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A general approach, within the framework of canonical quantization, is described for analyzing
the quantum behavior of complicated electronic circuits. This approach is capable of dealing with

electrical networks having nonlinear or dissipative elements. The techniques are applied to circuits
capable of generating squeezed-state or two-photon coherent-state signals. Circuits capable of per-

forming back-action-evading electrical measurements are also discussed.

I. INTRODUCTION

Quantum-mechanical considerations are playing an in-
creasing role in the design of low-noise electromechanical
networks. Recent interest in the quantum behavior of net-
works constructed out of discrete components has been
driven by two sources: The first arose out of the practical
need in experimental gravitational physics for extremely
sensitive detectors operating in the quantum regime in or-
der to measure, for example, the response of a Weber bar
antenna to a passing gravitational wave from a supernova
explosion in the Virgo cluster of galaxies. Out of such
considerations by Braginsky, Gifford, Unruh, Caves
et al. , and Hollenhorst arose novel concepts in rneasure-
ment. ' One of these concepts "back-action evasion" is the
realization that a detector can, under suitable conditions,
be made blind to its own noise. The other major source
of recent interest in the quantum behavior of electronic
circuits arose out of Josephson-junction-device physics.
Josephson-junction technology has reached the point
where dc superconducting quantum interference devices
and superconductor-insulator-superconductor (SIS) junc-
tion rnixers are operating close to the regime where the
quantum nature of the electrical signals begins to matter.
The effects of dissipation on the quantum behavior of
macroscopic systems has been addressed theoretically by
Caldeira and Leggett, Koch et al'. and Chakravarty.
Experimental observations on electronic circuits operated
in a regime where quantum noise is important have been
carried out by Voss and Webb, Koch et al. and Jackel
e~ al."

Here we present a general approach for calculating the
quantum behavior of an electromechanical network. For
simplicity, the discussion is restricted to electrical net-
works, -the generalization to other networks being straight-
forward. In treating dissipative elements such as resistors
we follow Nyquist" and replace the resistors with
transmission lines extending to infinity. This trick con-
verts a dissipative electrical network into a manifestly
conservative one and reduces the problem of quantizing
the circuit to that of quantizing two-dimensional interact-

ing fields. Since the fields propagating along a transmis-
sion line satisfy a massless scalar Klein-Gordon equation,
quantization is readily achieved following the standard
procedures for canonical quantization. The approach
pr esented ls phenomenologlcal in that a conservative
model for an electronic circuit is constructed which
correctly reproduces the classical behavior of the device.
It is this model that is quantized. One may ask whether
such an approach will adequately describe the behavior of
a device constructed out of electrons and nucleons, i.e.,
would a full first-principles analysis of the 10 particles
making up a real electronic circuit give the same result as
an approach based on macroscopic phenomenology? The
attitude taken here is that the charges and magnetic fluxes
stored in various components of an electronic circuit
represent collective coordinates describing the cooperative
motion of large numbers of electrons and that these coor-
dinates can be quantized directly. Furthermore, thermo-
dynamics requires that the equilibrium noise coming from
a resistor depends only on the resistance R and the tem-
perature T of the resistor. This independence of the
equilibrium behavior of a resistor from its material prop-
erties or microscopic structure justifies the use of a
transmission line to model the resistor. " This approach,
based on classical phenomenology, will neglect electrical
noise of microscopic or nonequilibrium origin such as, for
example, flicker or 1/f noise. On the other hand, one
feels that there is nothing fundamental requiring the pres-
ence of such noise sources. With proper care in engineer-
ing and fabrication, these noise sources can often be great-
ly reduced or eliminated. Thus the approach presented
treats only that noise which is required by thermodynam-
ics and by the Heisenberg uncertainty principles, noise of
fundamental origin that cannot be engineered away by the
proper choice of materials. The question addressed is the
following: Given a device with a prescribed classical
behavior, what is its ideal quantum performance? Hence
the calculations presented here are somewhat like those of
equilibrium thermodynamics. The calculations tell us
what the best performance is that can be achieved by a
given device. The performance of a real device is always
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worse, being degraded by flicker noise and other forms of
nonequilibrium noise whose origin for the most part is not
well understood. However, recent advances in Josephson-
junction technology ' ' ' make one optimistic that elec-
tronic circuits can indeed be built with a performance
closely approaching the quantum ideal. Much of what is
described here has been worked out in quantum optics. In
fact, quantum network theory is simply the low-frequency
limit of quantum optics. In this limit one has the luxury
of working with lumped circuit components rather than
distributed media. In the discussion we will try to follow
the language of the electrical engineer. Kirchhoff's circuit
laws turn out to be the correct Heisenberg equations of
motion, provided that the appropriate current or voltage
noise terms arising from the equilibrium noise coming out
of the resistors are included. Hence much of classical
electrical engineering can readily be carried over into the
quantum domain.

Before giving a general discussion of how to quantize
electrical networks, the quantum mechanics of a transmis-
sion line will be briefly reviewed in order to establish nota-
tion and present results that will be useful later when the
transmission lines are used here as models of resistors.
After giving a general discussion of how to carry out
canonical quantization on an electrical network, the sim-

ple case of a series LRC circuit will be worked out in de-
tail. The results of calculations for more complicated net-
works, such as those for parametric amplifiers and back-
action-evasion devices, will be discussed. A simple
Josephson-junction circuit is used to illustrate that certain
resistive nonlinearities can also be readily handled within
the framework described here. Time-dependent resistors
also can be dealt with readily. An extreme case, that of a
switch which has either zero or infinite resistance, is used
to illustrate how one can go about calculating the ideal
quantum performance of resistive mixers.

II. TRANSMISSION LINES

The quantum mechanics of tranmission lines has been
presented by Robinson' and Louisell, ' and is reviewed
here to introduce notation, to present results that will be
useful in later sections of this paper, and to make the pa-
per self-contained. Also, some Heisenberg .uncertainty re-
lations for signals propagating along a transmission line
are derived. These will be useful in discussing phase sensi-
tive signal detection schemes.

Consider a transmission line extending to infinity in
both directions along the x axis. Let Q (x, t) denote the to-
tal charge to the right of point x at time t. Q(x, t) will be
referred to as the charge field. The current flowing along
the transmission line is then

transmission line. The wave equation for the charge field
can be obtained from the Lagrangian density

1 L aQ 1 aQ
2 at CT ax

2

(2.3)

where L,T is the inductance per unit length along the
transmission line. The wave equation is a massless scalar
Klein-Gordon equation:

c}2 82L, a Q —C;"Q=o. (2.4)
at a

From the Lagrangian density (2.3) the momentum &b(x, t)
canonically conjugate to the charge field can be identified:

C(x, t) = =LTI(x, t) .
aI.

' =
a(aQ)

= (2.5)

Hence 4(x, t) is simply the magnetic flux per unit length
threading the transmission line at x and t.

According to the procedure for canonical quantiza-
tion, '

Q and @ become operators satisfying the equal-
time commutation relations:

[Q (x, t), Q (x', t)]= [C&(x,t), @(x',t)]=0,
[Q (x,t), 4(x ', t) ]=i fi5(x —x ') .

(2.6)

Since the charge field satisfies the wave equation (2.4) it
can be decomposed into a left-traveling part and a right-
traveling part:

Q(x, t) =Qt (x/u+t)+Qtt( —x/v +t),
where

(2.7)

v =(LTCT) (2.8)

00

d~~ —)/2(g e iso(x/u+—t)+H )0 L67

(2.9)

Qti( —x/v +t) =
4~Z

d~ ~—i/2(g e ice( —x/U+—t)
0 Rco

is the velocity of propagation of a signal along the
transmission line. The operators QL and Qz can be
Fourier expanded as

' 1/2

QL (x/u+t)= fi
4mZ

I(, )= aQ{x,t)
at

The voltage along the transmission line is given by

{2.1)

where

+H. c.),

y( ) C i aQ(x t)
Bx

where CT is the capacitance per unit length along the

ITZ-
CT

1/2

(2.10)
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Setting t = t' in (2.17), one has

Av, (t)b, v, (t}&Zf
is the characteristic impedance of the transmission line.
The operators AL and Aii„are annihilation operators for
signal quanta propagating, respectively, to the left or to
the right. They satisfy the commutation relations

(2.19)

This places a restriction on the precision with which the
components V) and V2 of an electrical signal can be mea-

sured. One can show that the vacuum state is a minimum

uncertainty state for relation (2.19}.

[A, A „]=0,
(2.11)

[A, A „]=5(co co')—5

where the index a takes on the value L or R. From (2.9}
and (2.2) the voltage operator for the signal propagating to
the right is given by

III. QUANTIZING AN ELECTRICAL NETWORK,
A GENERAL OVERVIEW

1/2
AZ

Vii( —x/U +t)=-
4m

Figure 1(a) is a circuit diagram for a parametric ampli-
fier. Besides the linear reactances (inductors and capaci-
tors) and the nonlinear capacitance Cr, the circuit has dis-
sipative elements: the resistors Rz, RI, and Rz. As
shown in Fig. 1(b), this dissipative network can be made
manifestly conservative by replacing each resistor with
lossless transmission lines of infinite extent having a
characteristic impedance equal to the resistance of the re-
placed resistor. The transmission line acts as a sink into
which power can be radiated. The voltage sources in the
original circuit can be replaced by signals propagating in
from infinity along the transmission line. If the signals
propagating in along the transmission line consist of
thermal noise, then the transmission line acts as a heat
bath into which the discrete components dump their ener-

gy as they thermalize with the transmission line.
Having replaced the resistors with transmission lines,

the resulting manifestly conservative system can be quan-
tized following the standard procedures of canonical
quantization. ' The Lagrangian density of the system is
of the form I

x d +1/2( A im( ——xlu +t)
B Rcl

(2.12)+H.c.},

where the integration has been limited to the bandwidth 8
of the measuring instrument. For the vacuum state, Vii
and VR have the expectation values

(0
l vii l

0) =0, (2.13}

v,'lo)=Z f, "
(2.14)

Hence even for the vacuum state there is ,' fico noise pow—er

per unit bandwidth in the zero-point fluctuations propaga-
ting to the right along the transmission line.

It will be useful, for later reference, to decompose VR

into components
W =5(x)L +H (x)g W;, (3.1)

(2.15)Vtt (t)= Vi (t)cos(coot)+ V2(t)sin(copt),

where for simplicity we have set x=O. V1 and V2 are
given by ~rv

I I

R

W-
V

1/2

dcoco (iAii e ' +H. c.),
4m

RI

Vi(t) =—
f

~rv
I I

R V

(2.16)

1/2

V~(t)= — dcoco'~ (Ag„e ' +H.c. ) .
4~ R

rye& I I

I I

r8

R)One then can derive the following Heisenberg uncertainty
relations

mvm I l
I I

Rp

b.vi(t) b, V2(t') & f dco cocos[(co—coo)(t —t')]—4~

(2.17)

b, Vi(t) AV2(t') & f dcoco sin[(co —coo)(t —t')]—4~

(2.18}

FIG. 1. (a) Circuit for a parametric amplifier. (b) The same
circuit with the resistors replaced with transmission lines extend-
ing to infinity.
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where L contains all the terms associated with the lumped
circuit components, which are envisioned as being located
at x=0, and 5(x) is the Dirac 5 function. Terms for typi-
cal components that would be included in L are listed in
Table I. The Lagrangian density for the ith transmission
line is

L,, ag; ag,=5(x)
2 Bt Bt

L; ag;+H(x) g 2 Bt

1

2c QQ,.
EJ

1 aQ
Bx

(3.5)

L; ag;
2 at

ag;
(3.2)

Bx

where L~ and Cz are, respectively, the inductance and
capacitance per unit length along the transmission line.
The Heaviside function

)
1, x&0
0, otherwise

ensures that the transmission line only exists along the
positive x axis.

The equations of motion are obtained by finding the ex-
tremum of the action

The procedures to be described easily can be generalized to
treat networks with nonlinear elements and more compli-
cated topologies. The variation of the action with respect
to Q; then gives the Euler-Lagrange equation

a aw a
at a(a, g, ) ax a(a„g, )

+ aw
aQ;

(3.6)

a'=
a(a, g, )

(3.7)

Canonical quantization imposes the commutation rela-
tions

The momentum 4; canonically conjugate to the field vari-
able Q; can be identified from (3.5) via

d d (3.3)

The variation of the action must however be carried out
with the constraint that the total current fiowing into a
given electrical node be zero. That is if there are k nodes
in the circuit, then one has k equations of the form

'=o, (3.4)

where 6 denotes that the sum is carried out over all the
currents i entering node m. These equations simply im-
pose the conservation of charge and are known as
Kirchhoff's current law. Equations (3.4) let one express
all the charges in a network in terms of a set of linearly
independent charges Q;.

For simplicity, the discussion now will be restricted to
linear networks with a topology sufficiently simple that
the Q; of each transmission line is linearly independent.
The Lagrangian density can then be written in the form

TABLE I. Some commonly occurring circuit elements and

the associated terms in the Lagrangian.

[Q;(x,t), QJ(x', t)]=0,
[4&;(x,t), 4J(x', t)]=0,
[Q;(x,t), 4~(x', t)]=i%5~5(x —x'),

(3.8)

a ag,
H(x) ' =O. (3.9)

on the Q; and N;.
The Q;(x, t) can be expanded in terms of creation and

annihilation operators for the transmission line fields.
Quantization is then completed by introducing a vacuum
state ~0).

We now demonstrate that the terms in square brackets
in Eq. (3.5) which arise from the transmission lines do
indeed give linear damping as required of a resistor. The
results obtained will be used to demonstrate how one can
go about computing the scattering matrix for an electronic
circuit. For simplicity, a system constructed out of linear
circuit elements will be considered. Equation (3.5) substi-
tuted into (3.7) gives rise to the equation of motion:

5(x) g L,J 2' + +H(x)L;
a2Q

Bt Bt

Symbol
Term ln

Lagrangian Device For x &0 this reduces to the wave equation for the ith
transmission line

L dQ
2 dt

'2

linear inductance r a'Qi
at2

=0.a'Q;

(jx
(3.10)

dQ& dQ2

dt dt
mutual inductance Integrating (3.9) over the interval —e&x & e and taking

the limit a~0 one obtains

2C
linear capacitance d Qi QJX LJ 2+Cj lt C)J

=0.aQ;

c,' ax „,+= (3.11)

Q' rQ'+. . .
2C 3

nonlinear capacitance

(varactor diode)

The terms in the parentheses can be recognized as the
voltages developed across the inductors and capacitors.
The last term is recognized from (2.2) as the voltage



29 QUANTUM NETWORK THEORY 1423

Q;(x, t)=g,'" +t—+g,. "'
Vg

x——+t
V]

(3.12)

where the superscripts "in" and "out" indicate whether
the signal is propagating toward the network at x=O or
away from it. From the time and space derivatives of
(3.12), one can show that at x=O

across the terminals of the transmission line. Hence (3.11)
is a statement of Kirchhoff's voltage law that the sum of
the voltages around a closed loop is zero. Since Q; satis-
fies the wave equation (3.10), it has the general form

Before moving on, it is worth describing an alternate
way of coupling a transmission line to a network which
has the advantage of being generalizable to model non-
linear and time-dependent dissipation. Consider the La-
grangian density

t t

+5(x) g T;Q;
dt

clg; dg; dg "
=R; —2

C; c)x ~ o+ dt dt
(3.13)

L; Bq;+H(x) $ c)t

'2
1

2C c)x

2

(3.18)

where R; is the characteristic impedance of the ith
transmission line (assumed to be purely resistive). Hence
(3.11) becomes

d'Q, Q, dQ; dQ'"
(3.14)

The last term on the left side of this equation represents
the voltage developed across the transmission line as the
circuit radiates power into it. It is Ohm s law. The term
on the right represents the voltage developed across the
transmission line due to signals or noise propagating in to-
wards the electrical network at x=0. This is a derivation
of the fiuctuation dissipation theorem for the class of net-
works being considered. Equation (3.14) is referred to as a
Langevin equation. ' By virtue of its derivation from the
Lagrangian density, (3.14) is the correct Heisenberg equa-
tion of motion. Furthermore, from (2.9) one knows how
to express the Q" in terms of A "

(co) and A "(co), the
creation and annihilation operators of the incoming
transmission line quanta,

' 1/2
fi

4m.Rg I dcoco '~ [A "(co)e ' '+H. c.] .

~ ~ ~ (3.16)

Hence Q
"' can be expressed in terms of the Qi". Conse-

quently, A "' (co) and A "'(co), the creation and annihila-
tion operators of outgoing quanta, can be expressed in
terms of the incoming creation and annihilation operators.
For the linear system considered above, one will have

A "'(co)= g S,JAi"(co) .
J

This constitutes the construction of the quantum-
mechanical scattering matrix S;J for the network.

Expectation values of all observable operators can now
be computed for state vectors describing the incoming sig-
nals. This procedure, in the following sections, will be il-
lustrated by discussing various electrical networks in de-
tail. The first network to be treated will be the series I.RC
circuit.

(3.15)

The system of equations (3.14) can be solved for the Q; in
terms of the Q ". From (3.12) one obtains

In contrast to (3.5), the ith transmission line, instead of
being hooked directly into the circuit, is coupled to the ith
charge g; via the linear coupling T;Q;dq;/dt.

It now will be demonstrated that such a coupling gives
rise to linear damping. In Secs. VII and VIII generaliza-
tions of this coupling will be used to model nonlinear and
time-dependent resistors. The Euler-Lagrange equations
for (3.18) yield for x=O

d2

J dt CJ
' dt

(3.19)

dg;
dt

and for x&0

1 =0,
x =O+

(3.20)

(3.21)

Let the impedance of the ith transmission line be denoted
as Z;, then in analogy with (3.13) one has

Bq; dq; dq;=Z; ' —2
Bx „0+ dt dt

and q
" has the form of (3.15)

(3.22)

q "(t)= I dcoco '~ [A "(co)e '"'+H. c.] .
4~z,

(3.23)

With (3.20) and (3.22), Eq. (3.19) can be reexpressed as
T

d QJ QJ dg; dq"
(3.24)

where the resistance R; is given by

Rs ——T; /Zs ~ (3.25)

Zg
gin

' in

T
(3.26)

That the coupling T;Q;dq; /dt gives rise to linear damping
has now been demonstrated with the appearance of the
term R;dQ;/dt in Eq. (3.24). If one introduces an effec-
tive charge Q

"via the definition
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Eq. (3.24) can be reexpressed to be identical with (3.14).
Furthermore, by substituting (3.23} into (3.26) one can
show that the expression for the effective charge Q" is
identical with (3.15). Hence it has been demonstrated that
the Lagrangian densities (3.5) and (3.18} lead to the same
dynamical behavior as far as the Q s are concerned. This
is reassuring since thermodynamics requires that the
equilibrium noise developed across a resistor be character-
ized only by the temperature and resistance of a resistor.
The equilibrium behavior of a resistor should be indepen-
dent of how the resistor is constructed. The model one
uses to simulate a resistor is a matter of convenience.
Simulating a resistor by replacing it with a transmission
line leads to a very simple Lagrangian density. On the
other hand, the coupling in the Lagrangian density (3.18}
is more readily generalized to treat nonlinear and tirne-
dependent dissipation.

IV. THE SERIES I.RC CIRCUIT

+H (x) — Q . (4.1)2 c)t 2CT c}x

The Euler-Lagrange equation, following the same steps
that lead to Eq. (3.14), yields

(4.2)
dt dt C dt

Since this equation is linear and since Q'" has the form
(3.15), one readily can solve for Q in terms of A;„(co) and
A;„(co), the creation and annihilation operators of the in-
coming charge field. The result is

I /2
fiR iA;„(co)e

co L —1/C+icoAf dco co
0

Q(t) =

A number of approaches to the quantum mechanics of
the damped harmonic oscillator have been proposed.
These have been extensively reviewed by Dekker. ' Our
approach is in the spirit of Senitzky, ' Ford et ctl. ,

's and
more recently Caldeira and Leggett in that a simple heat
bath (a transmission line in our case) is coupled to the os-
cillator to produce the damping. Figure 2(a) depicts a
driven, damped series LRC circuit. Figure 2(b) is the
same circuit in which the resistor and voltage source have
been replaced with a transmission line of infinite extent.
The Lagrangian density for the system is

M =5(x)
2 dt

L

, 2

FIG. 2. (a) A damped, driven series LRC circuit. (b) The
same circuit with the resistor and voltage source replaced with a
transmission line.

co L —1 /C —icoR

co L —1/C+icoR
Remembering from Eq. (2.11) that

[A;„(co),A;„(co')]=0,
[A;„(co),A;„(co')]=5(co —co'),

(4.5)

(4.6)

it is an easy exercise in contour integration to demonstrate
that

Q LdQ (4.7)

This is the electrical equivalent of [x,p]=i%. Equations
(4.1)—(4.6) constitute a complete solution of the quantum
LAC problem. The expectation values of the operators for
various incoming signals can now be computed. Suppose
the resistor is at absolute zero, T=O, then only vacuum
fluctuations will come out of the resistor. Hence the sig-
nal propagating in along the transmission line is modeled
by the state vector ~0) defined by

A;„(co)
t
0 )=0 for all co . (4.8)

It is instructive to work out the probability distribution
P(q) for finding an amount of charge q in the capacitor.
One can show

+ H. c. (4.3) (oi Q(t) io) =0
From (3.16), the signal propagating back out along the
transmission line is

4mR

' 1/2

f dco co '~ [A,„,(co)e '"'+H. c.],
(hQ)'=(0

~

Q'(t)
~

o) = f dco,
co + (co —coo)

2 L 2 2

where

(4.4)

where

(4.9)
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top ——(LC)

The higher-order moments are given by

(0
~ Q ~

0) =(2k —1)!!(0
~ Q ~

0)",
(0

i

Q2k+i
i
0) P

(4.10)

From (4.9) and (4.10) one can conclude that the probabili-
ty distribution is Gaussian'

(4.11)

The integration in (4.9) can be carried out and the result is

1/2
C
L

' 1/2

(&Q) = C
L

' 1/2
C

2m L

2&2—1

(4@2 1)i/2(4@2 1)i/2

1

2

+(1 4@ )i/2

(1—4B )'/ 1 —2B —(1—4B )'/

(4.12a)

(4.12b)

(4.12c)

where B is the quality factor

LNp

R
(4.13)

where cop can be regarded as a clock or reference frequen-
cy. Suppose that when this signal is fed into the ampli-
fier, the amplified output voltage can be written in the
orm

The three cases (4.12a), (4.12b), and (4.12c) correspond,
respectively, to the underdamped, critically damped, and
overdamped LRC oscillator. In the limit when the quality
factor Z becomes unbounded (B~ao ), one finds

1/2

(~Q) =- C
2 L

which is the textbook result for the undamped harmonic
oscillator. It can be seen from Eqs. (4.12a)—(4.12c) that
the width of the charge distribution becomes narrower as
the damping is increased. This has observable conse-
quences for the macroscopic quantum tunneling rates of
Josephson junctions. '

V. PARAMETRIC AMPLIFIERS

The restrictions quantum mechanics places on the per-
formance of linear amplifiers were first worked out in the
1950s when the advent of the maser, an amplifier capable
of extremely low noise operation, made such considera-
tions of practical importance. The history of interest in
the quantum limits of linear amplifiers is briefly reviewed
by Caves and the reader is directed there for references.
As Caves has pointed out, it is necessary to distinguish be-
tween phase insensitive and phase sensitive linear amplifi-
ers. I et the voltage V;„of a signal with a narrow band
about cop be written in component form as

V' (t) = Vi(t)cos(copt)+ V2(t)sin(copt) (5.1)

For the mechanical analog, L~M, 1/C~IC, and Q~x,
one has

' 1/2

V,„,(t) =A i Vi (t)cos(copt +P)

+32 V2(t)sin(cppt +P) . (5.2)

The amplifier will be referred to as being phase insensitive
if Ai ——&2. In most literature such amplifiers are simply
ref'erred to as linear amplifiers. If A, ~/I, the amplifier
will be referred to as phase sensitive. It is a well-known
result that a linear phase insensitive amplifier must add
noise to the amplified signal. A phase sensitive linear am-
plifier, in contrast, under suitable conditions can be com-
pletely noise free. An example of a phase sensitive am-
plifier is the degenerate parametric amplifier (DPA)
which Takahasi ' in (1965) recognized could be in princi-
ple noise-free quantum mechanically. A derivation of the
quantum performance of a DPA will be presented here. It
is shown that the DPA performs a canonical transforma-
tion on the signals delivered to its input and this transfor-
mation is completely reversible. (A second DPA can undo
what the first DPA has done. ) The techniques described
can be extended to treat nondegenerate parametric ampli-
fiers and upconverters. Towards the end of this section
some comments will be made about phase insensitive
linear amplifiers. In particular, it will be shown that
phase insensitive amplifiers in principle can be built which
can noiselessly amplify one component of a signal. Hence
the commonly asserted claim that a phase insensitive
linear amplifier must inject noise into the amplified signal
with a noise power of —,%co per unit bandwidth needs to be
qualified to a larger extent than has been realized in the
literature.

An embodiment of a DPA operating in the negative
resistance reflection mode is shown in Fig. 3. A circulator
labeled C is used to separate the input signal from the am-
plified output. The pump supply Vz oscillates at twice
the signal frequency. Mixing of the pump and signal volt-
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ages by the nonlinear capacitor Cr Inakes it possible for
the device to deliver net power at the signal frequency.
The charge-voltage relationship for the nonlinear capaci-
tor will be taken to be

+—yQ'.
C

For the purpose of analyzing the performance of the
DPA, the circuit of Fig. 3(a) can be simplified to that of
Fig. 3(b). The signal wiH propagate towards the amplifier
along the transmission line 8&. The amplified signal will
propagate out along R~. The Lagrangian density for the
circuit is

'2
Ls ~Qs Lp ~Qp Qs~="'
2 a +2 a -2C,

Qp Qs+Qp '
2Cp 2C 3

r

ag,+H (x)
2 2

1 ~gs Lp ~gp
Bx 2 dt

r

1 ~gp

2Cp Bx

The Heisenberg equations of motion become

d Qs dQs 1 1Ls—,+Rs
d

+
C +—Qsdt2 dt Cq C

Qp dQs+ +y(gs+gp) =2Rs, (5.5a)

d Qp dQp 1 1+Rp
d

+ -+C Qpdt dt
~

Cg C

Qs de+
C

+y(Qs+Qp)'=2RP
dt

(5.5b)

(5.6)

Let cos and cop denote, respectively, the center frequen-
cies of the LC filters of the signal and pump branch of the
DPA. The assumption is now made that the quality fac-
tor of the LC filter of the signal branch is sufficiently
sharp that only terms in Eq. (5.5a) oscillating at frequen-
ries in a narrow band about co+ need be kept. A similar
assumption is made for the LC filter in the pump branch
of the circuit. Fourier expanding Qs", QP, gp in the form

Qs"(t) = f dco[gs"(~)e "' +Qs" (co)e ' ]

then for signals @os and top near the resonant frequencies
~s and ~a, one obtains

I~SR—sgs(~s)+y d~p[gp(~p)gs(~p ~s)

+QS(tgiP ~s )Qp(~p )]

= —I 2~SRsgs"(~s) (5»)
I ~PRpg—p(~p)+y f d~sgs(tos)gs(top —tos)

I'2a)—PRpgp"(cop) . (5.7b)

To further simplify the problem, the limit of a weak non-
linearity (y~O) will be considered. The limit will be tak-
en in such a way that y ~ Qp ~

=const where
~ Qp (

is the
amplitude of the pump. To consider what happens quan-
tum mechanically in this limit, let the incoming pump sig-
nal be described by the Glauber state

~
G, y, a) =exp — f ~

a(to)
~

2dto
2y2 Q

X g -- —f dna(co)AP (to) i0),
y Q

J

(5.8)

OUTPUT

LS CS CP LP

Jg v

where Ap" is a creation operator for the incoming pump
quanta. The expectation value for Qpm is then

Q'"(I)=—«,y, a I
gp"(t)

I
G, y, a&

f dcoco '~ [a(to)e

Ls Cs Rs

+c.c.] . (5.9)

Cy- Cp~i ~a~
AT

Rp

This is recognized as a Fourier expansion of a classical
signal. One also readily sees that yg p(t) is independent
of y. The fluctuation of QP about its mean is

FICi. 3. (a) A degenerate parametric amplifier operating in
the negative-resistance reflection mode. (b) A manifestly conser-
vative version of the DPA.

(begin)2
1 f dto

Rp & 2m 2

1I1 the 11IIllt y ~0 (5.7b) ieduces to

Qp(~p) =2gp"(~p) .

(5.10)

(5.11)
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where Pp is the phase of the pump signal defined by

Qp= IQp/e (5.14}

and A is the amplitude gain

1+
4)"

f Qp I'
co(cop —co )Rs~

47'
I Qp I

'
~(~p —~)Zs

(S.15)

By choosing 4)
~ Qp

~

/[co(cop —co)Rsj to be sufficiently
close to I, the gain can be made as large as desired.
Choosing the pump phase such that e =i, Eq. (5.13)
in terms of creation and annihilation operators becomes

As"'(co) =AAs"(co)+ (A 1)'i A—s" (cop —co) . (5.16)

This transformation can be undone by a second DPA—if'
whose pump phase is chosen such that e = —i. Hence
the transformation a DPA performs on a signal is noise-
less and reversible.

In order to understand what the transformation (5.16)
does to a signal it is convenient to write the incoming sig-
nal in component form as was done in (3.15)

In the limit y —+0, Qp(cop) appearing in (5.7a) can be re-

garded as a classical variable since the quantum correc-
tions, being of order yhQP, vanish. If the pump oscilla-
tor is very stable, producing a spectrally pure signal, a(co)
will be very sharply peaked about cop. Hence Qp(cop) will
have the form Qp5(cop —cop) and Eq. (5.7a) reduces to

&~s—&sQs(~s }+27'QpQs(~p ~s)0

i—2cosasQs"(cos) (5 12)

From this equation and its Hermitian conjugate one can
show (from now on we will write cop as cop }

Qs"'(co) =AQsm(co) —i (A —1)'~ e Qs" (cop —co),

(oi v,'„'io)=(oi v,'„'io)=z J,
The cos( —,

'
copt) component of V,„, then has fluctuations of

the magnitude

(2A)-'(0
~
v,'„'

~
0),

whereas the sin( —,'copt) component has fluctuations of the
magnitude (2A) (0

~

V„'
~

0). Hence the quantum noise
fed into the input of the DPA comes out squeezed, having
reduced quantum fluctuations in one component of the
signal. This outgoing signal is referred to as squeezed
noise'* ' ' in the gravitational physics literature and as a
two-photon coherent state signal in the quantum optics
literature.

Having analyzed the DPA, the linear phase insensitive
parametric amplifier will now be discussed in order to
comment on the ultimate noise performance of such a de-
vice. A realization of nondegenerate parametric amplifier
is depicted in Fig. 1(a). The equivalent conservative cir-
cuit is shown in Fig. 1(b). The operation of this device in
the negative resistance reflection mode will now be con-
sidered. In this mode the signal propagates towards the
amplifier along transmission line Rs, the reflected and
amplified signal will propagate back out along Rs. These
two signals can be separated using a circulator as was
done for the degenerate case in Fig. 3(a). For the proper
operation of this device, the pump frequency fp must be
at the sum of the signal and idler frequencies, fs and ft,
respectively,

fp=fs+ft .

The circuit of Fig. 1(b) is straightforward to analyze, be-
ing only slightly more complicated than the DPA. Hence
only the results of such a calculation will be quoted. The
outgoing signal annihilation operator As"'(co) expressed in
terms of the incoming signal annihilation operator As"(co)
and the incoming idler noise creation operator At" (co) is

As"'(co) =6 "~ As"(co) i (G —1)—'~ AI" (cop —co),

(5.22)

V~„(t)= V „(t)cos( ,' copt)+ V „'(t)si—n(—,
'

copt) .

The outgoing signal operator then can be written as

V,„,(t) =—(2A) 'V„(t)cos( —,copt)

—2A V „'(t)sin( ,' copt)—
provided the bandwidth 8 in (3.16) is restricted to

(5.17)

(5.18)

where 6 is the power gain given by

47'I Qp I'
Q)g colRgRl
47'

I Qp I

'
6)geo )RgRI

(5.23)

(S.19)

which can be made large by choosing the pump amplitude
such that

Hence the DPA is a phase sensitive amplifier having a
gain of the form (5.2) such that A iA2 ——1.

If the incoming signal consists only of vacuum fluctua-
tions, then

4)"
I Qp f'

~S~I~S&1

From (5.19), (2.1), and (2.9) one readily can show

(5.24)
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lout( ) Gi/2riu( ) (G 1)1/2
2 mug

dcoco'/ [AI" (cop co—)e '"'+H. c.] .8 (5.25)

It is immediately evident that the incoming current is amplified by a factor of G'/ . The second term on the right-hand
side represents the noise coming from the idler resistor. If the idler resistor is cooled to a low enough temperature so
that only vacuum fluctuations are coming from it, then this noise term contributes a noise power of

1) f dco Iiico

to the amplified signal. In the limit of large gain this gives the often quoted noise power, referred to the input of the
amplifier, of ,

'
fico —per unit bandwidth.

The termination at the idler port is not required to put out noise distributed randomly over all phases. The termina-
tion could put out squeezed noise. Figure 4 depicts how this can be done: The termination consists of a resistor fol-
lowed by a DPA, and therefore, the noise coming from the idler resistor is squeezed before being delivered to the idler
tank circuit. The DPA is pumped at twice the center frequency of the idler tank circuit. Substituting an expression of
the form (5.16) for Atm of Eq. (5.22), one readily can show for a sufficiently narrow bandwidth [see Eq. (5.19)] and for an
idler resistor emitting vacuum fluctuations that

(lUg"') =G(Ms") +(G —1)( 2/I) cos (cost) f +(G —1)(2A) sin (cost) f2m 2 02m 2
(5.26)

where cos is the center frequency of the signal tank circuit.
Hence the noise is phase sensitive, and for the sin(cost)
component of the signal the amplifier noise power per
unit bandwidth is reduced by a factor of (2A) over the
standard result of , fico. A pha—se insensitive linear ampli-
fier can indeed keep one component of the amplified sig-
nal clean provided it is constructed properly.

Before moving on to back-action-evasion amplifiers,
amplifiers with feedback networks will be briefly dis-
cussed. The amplifiers so far discussed work best when
they are impedance matched to the signal source, that is,
when they swallow up all the available power from the
signal source. For certain types of measurements one
would prefer that the measuring device not absorb any
power from the circuit being measured. The ideal volt
meter would absorb zero power from the circuit under
test. Figure 5(a} shows a circuit suitable as the front end
of a volt meter. It presents a high input impedance at its
input port and, therefore, would absorb little power from
the circuit under test. This circuit will be used as an op-

portunity to introduce a few techniques that will allow
one to avoid going through the canonical quantization
procedure of Sec. III each time one analyzes a different
circuit. The main observation is that Kirchhoffs current
and voltage laws give the correct Heisenberg equations of
motion provided one includes the appropriate quantum
noise term with each resistor. With the use of the defini-
tions of Sec. II, Fig. 6 shows the Thevenin and Norton
equivalents for a transmission line extending to infinity on
the right or on the left in terms of the current operators

(5.27)

I;NPUT
PORT

~ OUTPUT
PORT

RT

OSCI LLATOR

Vp
j/7

A Z
1TW

I

I

I I

I RSI

I

I

- VS
I

I

C I RCU IT
UNDER
TEST

Ry

Vg

(b)

Q
/

I RL I

I I

Vi I VLI
I

RECORDI NG
DEV ICE

Vp

FIG. 4. A method of producing a linear amplifier that will
have reduced noise fluctuations in one signal component. This
is accomplished by squeezing the noise coming from the idler
resistor using a DPA.

FICi. 5. {a) A voltage to voltage amplifier, suitable for the
front erid of a voltmeter. The circuit presents a high input irn-

pedance to the input port. {b) The same circuit with all noise
and signal sources included.
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/

—Co

R

(-) VR= 2RIR

IN=2I R R

n

R

VR = —2RIL()

R IN=-2IL

Note Vo —— 2—RIo. Looking at (5.29) and (5.30), one
sees that in I~ the creation and annihilation operators re-
verse roles when compared with the noise coming out of a
conventional resistor. The phase conjugated noise arises
from the fact that the relation between the quanta at the
input and output of the amplifier must be of the form
(5.22). The distinction between the ordinary resistor noise
and the phase-conjugated noise of an amplifier becomes
important when considering the photon statistics as mea-
sured by a photodetector, the phase conjugation gives rise
to spontaneous emission noise. With the currents and
voltages labeled as in Fig. 5(b}, Kirchhoffs circuit laws

give

FIG. 6. Below each transmission line are shown successively

the Thevenin and Norton equivalent circuits. Arrows indicate
direction of positive current flow. I and V are defined by Eqs.
(2.1) and (2.2). IR and II. are defined by Eq. (5.24).

where QI and Qz are defined by Eq. (2.9). These
equivalents are used in Fig. 5(b). An amplifier with dif-
ferential inputs can be constructed from the linear phase
insensitive parametric amplifier discussed earlier simply
by transformer coupling to the input. The equivalent cir-
cuit for the amplifier is depicted in Fig. 5(b). The voltage
generator Vo in the output port has been drawn inside a
square to distinguish it from the other voltage generators.
It is given by

0 = Vs —Vr —V2 (Rs+—Ro+R2)I R2(Ip—II ),—

V =(IP IL }(R—i+R2)+IR&+. Vi+ V2,

V =II RI + VL,

V= Vo —IoRo .

(5.31)

I =Io —I~ . (5.32)

Equations (5.28) and (5.31) form a complete set of linear
operator equations which can be solved in a straightfor-
ward way for unknowns, such as V and I, in terms of the
signa1 operator Vs and the noise operators Vr, Vo, V~, V2,
VL, and Iz. In the limit A —+ oo the resulting expressions
greatly simplify, and in particular (5.28) reduces to

1/2

Vo =2RoA (I Io }+2Ro A —— Iz, (5.28)
Ro

where A is the amplitude gain and Iz is phase-conjugated
noise generated inside the amplifier:

Since the only currents flowing at the input arise from
noise sources Io and I& inside the amplifier, to the circuit
under test, the input port presents an infinite input im-
pedance. From (5.28) and (5.30) one can demonstrate that
noise with a total noise power of %co per unit bandwidth is
injected by the amplifier into the circuit under test.

The voltage delivered to the load is

1I~ ———
2 &RI

1/2

J dao co' [—iA&(co)e '"'+H. c.] .

(5.29)

R)+R2 RiV= vs — V2+ v
R2 R2

Ri+R2
Ri+ (Ri —Rs) Io

R2

1Io=—
2 mRo

a co'/' —iso co e —' '+H. c.

Io is the noise current at the input of the amplifier:
1/2 Ri+R2

+ R)+ (R, +Rs) I~ .
R2

(5.33)

(5.30)
For vacuum fluctuations coming out of the noise sources
one finds

2Ri+R
(b V) =4 (AVg) +4

R2

R)+R2 dco %co
RiRs

R2 & 2m 2Rs

2R &+R2 Rs+2 R)+ Rs +
R2 Rr

2R1+R2 de %COR iRs
R2 2~ 2Rs

(5.34)
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The signal-to-noise ratio can be optimized with respect to
RJ by solving

d(b, V)

~Rr

for Rz. The result is

R2 Ri+R2
R =

Ri+R2 R2
R +R

(5.35)

(5.36)

Hence under optimal impedance matching (5.34) reduces
to

Ri+R2
(4V) =4 (AVs)

Rp
2

Ri+R2 2 p

R)+R2 8co %co+4 RiRs
R2 ~ 2m 2Rs

(5.37)

The first two terms are what one would expect for an am-
plifier operating at the quantum limit ( —,fico noise power
per unit bandwidth when referred to the input). The last
term can be made negligible provided Ri and R2 are
chosen such that

R)R2
(5.38)

To conclude, an ideal voltmeter, whose internal noise
sources eject noise uniformly over all phases, must inject
noise into the system being measured with a noise power
of lfico per unit bandwidth. Under optimal impedance
matching conditions, the noise in the signal delivered by
the amplifier to the display device has a noise power per
unit bandwidth of —,

'
irido.

It is hoped that this exercise has convinced the reader
that a full quantum analysis of the optimal performance
of even relatively complicated electronic circuits may be
done in a straightforward manner. In the next section it is
shown how the noise limitations of an ideal voltmeter can
be overcome with phase sensitive detection schemes.

VI. BACK-ACTION-EVADING MEASUREMENT

In the last section it was pointed out that there are two
fundamental limitations which quantum mechanics places
on an ideal voltmeter whose internal noise sources emit
noise uniformly over all phases. In particular the volt-
meter must inject noise with a noise power of 1hco per unit
bandwidth into the circuit whose voltage is being mea-
sured. This is called back-action noise. Further, the am-
plified signal which the voltmeter ultimately uses to drive
a display device has a noise power of —,%co per unit band-

width when referred to the voltmeter's input. In this sec-
tion a few detection schemes are presented which are able
to overcome these limitations, at least for one component
of the signal being measured. These measuring schemes
have been dubbed as back-action evasion by Caves. ' A
number of back-action-evading detection schemes have

been proposed in the literature. The three which will be
discussed here are shown in Figs. 7(a)—7(c). These back-
action-evading detection schemes are able to achieve good
signal-to-noise ratios even when the system under test is
poorly impedance matched to the detector. Hence in Figs.
7(a) and 7(b) an impedance mismatch K has been inserted
between the system under test and the input port of the
measuring device.

The operation of the circuit in Fig. 7(a) will now be dis-
cussed. A similar device was described by Shapiro.
The terminating resistor RT is emitting equilibrium noise
which is directed towards DPA1. The voltage of this
noise, appearing at node 1 is, when written in component
form relative to cog, half the pump frequency,

V&
——V&cos(coot)+ csin(coot) . (6.1)

The voltage of the signal delivered by DPA1 to node 2 is
then, by choosing the pump oscillator phase properly,

V2 ——G ' V&cos(cog t)+ G csin(cog t), (6.2)

where G is the gain of DPAl. Let the voltage, at node 4,
of the signal propagating from the system under test to
the impedance mismatch be written as

VF=' Vscos(~gt)+ Vs'sin(~gt) . (6.3)

DPA2 is adjusted via the phase shifter to amplify in quad-
rature to DPA1. Choosing DPA1 and DPA2 to have the
same gain, the voltage of the signal delivered to the output
port, node 6, is

Vg GKVsco——s(coot)+G 'KVs'sin(coot)

+(1—K ) [V~cos(coot)+ Vs~1 (ncotg)]

The signal-to-noise ratio for V5 is then

G'K'-( V,')
(1—K')( V„')

(6.5)

(6.6)

In the limit G~ op, the signal-to-noise ratio becomes arbi-
trarily good. The voltage V&"' of the signal propagating
from the impedance mismatch back toward the system
under test is

V~"'= (1—K )'~ [ icos(cogt)+ Vs'sin(coot) ]

=KG V~co(cso tg) +KGV~sln(coot) (6.7)

One can see that in the limit K—+0, G —+co such that
KG —+ ao the signal-to-noise ratio (6.6) becomes arbitrarily
good and the fraction of the signal V~" absorbed by the
measuring device becomes arbitrarily small. Further, the
cos(coot) component of Vs"' is uncontaminated with back-
action noise in this limit.

A fraction K of this signal makes it past the impedance
mismatch. On the other hand, a fraction (1 K)'~ of-
V2 is reflected off the impedance mismatch. Hence the
signal appearing at node 5 is

Vs KVscos(co ——gt) +KVs'sin(co gt)

+(1 K2)'~ [G —'icos(coot)+GV~sin(coot)] .

(6.4)
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FIG. 8. A lumped circuit realization of a 3-dB 90' hybrid

coupler.
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Cy has the form

0 1 —i 0
1 0 0 —i
—i 0 0 1

0 —i 1 0

~i/S=~(c) (6.11)

where P= n./4 is the —overall phase shift of the 90' hy-

brid.
The balanced DPA operates as follows: Let V'i" and V4"

denote the voltage of the signals propagating into the 90'
hybrid coupler from nodes 1 and 4, respectively. In com-
ponent form

FIG. 7. Three embodiments of back-action-evasion amplifi-

ers.

Vi = Vi c o(csotp) +Vi sin(P3pt),

V4" ——V'4" cos(toot)+ V4" sin(toot) .
(6.12)

Let Vi"' and V4"' denote the voltage of the signals propa-
gating out of the 90' hybrid coupler at nodes 1 and 4,
respectively. One then has

V4"' G'V'i" cos(tempt——+P)+GV'i" sin(tppt+P),
(6.13)

Vi"' GV'4" cos(toot +p)+——G ' V4" sin(coot +p) .

Consider now the signal Vs" propagating from the system
under test towards the impedance mismatch which we will

decompose into quadrature form as follows:

Vs"——Vs cos(coot —8)+ Vs" sin{toot —8), {6.14)

1 =co L {Cp+Ci),
1 =P3 Cp (Cp+ 2Ci )Z

1=~C&Z,

(6.8)

where 6 is the phase shift produced by the phase shifter.
A fraction K of this signal makes it past the impedance
mismatch, and a fraction (1—K )'~ of the noise Vi"' is,
after passing through the phase shifter, reflected back.
Hence the voltage V5" of the signal at node 5, propagating
from the mismatch to the phase shifter, is

where Z is the transmission line impedance. The ports of
Fig. 8 and the nodes of Fig. 7(b) have been labeled to
make the numbering between the two correspond. Let
Q i Q 2 Q 3 Q 4 denote the charges of the signals, with
time dependence e ' ', entering, respectively, ports 1—4
of the 90 hybrid. Similarly Qi"', Q2"', Q3"', Q4"' denote

The circuit just discussed requires circulators to direct
the signal flow through the circuit. Figure 7(b) shows
how two DPA's, pumped in quadrature, can be combined
in a balanced configuration to accomplish back-action
evasion. Furthermore, since 3-dB 90 hybrid couplers can
be constructed out of lumped circuit components, this
circuit more readily can be realized at the low frequencies
where Weber bar gravitational wave antennas operate. A
lumped circuit realization of a 3-dB 90 hybrid coupler is
depicted in Fig. 8. This device is narrow band and correct
operating performance is obtained provided
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V~"=K[V/ cos(coot —8)+ Vs" sin(coot —8)]+(1—K )' [GV4" cos(copt+$+8)+G 'V4" (coot+/+8)] . (6.15)

Passing through the phase shifter

V'i"=K[Vgcos(root)+Vs" sin(coot)]+(I K—)' [GVf cos(coot+/+28)+G 'V'4" sin(capt+/+28)] .

If the phase shifter is set such that /+28=0, one has

Vq"' G——'KV~" cos(copt+P)+GKVg" sin(copt+P)+(1 —K )'~ [Vq" cos(coot+/)+ V'4" sin(copt+P)] .

For the signal propagating from the impedance mismatch K to the system under test, one has

Vs"'——(1—K)'~ [Vs"cos(coot —8)+ Vs" sin(coot —8)]+K[GV&"cos(coot —8)+G 'V&" sin(copr —8)] .

(6.16)

(6.17)

(6.18)

1 +y QI cos(colt)cos(coot) Q, (6.19)

where Qz is a constant. Isolation between the various
branches of the circuit is accomplished with tank circuits
of sufficiently high quality factor. As an alternative, one
could go to balanced or double balanced configurations to
isolate the pumps from the signal branches of the circuit.
A balanced configuration, taking advantage of additional
decoupling that can be achieved in an electromechanical
system, is employed by Bocko and Johnson. ' The circuit
of Fig. 7(c) is again very straightforward to analyze fully
quantum mechanically. Hence only the results will be
displayed here. Let Vi" be the voltage of the signal enter-

ing the input port and Vo be the voltage of the back-
action noise entering the output port from external elec-
tronics. Similarly, Vl'"' and Vp"' denote the voltages of
the signals leaving the input and output ports, respective-
ly. %'riting the incoming signals in component form,

Vp ——Vp" cos(capt)+ Vp sin(coot),

VI"——Vg" cos(colt)+ Vl" sin(col t),
(6.20)

the outgoing signals are given by

From (6.17) and (6.18), analogous to the discussion sur-
rounding (6.5) and (6.7), one sees that this device, in the
limit KG —+ oo with K—+0, measures V~" with arbitrarily
good signal-to-noise ratio, absorbs negligible amount of
the signal's power, and does not dump noise into the com-
ponent of the signal that is being measured.

As a final example of a back-action-evading measuring
device, consider the circuit shown in Fig. 7(c). This four-
wave mixer is closely related to a scheme Bocko and
Johnson are developing ' to perform back-action evasion
on a mechanical oscillator. The signal entering the input
port of the circuit of Fig. 7 oscillates at cur and the signal
leaving the output port oscillates at cop. Because of the
symmetry of the circuit, it is clear that the input and out-
put ports can be interchanged. The circuit has two pump
oscillators: One, V+, oscillates with a time dependence
cos(col+cop)t, and the other, V, has the same amplitude
and oscillates with a time dependence cos(col —cop)t The.
nonlinear mixing in C& then produces an effective time-
dependent capacitance whose voltage-charge relationship
1s

Vp"'= —Vp" — Vl" cos(coot),
~rRr

(6.21a)

0

Vg"'= —Vl"— Vp cos(cuit) .
0Ro

(6.21b)

BAE I

MASTER
CLOCK

FIG. 9. Two back-action-evading measuring devices, BAE1
and BAE2, controlled by the same master clock. If BAE1 and
BAE2 are adjusted to monitor the same signal component, their
chart recorder outputs will be highly correlated. The back-
action-evading measuring process approximates a von Neumann

measuring process in which the system being measured is forced
into an eigenstate of the operator whose eigenvalue is being mea-

sured.

Since Vp and Vl" change sign after being reflected off
their respective ports, it is clear that the input and output
ports present zero impedance, i.e., a short circuit, to the
external world. If yQ&/(colRI) becomes large, then Vp"'

reports the value of Vl", the sin(colt) component of the
incoming signal. The back-action noise, as can be seen
from (6.21b), is dumped into the cos(colt) component of
the signal at the input port. Because of its low input im-
pedance, the device of Fig. 7(c) is most appropriate for
phase-sensitive back-action-evading current measure-
ments. Four-wave mixers can also be constructed with
high input impedance. Alternatively, a quarter-wave sec-
tion of transmission line could be used to transform a low
impedance into a high impedance.

Before leaving this section, it is worth pointing out that
the back-action measuring devices discussed here approxi-
mate a von Neumann measuring device in that the sys-
tem being measured is forced into an eigenstate of the
operator whose eigenvalue is being measured. To illus-
trate this, consider Fig. 9 where two back-action-evading
devices, BAE1 and BAE2, successively monitor the signal



29 QUANTUM NETWORK THEORY 1433

propagating along a transmission line. Both BAE's are
phase locked to the same master clock so that they moni-
tor the same component, say the Vs component of the sig-
nal Vs propagating to the right along the transmission
line. Let Vi and Vz denote, respectively, the operator for
the output of BAE1 and BAE2. From (6.5) and (6.7) one
then has

V, =GKVscos(coot)+ G 'KVs'sin(coot)

+(1—K )'~ V~i,

V2 GK —(—1 K) '—Vscos(coo t)

+GK '(1 —K )' Vs'sin(coot)

+K V~, +(1 K)'~—V~2,

(6.22)

where V~i and Vzz are the noise operators for the noise
generated in BAE1 and BAE2, respectively. In the limit
K~O, holding GK fixed, one obtains

Vi GKVsco——s(coot)+ Vz i,
V2 ——GKVscos(coot)+ V~2 . (6.23)

Now since V~~ and V~2, being equilibrium noise coming
out of a resistor, are independent of G and K, Vi and Vz
become as good a reproduction of Vs as desired provided
GK is chosen to be sufficiently large. Hence Vi and V2

report the same eigenvalue for Vs, as can be demonstrated
by working out the correlation coefficient between Vi and

V2

approach was used by Koch, Van Harlingen, and Clark.
Alternatively, as was done by Caldeira and Leggett,
Feynman path-integral techniques may be applied to the
Lagrangian density to obtain the quantum behavior of
electronic circuits when the nonlinearities are too strong
to be handled by perturbation techniques. We will use this
section as an opportunity to show how a certain class of
nonlinear resistances may be treated in a Lagrangian for-
malism. In particular, let x be some generalized position
coordinate and X be a heat bath coordinate, then, as Cal-
deira and Leggett have shown, a term in the Lagrangian
of the form

f(x)
X

dt
gives rise to x-dependent damping of the form

2
Bf(x) dx

Bx dt

The cosj dissipative term in the Josephson current rela-
tionship belongs to this class of nonlinear resistances.

The circuit to be considered is depicted in Fig. 10. It
consists of a dissipative Josephson junction shunting a
transmission line which runs off to some electronic in-
strumentation. The Lagrangian density describing this
circuit is

W =5(x) icos/+ P —P —2g sin
fi ag ag, P ag,
2e Bt Bt 2 at

&V, V, &
—«, &«, &

[((V', ) —( V, &')(«'& —«&'))'"
& V„'&

G'K'(( V') —( V' )') (6.24)

where the last line has been obtained by assuming

( Viv i ) = ( V~2 ) =0 and ( Viv i ) = ( V~2 ) = ( Vtt ) . Hence
in the limit GK~oo, the two chart recorder traces be-
come completely correlated.

+H (x) ag
2 at

R agi,
+H+(x) at

Lf ~Q,
+H+(x) 2. at

'2
1 BQ

2Cz- Bx

'2

ag,
'

Bx

~gz
2C

2

(7.1a)

(7.1b)

(7.1c)

(7.1d)

VII. JOSEPHSON JUNCTIONS

A number of parametric amplifiers and four-wave
mixer circuits have been discussed in the last few sections.
In these circuits, nonlinear capacitors were used to do the
reactive mixing to produce power amplification. At the
low temperatures necessary to reduce thermal Auctua-
tions, the nonlinear inductance provided by the Josephson
junction is more suitable for reactive mixing. In this sec-
tion it is shown how the resistively-shunted-junction (RSJ)
model of a Josephson junction can be handled readily
within the framework of the techniques presented earlier
in this paper. In particular, a Lagrangian density for a
Josephson junction is written down which generates
Heisenberg equations of motion appropriate for the RSJ
model. These equations of motion will be nonlinear and
no attempt will be made to solve them here. However, the
Heisenberg equations of motion do provide a starting
point for perturbation calculations of the behavior of elec-
tronic circuits incorporating Josephson junctions. Such an

where H+ is the usual Heaviside function

1, x)0
H x='+ 0, otherwise

and

0, x)0
H x='

1, otherwise .

D I SSIPAT I VE
JOSEPHSON JUNCTION

FIG. 10. A dissipative Josephson junction terminating a
transmission line.
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a . aQ~ m dQ,
=Iqsing+ — +icos

ar 2 dt
(7.2)

The terms labeled (7.1a), (7.1c), and (7.1d) belong to the
junction itself. The term (7.1a) describes the reactive non-
linearity and the coupling to the heat baths. Terms (7.1c)
and (7.1d) are the heat baths associated with the dissipa-
tive terms of the junction. The transmission line attached
to the junction is described by the term labeled (7.1b).

It easily is demonstrated that the Lagrangian density
(7.1a)—(7.1d) generates the right equations of motion, and,
therefore, provides an appropriate starting point for
canonical quantization. The Euler-Lagrange equation for
P yields

(7.2)—(7.8) are correct Heisenberg equations of motion
(provided the operators are normal ordered' ) and the
fluctuation operators Qit" and Q,

'" are independent of each
other. and have the form given in Eq (.3.15). Hence it has
been shown how the RSJ model of the Josephson junction
can be quantized to recover the operator character of I, V,
and P.

The status and sign of the cosP dissipation is controver-
sial ' with experimental evidence suggesting that it is
negative. A —cosP dependent dissipation can be generat-
ed by replacing sin(P/2) with cos(P/2) in the Lagrangian
density (7.1a).

The Euler-Lagrange equation for Q yields the Josephson
frequency relation

(7.3)

jI 8
CT Bx

is the voltage across the transmission line at x=0 and,
hence, the voltage across the junction. The Euler-
Lagrange equation for Qit yields, upon using (7.3),

1 aQii
CR (7.4)

Similarly, the Euler-Lagrange equation for Q, yields
T

icos + V=—
2 o+

(7.5)

Using the same method by which (3.13) was derived, (7.4)
and (7.5) can be put into the form

dpi V dpi
dt 8 dt (7.6)

dQ, V dQ,
'"

dt 2 8, dt
=gcos +2 (7.7)

Substituting these expressions into (7.2) yields, remember-
ing that cos (P/2) = —,(1+cosP),

V VI =I+sing+ —+ ( I+cosP)R 2 R,

de p dQ.'"+2 +2/ cos
2

This equation is recognized as the Josephson-junction
current relationship with linear V/E dissipation and cosP
dependent dissipation. The last two terms on the right-
hand side of Eq. (7.8) are the fluctuation terms associated
with the linear and cosP dependent dissipation. Equations

VIII. TIME-DEPENDENT RESISTORS
AND RESISTIVE MIXERS

In this section time-dependent resistors are treated by
introducing a time™dependent coupling to a heat bath.
The time-dependent resistor then can be used to calculate
the ideal quantum performance of resistive mixers. As an
example, the quantum performance of an ideal ring mixer
will be discussed. It is pointed out that, for certain detec-
tion configurations, mixers in principle can be noiseless.
Homodyne detection, a phase sensitive detection scheme
in which the local oscillator frequency and signal carrier
frequency are the same and a definite phase relationship
between the signal and local oscillator is maintained, in
principle can be noiseless. In the heterodyne detection
process, where no special frequency relationship between
the local oscillator and signal exists, one quadrature com-
ponent of the incoming signal can still be processed noise-
lessly provided the mixer s image port is terminated with
a squeezed-state source. These results were first recog-
nized by Yuen and Shapiro but deserve better publicity
among the Josephson-junction community, particularly in
light of the success that has already been achieved in
operating superconductor-insulator-superconductor (SIS)
junction mixers close to the standard quantum limit. It is
hoped that the techniques presented here will be useful in
designing SIS mixer configurations capable of operating
below the standard quantum limit. Extensive theoretical
work has been carried out by Tucker on SIS mixers.
This work is semiclassical in that the microscopic physics
of the SIS junction is treated quantum mechanically while
the electromagnetic field is treated classically. The ap-
proach presented here addresses the following question:
Given the classical behavior of the device, what is the
lowest noise performance that such a device in principle
could realize quantum mechanically~ In this approach the
electromagnetic degrees of freedom (voltages and currents)
are treated quantum mechanically and the microscopic
physics is ignored. En general, one can expect the micro-
scopic physics to introduce extra noise. Hence it would be
desirable to have a full theory of SIS mixers in which both
the microscopic physics and the electromagnetic fields are
treated quantum mechanically.

As an illustration of how time-dependent resistors can
be treated quantum mechanically, consider the Lagrangian
density:
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g) f()dggRHdf ( t)QH
Ch f(t) Ck 2

L

T 2
LII 8QH

+H+ (x)
Bt

1 ~QH

2C~~ ~x

Gdp

+H (x)
LT Qg

Bt
ag
Bx

'2

(8.1)

r(t+—)
4Jp

y If (h)
I 'I

R~ dt
(8.2)

where I is the current flowing through the nonlinear resis-
tor and V is the voltage developed across the resistor. The
fluctuations associated with the time-dependent dissipa-
tion

I f (t)
I

/Rtt are given by 2f (t)dgtt ldt. Let dQ'"/dt
denote the current of the signal propagating along the
transmission line towards the nonlinear resistance. The
current dg'"'/dt of the signal reflected off of the non-
linear resistance is

Q represents the charge flowing along a transmission line
which is terminated by a time-dependent resistor. Time-
dependent dissipation is accomplished by coupling Q in a
time-dependent manner to the heat bath field QH. f (t) is
the time varying coupling parameter and R~ is the im-
pedance of the heat bath. From the equations of motion
generated by (8.1) one readily can derive

Z
IN

L
OUT
L

~OUT

IN~j R

simple case occurs when r(t) quickly switches between
zero resistance and infinite resistance. In this limit the
second term on the right-hand side of (8.3) vanishes. No
noise from the resistor heat bath is injected into the cir-
cuit. Hence in this limit the ring mixer becomes
equivalent to the dissipationless switching circuit of Fig.
11(c). The relation between the incoming and outgoing
signals becomes

(c)

FIG. 11. (a) A practical realization of a ring mixer. (b) An
equivalent electrical circuit constructed out of time-dependent
resistors r (t). (c) An equivalent circuit when r (t) switches from
zero to infinite resistance.

dg ollt

dt

ZRH —f'(t) dg'"
ZRH+ f'(t)

2Rttf(t) dQH

ZRH+ f'(t)
Il'"'= e(t)II(",

It'("' e( t)IL", ——
(8.4)

Having demonstrated how to treat time-dependent resis-
tors quantum mechanically, the ring mixer will now be
discussed. A practical embodiment of a ring mixer is de-
picted in Fig. 11(a). A pump oscillator oscillating at co&

modulates the resistance of the diodes. An equivalent cir-
cuit consisting of time-dependent resistors r(t) having a
periodic time dependence with frequency to& is shown in
Fig. 11(b). This and other mixer circuits can be analyzed
quantum mechanically in a straightforward extension of
the techniques of classical mixer theory. A particularly

(8.5)

one has upon Fourier expanding

1 )(n —I )/2
e(t) =—2

n=1, 3,5, . . .

So in particular

in' t ittt0 t)—

where e(t) is a periodic square wave switching between
+ 1 and —1. Taking e(t) to be defined by

1, —m/2&tozt &m/2
e(t) = ' —1, n. /2&tozt &3'/2

Ig"'(t) =-
n=1, 3,5, . . .

(n —1)/2
( — )

C (I,„( )
—i( P+ ) I,„( )

i(tt )t-
el 0

(8.7)

Consider the output at frequency too with too & co&, then in terms of annihilation operators

out ( —1)" in)~tooAi'(" (too) = — g [~ntoz+toAL"(ntoz+too)+Qntoz —tooAL" (niobe
—too)] .

n=1, 3,5, . . .
(8.8)

Similarly, the complete quantum-mechanical scattering
matrix for the ring mixer can be obtained.

Optimum mixer performance is obtained by properly
terminating and impedance matching the input and out-
put ports of a resistive mixer. A mixer configuration hav-

l

ing power conversion of unity is shown in Fig. 12(a). The
box with the X represents the ring mixer, and L, and R
denote the left-hand and right-hand ports, respectively.
All signals at the left-hand port are short-circuited except
for a band about the signal frequency co0. All the signals
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I

x
frequency co&,

' then, the input in both the signal and image
band must be regarded as signal. Under proper im-
pedance matching,

(o) .

RFC

rs

rp

one has

(8.11)

(b) A p"'(cop) =
1/2

p +cop
Az (co& +~p)

2C00

I

I,~

(c)

FIG. 12. Some resistive mixer configurations. (a) A frequen-

cy down converter where coo ——co, —m~. (b) A homodyne detector
where co, =co~ and the output is at dc. (c) A frequency converter
with image frequency termination where co; =co~ —coo and
~, =~~+~o.

at the right-hand port are open-circuited except for those
lying in a band about mp. Consider a down converter
where cop is small compared to the pump frequency cop

and let the relation between the signal and output frequen-
cy be

s =~p+~0
Then under optimal impedance matching,

rp 4
(8.9)

the relation between the incoming signal quanta A,
'" and

the quanta 3p"' delivered to the load rp is
1/2

Az (co&+cop)+

' 1/2
COp

p

C00
Ap"'(cop) = —+ 1

C00

(8.10)

where A~ is the annihilation operator for down converted
noise at infinite frequency. This expression is similar to
that of the linear amplifier (5.22). Hence when co, »cop,
the noise added to the down converted signal is —,

'
Ace per

unit bandwidth when referred to the input. The down
converter performs no better than a phase insensitive am-
plifier whose internal noise is not squeezed.

In the circuit of Fig. 12(b) the signal is detected in a fre-
quency cop in a band about dc. The signal frequency
co, =cop+cop and the image frequency co; =up —~p both lie
in the pass band of the filter on the left port of the mixer.
Consider the case when homodyne detection is done at

1/2
QP —QPpP A in't(

)
2600

j p 0 (8.12)

IX. CONCLUSIONS

A large variety of circuits have been analyzed quantum
mechanically in this paper. It is hoped that the following
impressions have been generated in the mind of the reader.

(1) For the circuits considered, the full quantum
analysis of the circuit is not much more difficult than the
classical analysis.

(2) The quantum behavior of complicated lumped cir-
cuit networks are worth investigating. From such con-
siderations, noiseless amplifier and mixer configurations,
and back-action-evading detectors have been discovered.

(3) The existence of low-noise supercondueting devices
together with the availability of cryogenic temperatures
below 5 mK generated on a routine basis with modern di-
lution refrigerators makes the exploration of the quantum
mechanics of macroscopic devices operating in the mi-
crowave and rf frequency range look promising.
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This expression is similar to that given for the degenerate
parametric amplifier (5.16). By the absence of noise terms
in (8.12) one concludes that noiseless homodyne detection
is in principle possible with resistive mixers operating in
the quantum regime.

Figure 12(c) shows a frequency down converter for
which the image and signal frequency bands are separate.
If r;=r„ then, for the impedance matching condition
(8.11), Eq. (8.12) is still valid, but now A " must be re-

garded as noise. If instead of terminating the image port
with the image resistor r; one used a squeezed noise ter-
mination (as was done for the idler port of the phase in-

sensitive linear amplifier of Fig. 4), then, in analogy to the
discussion of Eq. (5.23), the resistive mixer operated as a
down converter can noiselessly down convert one quadra-
ture component of the incoming signal.
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