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1 Comparing Complex Numbers to Clifford Algebra

As the saying goes, learning proceeds from the known to the unknown.

There are at least two possibilities:

1) If you are starting from scratch, a nice logical path would be to learn things in the following order:
• Plain old numbers (scalars).
• Vectors.
• Clifford Algebra in two dimensions.
• Complex numbers can be understood as a subset of Clifford Algebra in two dimensions, as discussed

below.
• Clifford Algebra in higher dimensions.
• Quaternions can be understood as a subset of Clifford algebra in three dimensions. Also note that

Pauli spin matrics are isomorphic to quaternions. In particular, starting from complex number (or
otherwise), learning about Clifford Algebra is probably easier and better than trying to figure out
quaternions and/or spin matrices directly.

2) If, however, you already have experience with complex numbers (and vectors), you can use the correspon-
dences discussed below to jump-start your understanding of Clifford Algebra.

— Complex Numbers — — Clifford Algebra —

A complex number has real part and an imaginary
part.

A multivector has a scalar part, and a vector part,
and a bivector part, et cetera. For an explanation
of these concepts, related concepts, terminology, et
cetera, including the geometric and pictorial rep-
resentation of these objects, see reference 1, refer-
ence 2, reference 3, and reference 4.

Adding a real number to an imaginary number is
like adding apples and oranges. But there’s noth-
ing wrong with that. People do it all the time.

Adding a scalar and a vector plus a bivector etc. is
like adding apples and oranges plus pears et cetera.
But there’s nothing wrong with that. You can’t
safely compare apples and oranges, but that’s a
separate issue.

Due to a quirk in the terminology, the imaginary
part of a complex number does not refer to an
imaginary number, but refers instead to the real
number multiplying i. If z = x+ iy (where x and
y are real) the imaginary part of z is y.

The terminology for Clifford Algebra does not
share this quirk. The vector part is a vector. The
bivector part is a bivector.

Consider the subset of complex numbers where the
imaginary part is restricted to be zero. This cor-
responds to the plain old scalars.

Consider the subset of multivectors where every-
thing but the grade=0 part is restricted to be zero.
This corresponds to the plain old scalars.

Multiplication is associative and distributes over
addition.

Multiplication is associative and distributes over
addition.

The ordinary product of two complex numbers p
and q is written p q without any special operator
symbol.

The geometric product of two multivectors P and
Q is written P Q without any special operator
symbol. This geometric product is primary and
fundamental. Other operations, including dot
product and wedge product, will be defined in
terms of the geometric product.
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We postulate the existence of the imaginary unit
(i) whereupon all the other complex numbers can
be created by multiplication and addition.

We postulate the existence of some number of vec-
tors (γ1, γ2 . . .) whereupon all the other multivec-
tors can be created by multiplication and addition.

The imaginary unit (i) does not correspond to a
Clifford-Algebra vector, but rather a bivector: x+
iy corresponds to x+ γ1γ2 y.

Consider the Clifford Algebra in two dimensions
and restrict attention to the subset of multivec-
tors where the grade=1 part is zero. This subset
is closed under multiplication. This subset is iso-
morphic to the complex numbers.

Multiplication is commutative. Multiplication of vectors is commutative if the vec-
tors are collinear. Multiplication of vectors is an-
ticommutative (pq = −qp) if the vectors are or-
thogonal. In general multiplication is neither com-
mutative nor anticommutative. Most things in
the real world are non-commutative. Putting on
your socks doesn’t commute with putting on your
shoes.

The complex number system doesn’t have vectors,
just grade=0 real things and grade=2 imaginary
things. The imaginary unit (i) is not constructed
from vectors but exists by fiat.

A blade of grade r is defined to be the product of r
mutually-orthogonal vectors. If you have a bunch
of vectors but don’t know for sure that they are
orthogonal, you can express the wedge product in
terms of permuted geometric products:

q1 ∧ q2 ∧ q3 · · · qr :=
1

r!

∑
π

sign(π)qπ(1) qπ(2) qπ(3) · · · qπ(r) (1)

where the sum runs over all r! possible permuta-
tions π, and sign(π) is +1 for even permutations
and −1 for odd permutations. This will be a blade
of grade r if the vectors are linearly independent;
otherwise it will be zero.

So we see that the wedge product is the completely
antisymmetric product. For a discussion of the
physical interpretation, in terms of area of paral-
lelograms and volume of parallelepipeds, see refer-
ence 5.

The wedge product is associative and distributes
over addition.

We have not assumed the existence of a right-
handed basis. Indeed we have not assumed the
existence of a basis of any kind.

Some complex numbers are pure real. Some com-
plex numbers are pure imaginary.

We say a multivector is homogeneous if it is a
blade or a sum of blades all of the same grade.
In D = 3 or less, every homogeneous multivector
is a blade. In D = 4 and higher, you can have
things like γ1γ2 + γ3γ4 which is homogeneous but
not a blade.

We can select out the real part <(z) or the imag-
inary part =(z) for any complex number z.

We can select out the grade=r part 〈M〉r for any
multivector M .
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We know how to form the complex conjugate of a
complex number: (2 + 5i)∗ = (2− 5i)

We know how to form the reverse of a multivector:
For every term that is a product of vectors, write
the factors in reverse order: (2 + 5γ1γ2)∼ = (2 +
5γ2γ1)

Given two complex numbers p and q, their wedge
product is p ∧ q = 1/2[(pq) − (pq)∗]. This is pure
imaginary, and constitutes the high-grade piece of
the ordinary product. This has norm |p||q| sin(θ)
where θ is the angle between the two vectors,
which agrees with the ideas in reference 5.

Quite generally, the wedge product will be the
high-grade part of the geometric product. That
is, if A has grade=r and B has grade=s, then
A ∧ B = 〈AB〉r+s. This is a consequence of
the previous definitions, since only the high-grade
piece will survive the antisymmetrization. It is of-
ten much easier to pick out the high-grade piece
by eye than to actually carry out the sum indi-
cated in equation 1. (If you expand all vectors in
terms of components, using an orthogonal basis,
it is particularly easy to be certain of the grade of
any given term.)

Given two complex numbers p and q, their dot
product is p·q = 1/2[(pq)+(pq)∗]. This is pure real,
and constitutes the low-grade piece of the ordinary
product. This has norm |p||q| cos(θ) where θ is the
angle between the two vectors.

Quite generally, we define the dot product as fol-
lows: The dot product of a scalar with anything
is zero. Otherwise, the dot product of two mul-
tivectors is the low-grade piece of the geometric
product. That is, if A has grade=r and B has
grade=s, then A ·B = 〈AB〉|r−s|.

The ordinary product can be written as the sum
of the wedge product and dot product: p q = p ∧
q + p · q

If either P or Q is a vector, then P Q = P ∧Q +
P · Q. In general, though, dot and wedge don’t
exhaust the possibilities. If P has grade r and
Q has grade s, the geometric product will contain
contributions of every grade from |r−s| up to r+s,
counting by twos.

The product of a complex number with its conju-
gate is a real scalar.

The product of a blade with its reverse is auto-
matically a scalar. We assume all scalars are real,
because anything you could ever want to do with
complex numbers can be done within the Clifford
Algebra formalism.

We use this to define the squared norm of a com-
plex number: if z = x+ iy then

|z|2 := z z∗ = x2 + y2 (2)

We use this to define the squared norm of a mul-
tivector: if M = a+ bγ1 + cγ2γ3 where a, b, and c
are scalars, then

||M ||2 := 〈MM∼〉0 = a2 + b2 + c2 (3)
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