the best sum directly in closed form. If we could assume that each sum
was dominated by its largest term, Viterbi would be exact. In practice, we
find that Viterbi, while not always exact, is good enough to identify the one
or two interpretations that are candidates for having the best sum. We can
then run the forward algorithm to check these candidates, i.e. to compute
their exact score.

Learning

For a single-character recognizer, we use a neural net to produce a score that
reflects the conditional probability of an interpretation, given the segmenta-
tion. For a multi-character recognizer, we need more detailed information,
namely the joint probability of interpretation and segmentation. Since the
training process determines what the network will actually do, we have de-
signed a training process that takes the needs of the MCR into account.

Specifically, the block diagram of the MCR consists of a large number
of SCRs (each of which evaluates the score of a segment) plus a lattice (that
finds the best segmentation, i.e. the best way of combining segments). This
idea[12, 13, 14, 15, 16] has been around for some time. Obviously “back-
prop” can be used to train the SCR, but it has not been 100% obvious how
to choose the training targets that backprop (supposedly) needs. The new
scheme is to treat the whole MCR (lattice and all) as one huge network and
perform backprop (or a generalization thereof) on the whole thing.

We use the Baum-Welch algorithm[10] (also known as forward-backward
or E-M) to calculate derivatives. This tells us how sensitive the output is to
each adjustable parameter in the MCR. Baum-Welch is to forward as back-
prop is to fprop.

In essence: during training, each parameter is adjusted in a direction that
will increase the score of the correct answer. (Since the answers are normal-
ized, this automatically decreases the score of wrong answers.)

This training scheme has two advantages:
i) As mentioned above, it teaches the neural net to produce information about
the quality of the segmentation in addition to information about what the in-
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terpretation would be if we were given the correct segmentation.
ii) It teaches the network to avoid near mistakes, not just mistakes. That is:
under the old training scheme, the highest-scoring path was identified. If it
was incorrect, the training process would lower its score. As soon as the
wrong path’s score dropped below the right path’s score, no further train-
ing could be applied, unless the wrong path had the same segmentation as
the right path. Fortunately for us, in most cases the segmentations were the
same, so the old training scheme worked quite well in practice. In those cases
where the segmentations were different, the training could well produce bad
segmentations with scores only infinitesimally lower than the good segmen-
tation — leading to poor robustness. The new training scheme does not have
this vulnerability. Since it involves a sum over paths, not a max over paths, it
pushes all good paths up and pushes all bad paths down, and keeps pushing
regardless of what the best path happens to be.

And finally, the bottom line: we have implemented these ideas and the
resulting recognizer just plain works better, as will be discussed in section 5.

2 The Dynamic-Programming Approach to Seg-
mentation

For some time now we have had a good single-character recognizer (SCR).
If all images were naturally divided into segments containing one character
apiece, the multi-character recognizer (MCR) would be straightforward. But
in general, real images contain (a) fragmented characters consisting of mul-
tiple disconnected strokes, and (b) characters that nestle, touch, and overlap.
Figure 1 exhibits both of these problems: the horizontal stroke that is sup-
posed to form the top of the “5” is disconnected from the body of the “5” and
is connected to the following “1” instead.

Figure 2: Touching and Nestling

Figure 2 contains several touching characters, and one character nestled
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under the overhang of another.
The strategy may be summarized as follows

1. Divide the image into cells of manageable size.
2. Combine the cells in various ways to form “segments”.
3. Form a sequence of segments (called a “segmentation”) that accounts

for the whole image.
4. Assign scores to various possible segmentations.
5. Find the interpretation of the highest-scoring segmentation(s).

One significant advantage of this strategy is that the system does not have
to generate the correct segmentation initially: it merely has to create a set of
hypothetical segmentations which contains the correct segmentation(s)[7, 8].
Previous approaches to this problem envisioned a “pipeline” architecture in
which the segmentation process was completed before the single-character
recognition process began; in contrast we envision a system in which the
segmenter calls a (modified) single-character recognizer as a subroutine.

The “second generation” segmenter is described more fully elsewhere[7,
8] but will be briefly described here. It starts by cutting the image into
cells. The cuts are not necessarily vertical. While the “first generation”
segmenter[6] makes extensive use of “connected component analysis” (CCA)
the second-generation system does not; we are working on a segmenter that
unifies the cut generation and CCA.

One or more cells are combined to make a segment. The objective is to
create segments that contain exactly one character. The second-generation
segmenter uses cells in a left-to-right order and only makes segments out of
consecutive cells; there are one or two examples (out of several thousand) in
the training set where this restriction is non-optimal, because one character
overhangs another.

Since the number of ways that cells can be combined to make a segment
grows combinatorially with the number of cells, we cannot afford to chop the
image into ultra-small cells. Therefore the preprocessor embodies heuristics
which will identify a set of “good” cuts, including some “obvious” cuts. The
cells between good cuts are generally much more than one pixel wide. The
set of good cuts will generally contain more cuts than needed.

The image in figure 1 was divided into the seven cells shown in figure 3.
Segments are sometimes called boxes, in analogy with the “boxes” and

“glue” used by the typesetting language TEX.
A segmentation is defined to be a sequence of boxes. Ideally the boxes

would abut one another left to right, but in practice we must allow for “glue”
between boxes. Positive glue means a sliver of image between the two boxes
is skipped; negative glue means two boxes overlap; zero glue means they
abut.

Figure 4 shows the segments constructed for the example image; in the
corner of each image is a list of numbers designating the cells from which
the segment was constructed.
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0 1 2 3

4 5 6

Figure 3: The cells

Figure 5 shows three of the many possible segmentations of our exam-
ple image. Interestingly, the (2) segment appears in the third slot of the first
segmentation and the second slot of the second segmentation. Thus the seg-
mentation algorithm cannot simply keep track of which segments are used;
it must keep track of which segment appears in which slot of the answer.

It is advantageous[8, 7] to formulate the segmentation problem as a “best
path through graph” problem, as we will now summarize.

We will distinguish between the input space (i.e. image pixels) and the
output space (i.e. character interpretations). Borrowing some of the methods
used[2] for segmenting speech signals, we will speak of the output space in
terms of “time slots”. In the previous examples there were five time slots —
because we are expecting a five-digit answer.

At this level of description we have a two-dimensional array of nodes,
indexed by (segment-ID, time-slot), where segment-ID is an index into the
set of allowed segments for this image.

This can be drawn as shown in figure 6, where each • is a node in the
graph. Note there is a special start-node before the first time and to the left
of the leftmost segment, and a special end-node after the last time and to the
right of the rightmost segment. The arcs constituting all valid segmentations
are also shown.

For reasons that will become clear in a moment, we subdivide the time
axis, as shown in figure 7; the label m is for morning and e is for evening. In
this graph, there are two kinds of arcs: glue arcs and recognition arcs . All
arcs are directed; we think of them as left to right, although one could just as
well solve the problem right to left instead. Recognition arcs (rec-arcs) are
daytime arcs, from a morning to an evening. Glue-arcs are nighttime arcs,
from an evening to the next morning.
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Figure 4: The segments

2.1 Glue arcs

A given evening node will generally have several glue arcs leaving it. For
example, a (1 2) node might originate the following arcs:

(1 2) −→ (3) “abut”
(1 2) −→ (3 4) “abut”
(1 2) −→ (4) “skip”
(1 2) −→ (2 3) “overlap”

The parameters of our implementation are currently set to allow only
abutment, and possibly skips connected to the start and end nodes.

The number of arcs can be reduced by using the information about ob-
vious cuts; no segment can straddle an obvious cut. This is technically a
statement about node-building, but it has a big impact on arc-building, be-
cause we do careful pruning of nodes and arcs. We designate “live nodes” as
ones that are descendents of the start node and (simultaneously) ancestors of
the end node. Arcs to or from a non-live node are deleted from the graph, to
prevent unnecessary computation.

2.2 Recognition Arcs

We assign each rec-arc four attributes: origin-node, destination-node, inter-
pretation, and score. Note that we can have more than one arc connecting a

7



0 1 2 34 56

01 2 34 5 6

01 23 5 64

Segmentation
   #1

Segmentation
   #2

Segmentation
   #3

Figure 5: Three segmentations

given pair of nodes; indeed recognition arcs come in groups of N , where N
is the size of the recognition alphabet (N = 10 for digit recognition). For
clarity, only N = 3 recognition arcs per group are drawn in figure 7.

As shown in the figure, recognition arcs connect the morning and evening
nodes of a given segment. The score of each rec-arc is determined by calling
the single-character recognizer on the corresponding segment, i.e. box of
pixels. There is only one call to the SCR per row of the lattice.

2.3 Paths, Segmentations, Interpretations

We will consider paths connecting the start-node to the end-node; the path
will be a sequence of arcs of the form [G R G R G R G R G R G] where G
stands for glue-arc and R stands for rec-arc.

In this formalism the segmentation corresponding to a given path is in-
dependent of the rec-arcs and consists of the list of segments visited by the
glue arcs in the path.

Analogously, an “interpretation” is a string of characters, e.g. “07733”.
For a five-digit string, there will be 105 possible interpretations per segmen-
tation. For each path, the segmentation is formed by concatenating the inter-
pretations of the rec-arcs making up the path.

The score of a path is formed by multiplying the scores of the constituent
glue-arcs and rec-arcs. Presently all glue-arcs have a score of 1.0; the rec-arc
scores are computed by a neural network as discussed in section 4.

To summarize this subsection: if you take a path and ignore the rec-arcs,
you get a segmentation consisting of a list of glue-arcs; conversely if you
take a path and leave out the glue-arcs, you get get an interpretation, which
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Figure 6: Basic Lattice

consists of a list of rec-arcs.

2.4 Runner-up Information

There are a number of situations in which it is useful to know the scores for
more than one interpretation of the image. If nothing else, it is useful during
training to know how the bad-guy scores are changing relative to the good-
guy scores. (A training scheme that increases the good-guy scores is a failure
if it increases bad-guy scores by the same amount.)

The famous Viterbi algorithm[2, 3] operates in terms of paths. It will
find the best-scoring path and tell you its score. There exist algorithms that
will find the K best paths through the lattice, but as likely as not, many of
these paths will have the same interpretation as the best one (i.e. different
segmentations with the same interpretation). It could be quite inefficient to
enumerate all these paths and then search for one that differs in interpretation.
Therefore we now present an algorithm that directly finds the best path that
differs in interpretation from the very best path.

We will do this using a lattice that has twice as many nodes as the lattice
in figure 7. One part of the new lattice will be called the “gold plane” and
will operate as previously described to identify the “gold path”, i.e. the very
best interpretation of the image. The other part of the new lattice will be
called the silver plane and will be used to compute the “silver path”, i.e. the
best path that differs in interpretation from the gold path.
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Figure 7: Expanded Lattice

The nodes in the new lattice are identified by (segment-ID, time-slot,
m/e, g/s) where m/e specifies morning versus evening, and g/s specifies gold
versus silver.

The left part of figure 8 is a close-up view of part of gold plane. The
ordinary Viterbi algorithm has been used to identify the gold path, which is
shown with a heavy line. The arcs connecting the gold and silver planes are
disabled while the gold path is being computed, and are not shown in this
part of the figure.

After the gold path has been identified, the system is ready to compute
the silver path. Each evening node in the silver plane has 2N − 1 incoming
arcs: N from the corresponding morning node in the silver plane, and N − 1
from the corresponding morning node in the gold plane. The missing arc is
the one whose interpretation matches the gold path’s interpretation for that
output time-slot. This is portrayed in the right part of figure 8. The column
headed “2G” represents time slot 2 in the gold plane, and the column headed
“2S” is the corresponding part of the silver plane.

Glue arcs stay in their plane.
There is only one start node, and it is in the gold plane. The end node

of the gold path is in the gold plane, and the end node of the silver path is
defined to be in the silver plane. Any path that reaches the silver plane must
have differed (in interpretation!) from the gold path in at least one place,
because the only arcs that go from one plane to the other are restricted to
differ in the required way. It is of course possible that the silver path differs
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Figure 8: Runner-up Lattice

from the gold path in more than one slot.
The computation for the silver path is of the same order of complexity

as for the gold path — which means it is negligible compared to the non-
recurring cost of computing the rec-arc scores. Also note that during the
computation of the runnerup, no nodes in the gold plane need be updated.

3 Assigning Probabilities to Competing Interpre-
tations

We assign a number called an “R-score” to each possible outcome of the
segmentation/recognition process. In general, R will be a function of the
interpretation C, the segmentation S, and the image I .

In the first part of this section we will be intentionally vague about the
meaning of the R-score, in order to maximize the generality of some the-
oretical results. But to fix ideas, it won’t hurt if you visualize R(C, S, I)
as equaling the probability P (C, S, I), i.e. the joint probability that the data
set contains a data point where character-string C and segmentation S are
attached to image I . For starters, we will explicitly require that R be non-
negative.

As discussed in the previous section, since we are building upon our
single-character recognizer (SCR), one way of constructing the R-score of a
segmentation would be to multiply the r-scores of the constituent segments,
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where the r-score (with a little r) is computed by the SCR. Fancier factoriza-
tions of R will be considered below.

Let us assume for the moment that the SCR produces properly normal-
ized r-scores. That is, for each single character, the r-scores add up to unity.
This will guarantee that R-scores of a given segmentation will also be nor-
malized. Therefore we don’t need to worry about the case where one in-
terpretation has an R-score of .99, while some other interpretation has an
R-score of .95 (which would be a problem since the alternatives would add
up to more than unity).

On the other hand, there is no satisfactory way the SCR can be normal-
ized so that scores of different segmentations can be compared. In particular
all the segments in the second and third segmentations shown in figure 5
would receive good r-scores, so both segmentations would be assigned good
R-scores.

It absolutely will not suffice to normalize these R-scores by dividing by
the total of all R-scores. This is infeasible to compute and gives absurd
results anyway.

Therefore we must retract the assumption that the r-scores are normal-
ized (i.e. per-character normalization) and find a new way to normalize the
R-scores (i.e. per-image normalization).

To formalize the task: we want to find the most-probable character string,
and estimate its probability, given the image.

Let

I := the “image”
C := the “interpretation” (a string of characters)
Ct := the character in the tth position of C
S := the “segmentation” (a string of segments)
St := the segment in the tth position of S

The single-character recognizer returns an r-score which depends on S t,
Ct, and I . Note: it is more common to think of the recognizer as return-
ing a vector of scores, depending on S t and I , but it is formally equivalent
and more convenient for present purposes to pick out the score for each C t

separately. For example, if we are considering the image in figure 1 and its
segment (01) as shown in figure 4, then r(“3”, seg, img) will be large while
r(“1”, seg, img) will be small.

Using a set of SCRs (plus whatever else you can think of) let’s assume
we can assign a score to a given segmentation and interpretation; call it
R(C, S, I). Arrange it to be positive by construction. As will be discussed
later, we want to train the network so that R will be more or less a probability,
but we don’t want to write it as P (C, S, I) just yet.

Remark: there is an axiomatic definition of probability measure. Specif-
ically, a measure is a mapping from sets to numbers; it must be positive, and
the measure of the union of disjoint sets must equal the sum of the measures
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of the ingredients. A probability measure has the further property that it is
bounded above; typically we arrange this bound to be unity. Anything that
satisfies the axioms can justly be called “a” probability; we will be using
several such probabilities, and must be careful not to call any of them “the”
probability without qualification.

John Bridle[4, 5] suggested computing the quantity

Q(C|S, I) :=
R(C, S, I)∑
C′ R(C′, S, I)

(1)

where the sum runs over all possible interpretations. This is called “soft-
max” normalization.

It is easy to verify that
∑

C Q(C|S, I) = 1, and that Q(C|S, I) is posi-
tive. Therefore Q satisfies the axioms of probability, and the placement of the
“given” bar in equation 1 is consistent with the usual notation of conditional
probabilities. For a single-character recognizer where the segmentation S
can be considered a “given”, this scheme (with an elaboration to be discussed
below) is an excellent way of doing the normalization. For suitable functions
R, this gives a good estimate of the actual probability of the interpretation C
being correct.

Many people were surprised to discover that softmax scores cannot serve
as the basis of a multi-character recognizer (MCR). To see this, compute
instead

Q(C, S|I) :=
R(C, S, I)∑

C′S′ R(C′, S′, I)
(2)

and
Q(C|I) :=

∑

S

R(C, S|I) (3)

The last formula is very important because the probability P (C|I) (or the
expected cost based thereon) is what the customer cares about! In particular
he often wants to know the max and argmax (w.r.t. C) of P (C|I) for each
image I . If we are to have any hope that Q will be a good estimate of P , it
must be normalized correctly. Q(C|I) cannot be computed by summing the
softmax result Q(C|S, I) over S; the given-bar is on the wrong side of S.

To make this problem clear, consider (again) the competing segmenta-
tions in figure 5. Segmentations #2 and #3 are the serious contenders. Most
humans prefer segmentation #3, (with interpretation “35133”) over segmen-
tation #2 (with interpretation “35733”). Segment (34) which appears in seg-
mentation #2 is a perfectly good “7”, so the preference must be based on the
judgement that segment (2) is not a good “5”.

Humans can make this judgement, but an MCR based on a softmax SCR
will have trouble. The problem is that the conditional probability is nearly
100% that if the pixels in segment (2) represent a digit then it must be a “5”.
Since softmax provides just such a conditional probability, it is doomed.
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The MCR needs the joint probability that the segmentation is correct and
the interpretation is correct. Softmax throws away the segmentation-quality
information prematurely.

To quantify this, let us factor R(C, S, I) = T (C, S, I) U(S), where
T (C, S, I) is constructed to carry very little information about the quality
of the proposed segmentation S — that information being carried instead
by U(S). To fix ideas, imagine T (C, S, I) to be the conditional probability
P (C, I|S), while U(S) is the “marginal” P (S). Plugging in, we get:

Q(C|S, I) :=
T (C, S, I)U(S)∑
C′ T (C′, S, I)U(S)

(4)

Alas, the factor U(S) drops out of this expression. In contrast, the S-
dependence does not drop out of equation 2, since it has an S in the numerator
and an S ′ in the denominator.

As foreshadowed above, let us assume (with modest loss of generality)
that the recognition results are context-independent, so we can factor R as

R(C, S, I) =
∏

t

r(Ct, St, I) (5)

where the product runs over all output slots t (e.g. 1 through 5, for ZIP
Codes). The output slots are called t to suggest “time” in analogy to speech
segmentation models.

Additional factors expressing the “quality of segmentation” (e.g. the score
of glue arcs as discussed in section 2) have been omitted from this expression
for clarity; restoring them to this and subsequent expressions is routine.

We assume r is positive. We will try to arrange it to be an increasing func-
tion of the probability that the (individual) character c goes with (individual)
segment s.

Plugging in, we conclude that the customer may want to know the max
and argmax (w.r.t. C, for a given I) of the quantity

Q(C|I) =
∑

S′′
∏

t r(Ct, S
′′

t, I)∑
C′

∑
S′

∏
t r(C′

t, S′
t, I)

(6)

It is useful to consider the equivalent expression

Q(C|I) =
∑

C′′
∑

S′′
∏

t r(Ct, S
′′

t, I)δC
C′′∑

C′
∑

S′
∏

t r(C′
t, S′

t, I)
(7)

where δ is the Kronecker delta. This form makes it clear that both nu-
merator and denominator are “lattice sums”, i.e. the sums run over all paths
in the lattice. The summand is slightly different for the numerator and de-
nominator. Such sums can be computed very efficiently via the “forward”
algorithm.
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The forward algorithm is very similar to the Viterbi algorithm. They have
the same computational complexity; the former computes a sum where the
latter computes a max.

The first step in computing max Q(C|I) is to compute the denominator
using the forward algorithm, which does exactly what we want. The denom-
inator is independent of C.

As for the numerator, we need to compute the sum and maximize over
all interpretations C. For any particular C, it is fast (using the forward algo-
rithm) to compute the sum. It is also fast (using Viterbi) to compute the max
(over all C) of the summand. Viterbi will not compute the max of the whole
sum, which is what we would like.

To paraphrase Abraham Lincoln: we can easily maximize one term over
all paths, and we can easily evaluate all the terms for some of the paths, but
we can’t so easily maximize all the terms over all the paths.

We could just approximate the sum by its largest term, in which case
Viterbi would give us the answer. A better approximation is to use Viterbi to
find the interpretation that contributes the largest term to the sum, and then
use forward to evaluate all the terms with that interpretation. This gives the
exact score Q1 for that interpretation; the only question is whether it is the
genuine maximum. Since Q is manifestly normalized, if Q1 is greater than
one-half, we know there can be no other possibility.

If Q1 does not “use up” enough of the probability measure, we can use
second-interpretation Viterbi (as discussed in section 2) to identify another
contender, and then use forward to compute its score. In principle this pro-
cess could continue indefinitely. Let Q∗ denote the sum of the scores of
the already-checked interpretations; if at any point Q∗ differs from unity by
less than the best score already found, then we have certainly identified the
winner (and precisely computed its score).

This technique is known in the speech recognition community, but is
rarely used, apparently because the number of candidates gets out of hand.
In our case, though, one or two candidates usually suffice to “use up” essen-
tially 100% of the probability, at which point we know our method has found
the exact answer.

There exist other schemes for finding and/or approximating the max of
the sum, but we won’t discuss them here.

Cooperating Segmentations

To reiterate, our MCR assigns scores to interpretations. The score is a ratio:
the denominator is a sum over all paths, and the numerator is a restricted
sum, restricted to paths having the given interpretation.

We now explain why it is advantageous to evaluate the restricted sum in
the numerator, as opposed to making the Viterbi approximation that the sum
is equal to its largest term. Consider the two segmentations [(01) (23) (4) (5)
(6)] and [(1) (23) (4) (5) (6)]. Since we see from figure 4 that segment (01)
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and segment (1) are both perfectly good “3”s, both segmentations will receive
high scores; let’s assume their scores are essentially equal. Both paths will
contribute to the sum in the denominator. If only one of them contributed
to the numerator, the score would be reduced by a factor of two — a very
significant amount.

4 Training

In the previous section, we showed that for any r-score function, the Q func-
tion derived from it would be normalized like a probability, so it could be
considered “a” probability in the abstract, formal sense. Our task is not com-
plete, however, until we show how to create an r-score function that leads
to “the” probability, or at least to “a” probability that meets the customer’s
needs.

We work within the framework of supervised learning. That is, for each
image Iα in the training set, there is a “desired” interpretation C∗α. A
straightforward learning principle is to say that we want to increase the ex-
pected score of the right answer, 〈Q(C∗α|I)〉, where the expectation involves
averaging over all elements α in the training set. Because Q is normalized,
this principle automatically implies that the score of undesired interpretations
should decrease.

Consider the lattice for our example image and its 11 segments. The lat-
tice calculates one final output: the Q score for the desired answer. This
number is a function of 110 numbers that are input to the lattice, namely
the scores of the recognition arcs (ten per segment). It is useful to calculate
the sensitivity of the output to each of these inputs. This can be done using
the Baum-Welch algorithm (also called the forward-backward algorithm).
Specifically, Baum-Welch will give 110 partial derivatives, one for each in-
put. The meaning of each one is clear: if the derivative is x, it means that if
the score of that rec-arc went up by one unit, the final Q score would go up
by x units (to first order).

The situation for our example is shown in figure 9. A white box indicates
a positive derivative, while a black box denotes a negative derivative. We can
see that increasing the response of “3” detector neuron to segment (01) will
improve the overall score. It also makes sense that it would hurt the overall
score if the (2) segment were recognized as a “3” or a “5” — because that
would increase the R-score of paths that give the wrong answer. The strong
negative derivative on the “7” response to segment (34) will be discussed
later.

In our recognizer, the r-scores come from a feed-forward neural network
called LeNet[1]. The ten output signals of LeNet are exponentiated to give
the r-scores. In the example, the whole MCR consists of the lattice plus 11
copies of LeNet (one for each segment). All these networks share the same
set of weights.
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Figure 9: Derivatives w.r.t. recognition arcs

Now, we can consider the whole MCR as a complicated neural network.
We can backpropagate through the whole shebang. The objective function,
as we said, is the average Q score of the desired answers. By the chain rule,
the gradient in LeNet’s weight space is

∂Q

∂W
=

∂Q

∂r
· ∂r

∂W
(8)

where the · indicates a sum over all 110 r-scores. The first factor is
computed using Baum-Welch, while the second factor is computed using
standard backprop. To put it another way, the derivatives calculated using
Baum-Welch (and displayed in figure 9 are used as initial deltas at the top
layer of LeNet. Backprop does not require targets; all it requires is initial
deltas.

Taking a small step in weight space in the direction of the gradient is
guaranteed to increase the objective function.

The large black blob in column “7” and row (34) of figure 9 means that
LeNet will be trained not to recognize such a segment as a “7”. Penalizing
this image could be a problem, since the segment really looks like a “7”, but
fortunately this is not the only image in the training set. We rely on other
images to generate a countervailing training signal. In the end, images like
this will be recognized as “7”s, but the score (i.e. the estimated probability)
will be less than 100%, which seems reasonable.
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Refinements

The learning principle “increase Q” was suggested as being reasonable; it
was not claimed to be necessary or sufficient. Here are several refinements
to the basic picture:

• In particular, log Q is at least as attractive an objective function as Q.
In fact we use log Q. Because the log function is steeper near zero, this
causes low-scoring patterns to be emphasized, relatively speaking.

We take the logarithm of the r-score, too; that is, we set the initial
deltas to ∂ log Q/∂ log r. (Remember that log r is the actual output
of LeNet.) Observations indicate that with this choice, the deltas are
reasonably uniform in size from pattern to pattern.

• If all r-scores are multiplied by a constant, the Q value is unchanged.
Therefore an additional principle is required to promote a reasonable
scale for r. For starters, we check for saturated output units on LeNet;
a special initial delta is applied if necessary to bring them out of satu-
ration.

• The basic formulation above does not allow the winning Q score (for
any particular image) to be less than 10−5 (or more generally, N −T ,
where N is the number of characters in the alphabet, and T is the
length of the interpretation). The minimum occurs when all N T inter-
pretations are equally likely. We need to question the assumption that
there are only 105 interpretations for a ZIP Code image. In particular,
the image may not be a ZIP Code at all. The solution is to add a junk
category, making N ′ = N + 1 categories.

When adding a junk category, some care is required, lest the whole
formalism fall down. In particular, there might be a very large number
of ways of segmenting the image such that LeNet is absolutely sure,
correctly, that the resulting characters are junk. This is not a problem
in the numerator, since we just constrain the search to find the highest-
scoring non-junk path. The pitfall is that high-scoring junk paths could
contribute to the denominator, lowering the score of the right answer
even when there is not anything actually wrong. This pitfall can be
avoided. It is important to realize that the R-score of a path involves
not just the probability of the interpretation, but also the probability of
the segmentation.

In the present implementation, each segment effectively has a junk unit
with output level fixed at −0.8, in units where the activation level of
ordinary units’ normal range is −1.0 to +1.0, and extreme range is
−1.7 to +1.7.

• We now return to the issue of the multiplicative scale factor of the r-
scores (which is equivalent to an additive scale on the LeNet output
levels). In cases where LeNet is sure of the classification, the junk unit
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nibbles away a tiny amount of the probability measure. The only way
the Q score can improve is for the magnitude of the LeNet outputs
to increase. If unchecked, this would cause a dreadful divergence of
the weights. We counter this tendency by applying a tiny amount of
“state decay”, which is implemented as an additional small, arbitrary,
negative contribution to the initial deltas. It tells the neurons: if you
haven’t got anything better to do, drift downwards. Eventually they
drift down until the junk unit starts to make a significant difference, at
which point the delta from Baum-Welch is big enough to balance the
state decay.

The presence of the junk unit now imparts an absolute scale to the
output neurons. Neurons can be high or low with respect to the junk
neuron, which is more meaningful than being high or low with respect
to other unmoored neurons.

5 Experimental Results

This work used some 11,000 images of ZIP Codes. Approximately 7,000
were chosen at random for the training set, 3,000 for the test set, and 1,000
were reserved for the validation set. About 6% of the images correspond to
9-digit ZIP Codes, and the rest to 5-digit ZIP Codes. They were digitized in
black and white at 212 dots per inch. The data was collected by SUNY Buf-
falo, and is referred to as the “hwb” set by them. All images were lifted from
live mail at a mail sorting center, and had been rejected (as unclassifiable) by
the “MLOCR” (Multi Line OCR) machines currently used by the U.S. Postal
Service.

In most anticipated applications of our recognizer, the cost of punting
(i.e. rejecting an image as unclassifiable) is small compared to the cost of a
substitution error. To make this clear, consider the following “value model”:
the recognizer is offered a sack of mail. For every percent that it classifies
correctly, the customer will pay $1.00, but for every percent that it classifies
incorrectly, there is a penalty of $10.00. There is no cost for rejecting an item
since the customer can send the item through the existing system and be no
worse off than he is now.

The recognizer bases its punting decision on the Q-score; if the score
exceeds a threshold, the item is accepted, otherwise it is rejected. The optimal
value of the threshold can be determined by varying the threshold and using
the value model, as is done in figure 10. The bottom axis indicates what
percentage of the mail is accepted. The upper curve is the value measured on
the test set using a $10.00 penalty, and the lower curve is the same but using
a $20.00 penalty.

Obviously, at 0% acceptance, the value is zero — no payment, no penalty.
For small values of acceptance, the value rises with unit slope, because the
recognizer can choose to accept only the images that it is sure of. As we move
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Figure 10: Recognizer Value Curves

toward the right side of the graph, at some point the recognizer must begin
accepting lower-scoring images and taking the attendant risk. The 100%
acceptance point is grossly suboptimal.

We find it highly advantageous to think of recognizer performance in
these terms, as opposed to (for instance) considering the total number of er-
rors made. It is all too easy to make a design change that is superficially
desirable because it reduces the total number of errors, yet unfortunately in-
creases the score of some of the remaining errors (and/or decreases the score
of some of the correct items) in such a way that the peak of the value curve
is actually lowered.

Comparison with our previous recognizers

To make a reliable comparison between the old and new ways of building an
MCR, we use an idea advocated by Leon Bottou (private communication),
which we call the cross-error matrix. It emphasizes the distinctions between
networks which is a big win over the low-tech procedure of evaluating each
network separately and comparing the scores. All our recognizers perform
so well that a validation set of “only” 1000 zips seems frighteningly small;
we have to do the statistics carefully lest we get fooled by fluctuations.

Suppose we have two result-files “v2” and “vj” – the scores for two dif-
ferent MCRs on the validation set. Only the network training procedure is
different; the network architecture, preprocessor, and everything else are the
same. If you know that vj has a punting rate of 37.9% (at 60% correct) while
v2 has a punting rate of 38.6% (also at 60% correct), it is clear that vj is
better than v2, but you ought to wonder whether the difference is statistically
significant.

But consider the following table:
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vj
Ri Pu Wr Ign

Ri 575 26 0 601
Pu 25 353 1 379

v2 Wr 0 7 13 20

Ign 600 386 14 1000
where the row and column headers are abbreviations for the words Right,

Punt, Wrong, and Ignore.
The diagonal is easy to understand: there are 575 cases where both net-

works got the image right (above threshold), 353 cases where both punted it,
and 13 cases where both got it badly wrong. There are 1000 cases total, so
the counts are easily converted to percentages. The rightmost column tells
what happens if we ignore vj; for instance, there are 601 images that v2 got
right (above threshold) and 20 images that it got badly wrong. Similarly,
from the bottom row we see that there are 14 images that vj got badly wrong.
The 14 versus 20 ratio is more informative than the 386 versus 379 ratio, but
still not overwhelming.

The most interesting information comes from the 7 and the 1 just off the
diagonal. That means that if we exclude the 13 cases that both networks got
wrong, vj makes only 1 mistake that v2 didn’t make, while v2 makes 7 mis-
takes that vj didn’t. Most people consider 1 versus 7 rather more convincing
than 14 versus 20.

In the example above, we knew all along that vj was better than v2. The
latter uses the network that has been our state-of-the-art standard network for
almost a year, but it was not particularly matched to the segmenter (candidate
cut generator) and alignment lattice we were using. In contrast, vj had been
trained (using Baum-Welch and all the latest tricks) with the new segmenter
and lattice. A comparison that is more fair (but in some ways harder to
interpret) is v1 versus vj; v1 lets the standard net use its favorite segmenter
and lattice.

vj
Ri Pu Wr Ign

Ri 574 26 0 600
Pu 26 353 3 382

v1 Wr 0 7 11 18

Ign 600 386 14 1000
In this case the advantage is less extreme, but this constitutes reasonably

good evidence that the new MCR (built according to the principles presented
in this paper) really is better than the old system.

The experiments presented here are preliminary; we expect substantial
improvements in the future.
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6 Remarks

It is worth calling attention to certain ideas that were not used in deriving the
results of this paper. In particular, we have not used the fashionable but hard-
to-justify “principle” of maximum likelihood as our starting point. Rather,
our training uses the principle that we want the score of the right answer to
increase, on average.

Recall that “likelihood” is a technical term referring to the probability of
the training data given the model. In contrast, the derivation presented here
revolves around the probability of correct classification, given the training
data; this is not a likelihood, maximal or otherwise. The mathematics of
hidden Markov models[9, 2] (HMMs) — which we have not invoked — tends
to focus attention on likelihoods, since the HMM is clearly a data-generating
model rather than a classifier per se.

We are quite aware that HMM theory can be used to motivate the con-
struction of a lattice-based classifier that is similar in many respects to our
design, but we feel that the derivation presented here is simpler and easier to
justify, and makes more clear what probabilities are conditioned on what.

7 Conclusions

We have constructed a multi-character recognizer by combining neural net-
works (to evaluate individual segments) with a lattice (to handle the segmen-
tation problem). We have used measure theory to understand how multiple
segmentations contribute to the final score — an estimate of the probability
of correct segmentation. We discovered that normal single-character recog-
nizers do not supply the information needed for segmentation, but the neural
network can be retrained to provide this information. The multi-character
recognizer is trained as a single adaptive system: error-correction informa-
tion is propagated through the lattice and into the networks.

Preliminary experiments have demonstrated the advantages of this ap-
proach, and we have adopted it as the basis of further work.
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cations, F. Fogelman and J. Hérault, ed., Springer-Verlag (1989).

[5] J.S. Bridle, “Training Stochastic Model Recognition Algorithms As
Networks Can Lead To Maximum Mutual Information Estimation of
Parameters”, in Advances in Neural Information Processing 2, David
Touretzky, ed., Morgan Kaufman (1990).

[6] O. Matan, J. Bromley, C.J.C. Burges, J.S. Denker, L.D. Jackel, Y. Le-
Cun, E.P.D. Pednault, W.D. Satterfield, C.E. Stenard, and T.J. Thomp-
son, “Reading Handwritten Digits: A ZIP Code Recognition System”,
IEEE Computer 25(7) 59–63 (July 1992).

[7] C.J.C. Burges, O. Matan, Y. LeCun, J.S. Denker, L.D. Jackel, C.E. Ste-
nard, C.R. Nohl, J.I. Ben, “Shortest Path Segmentation: A Method for
Training a Neural Network to Recognize Character Strings”, IJCNN
Conference Proceedings 3 pp. 165–172 (June 1992).

[8] C.J.C. Burges, O. Matan, J. Bromley, C.E. Stenard, “Rapid Segmenta-
tion and Classification of Handwritten Postal Delivery Addresses us-
ing Neural Network Technology”, Interim Report, Task Order Number
104230-90-C-2456, USPS Reference Library, Washington D.C., (Au-
gust 1991).

[9] Edwin P.D. Pednault, “A Hidden Markov Model for Resolving Seg-
mentation and Interpretation Ambiguities in Unconstrained Handwrit-
ing Recognition”, Bell Labs Technical Memorandum 11352-090929-
01TM, (1992).

[10] L. E. Baum, “An Inequality and Associated Maximization Technique in
Statistical Estimation for Probabilistic Functions of a Markof Process”,
Inequalities 3 1–8 (1972).

[11] Stephen E. Levinson, “Structural Methods in Automatic Speech Recog-
nition”, Proc. IEEE, 73 (11) (November 1985).

[12] Ofer Matan, Christopher J. C. Burges, Yann LeCun, and John
S. Denker, “Multi-Digit Recognition Using a Space Displacement
Neural Network”, Neural Information Processing Systems 4, J.
M. Moody S. J. Hanson and R. P. Lippman, eds., Morgan Kaufmann
(1992).

23



[13] Y. Bengio, R. deMori, G. Flammia, and R. Kompe, “Global Optimiza-
tion of a Neural Network – Hidden Markov Model Hybrid”, Proc. of
EuroSpeech 91 (1991)

[14] M. Franzini, K. Lee, and A. Waibel, “Connectionist Viterbi Training:
a new hybrid method for continuous speech recognition”, Proc. of
ICASSP 90 (1990)

[15] P. Haffner, M. Franzini, and A. Waibel, “Integrating Time-Alignment
and Neural Networks for High Performance Continuous Speech Recog-
nition”, Proc. of ICASSP 91 (1991)

[16] X. Driancourt, L. Bottou, and P. Gallinari, “Learning Vector Quantiza-
tion, Multilayer Perceptron and Dynamic Programming: Comparison
and Cooperation”, Proc. of the IJCNN 91 pp. 815-819 (1991).

24


