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Introduction to Vectors

John Denker



1  Overview



This document reviews the fundamentals of what we mean by “vector”.
It is more of a review than an introduction or tutorial. It tries to
avoid some of the misconceptions that often creep into unsophisticated
discussions of vectors.
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2  Fundamental Properties





2.1  Direction and Magnitude



A vector is something with direction and magnitude. This is the
“grade school” definition of a vector, but it’s true, important,
reliable, and actually quite sophisticated.
Informally, a vector can be represented as an arrow. For example, in
figure 1, all the vectors have the same direction
(but different magnitudes). Meanwhile, in figure 2,
all the vectors have the same magnitude (but different directions).



	
[image: vector-direction]
	 	
[image: vector-magnitude]

	
Figure 1: Vectors with All the Same Direction
	 	
Figure 2: Vectors with All the Same Magnitude

	
	 	




Here’s a real-world example: velocity is a vector, because it has both
a direction and a magnitude. Both the magnitude and the direction are
important. Consider the contrast, as shown in figure 3:

	At point a the car is moving with velocity A, namely 20
meters per second towards the northwest. At point c, the car is
moving with velocity C, which is the same, namely 20 meters per
second towards the northwest.
	At point b, the car is moving at the same rate towards the
southeast. Even though the magnitude is the same, the direction is
different, so velocity B is different from A and C.


[image: 180-180]

Figure 3: Vectors A, B, and C



2.2  Relocation



One thing that a vector does not have is a location. All of the
arrows in figure 4 represent the exact same vector,
because they all have the same magnitude and direction.

[image: vector-relocate]

Figure 4: Relocating a Vector

Similarly, back in figure 3, velocity vector A and velocity
vector C are exactly equal, because they have the same direction and
magitude. When we compare point C to point A, the time is
different and the object’s position is different ... but the velocity
doesn’t care about any of that. The two velocity vectors (shown in
red) are equal.
For this reason, representing a vector by an arrow is imperfect and
informal. A vector must not be «defined» in terms of the arrow,
because the arrow has properties that the vector does not, including
location. For more on this, see section 16.1.


2.3  Addition



In any particular vector space, the vectors can be added. This is one
of the defining properties of vectors (reference 1).
You add them “tip to tail” as shown in figure 5.



	
[image: vector-addition]
	 	
[image: vector-addition-mid]

	
Figure 5: Adding Vectors: C = A + B
	 	
Figure 6: Adding Vectors: C = B + A

	
	 	




Addition is commutative, which means you can add the vectors in the
reverse order, as shown in figure 6.
 Tangential remark: When drawing vectors, the length
of the arrow indicates the magnitude of the vector; meanwhile the
orientation of the arrow, with help from the arrowhead, indicates
the direction. That’s all that is required. In particular, there
is nothing that requires the arrowhead to be at the end of the
arrow. You can put the arrowhead somewhere in the middle of the
arrow, as we see in figure 6. I mention
this because with some drawing programs, it is relatively easy to
construct a line with exactly the right length, but remarkably
difficult to draw an arrowhead at the end without messing up the
length. Even with the best drawing tools, a bunch of overlapping
arrowheads tend to make the diagram look cluttered. So,
especially when you are trying to do accurate arithmetic, as in
figure 6, you might want to move the
arrowhead to the middle. 
You can combine figure 6 and figure 6 to form figure 7.
For obvious reasons, this is called the parallelogram rule. It
doesn’t tell us anything we didn’t already know. The parallelogram
rule is just two copies of the tip-to-tail rule.

[image: vector-addition-parallelogram]

Figure 7: Adding Vectors: C = A + B = B + A



2.4  Subtraction



In any situation where C = A + B, we know just by re-arranging
the algebra that A = C − B, B = C − A.
We can also subtract vectors using geometry directly. As always, the
rule is: If you want to subtract B, add the opposite of B. (This
is the axiomatic definition of subtraction!) So to find C − B,
start at the starting point of C. Then add [−B], i.e. the
opposite of B, always adding tip-to-tail. The ending point is the
end of [−B]. This is shown in figure 8.

[image: vector-subtraction-mid]

Figure 8: Subtracting Vectors: A = C − B



2.5  Multiplication by Scalars



Another defining property is that you can multiply vectors by scalars,
as shown in figure 9. You can also divide by
scalars, using the simple rule: if A = sB then B = A/s, for any
vectors A and B, and any nonzero scalar s.

[image: vector-scalar-mul]

Figure 9: Multiplying a Vector by a Scalar: C = 3A



2.6  Distributive Law



Scalar multiplication distributes over vector addition: s(A + B) = sA
+ sB.
Remember that vectors are not numbers. Therefore this distributive
law for vectors cannot be derived as a consequence of the familiar
distributive law for ordinary numbers. It is a separate law.
It is guaranteed to be true because it is part of the definition of
what we mean by vector. It is one of the vector-space axioms; see
section 11.


2.7  Comparison



We can compare directions as follows, for vectors with nonzero length:

	We say that two vectors have opposite directions if A = λB
for some λ < 0.
	We say that two vectors have the same direction if A = λB
for some λ > 0.
	We say that two vectors are parallel if they have the same
or opposite directions.
	Beware that people who are not being careful sometimes
say “same” direction when they should have said parallel,
i.e. same-or-opposite direction.

If a vector has zero length, its direction is undefined, undefineable,
and irrelevant.


3  Dot Product



In simple cases, the vector space has a dot product that allows
us to quantify the magnitude of a vector, and quantify the angle
between two vectors.
 Beware that this is not the general case. There are
important situations (e.g. thermodynamics) where there is no dot
product. Roughly speaking, in such a situation we can draw vectors,
but we don’t have a ruler to measure magnitude, and we don’t have a
protractor to measure angles. As always, the vectors have
direction and magnitude, but without a dot product, our notion of
direction and magnitude is very weak and very restricted. We can
always detect whether two vectors have the same direction or not,
and if they have the same direction we can detect whether they have
the same magnitude or not, but beyond that we cannot quantify
direction or magnitude. 
In the rest of this section, we restrict attention to situations
where there is a dot product.
When we form the dot product of two vectors, the result is a scalar.
(This is part of the axiomatic definition of dot product.)
We can use the dot product to quantify the magnitude of a vector:


	
		 	|A|	 	=	 	magnitude of A         
	 	 	 	=	 		√		
	A·A

	             


	hence   
	 	|A|2	 	=	 	A·A


	
             (1)




Terminology: The magnitude of a vector is also known as the norm
of the vector. In particular |A| can be called the norm of A, and
|A|2 can be called the norm-squared of A.
We can also use the dot product to quantify the angle between any two
nonzero vectors:


		
angle between A and B	 	=	 		cos−1	⎛

⎜

⎜

⎝		A·B
	
	|A| |B|

	⎞

⎟

⎟

⎠



	             (2)





You can verify that the angle is independent of magnitude. For
example, the angle between A and B is the same as the angle
between A and 2B, which makes sense.
The vector-space axioms require the dot product to distribute over
vector addition:


		
A·(B + C)	 	=	 	A·B + A·C


	             (3)





The axioms also require the dot product to be bilinear. That is, for
any scalars λ and µ, we have:


		
(λ A)·(µ B)	 	=	 	λµ (A·B)


	             (4)





Note that the bilinear property is consistent with the definition
of magnitude (equation 1). You can easily prove that


		
|7A|	 	=	 	7|A|


	             (5)





which makes sense. On the LHS, we multiply the vector by a scalar,
and then compute the magnitude. On the RHS, we first compute the
magnitude, which gives us a scalar, and then multiply that scalar by
another. In other words, multiplying vectors by scalars is consistent
with multplying scalars by scalars.
As an amusing exercise, you can verify by direct calculation that


		
|A+B|2	 	=	 	|A|2 + |B|2 + 2 |A| |B| cos(θ)


	             (6)





where θ is the angle between the two vectors. Note that this
expression includes the Pythagorean theorem as a special case. You
should verify that the equation make sense in the case where A = B,
and where A = −B, and where A is perpendicular to B.


4  Constructing a Number Line; Basis and Mels



Here is a recipe for constructing a number line:
Pick some nonzero vector B. Compute the corresponding unit vector:


		
b	 	:=	 		B
	
	|B|



	             (7)





Then for any scalar s, you can construct a vector that
“corresponds” to s by multiplying the vector b by this scalar:


		
A := s b
	 

	             (8)





Conversely, for any vector V in 1D, you can construct a scalar that
in some sense “corresponds” to V by forming the dot product,
namely:


		
s	 	:=	 	b·V              
	 	 	=	 	V·b


	             (9)





In a 1D vector space this is a one-to-one correspondence, since:


		

	
s	 	=	 	b·(s b)	    	(for any scalar s, and any unit vector b)	    	
(10a)

	

	
V	 	=	 	(V·b) b	    	(in 1D, for any vector V, and any unit vector b)	    	
(10b)







As a corollary of equation 10b, you can show that
|s| = |V|, in a 1D vector space. On the LHS of this expression we
have the simple absolute value of a scalar, while on the RHS we have
the magnitude of a vector. Beware that this is only a rather weak
corollary, not a one-to-one correspondence, because there are four
possibilities: |±s| = |±V|
In a multi-dimensional vector space, equation 10b
turns into this:


		
V	 	=	 		        (V·x̂) x̂      
	+ (V·ŷ) ŷ      
	+ (V·ẑ) ẑ      



	             (11)





where x̂ is a unit vector in the x direction. The term
(V·x̂) x̂ is the projection of V
onto the x direction. Equivalently we say
(V·x̂) x̂ is the projection of V onto the
one-dimensional subspace defined by x̂. It is not equal to
V, except in the special case where V was already parallel to b.
Such expansions are so common that there is a special notation:


		
V	 	=	 		        Vx x̂      
	+ Vy ŷ      
	+ Vz ẑ      



	             (12)





Terminology: x̂ is called a basis vector and Vx
is called a mel. (In formal linear algebra, they are called
matrix elements, but we don’t need to bother with that.)
Here’s a useful mnemonic: You can think of mel as short for
meélange, meaning mixture. In
equation 12, the mels tell us how much of
each basis vector we need to mell together to reconstruct the vector
V. Note that “mell” is a perfectly good English word meaning to
mix or blend.
Note that the list of mels “corresponding” to a given vector V
depends not just on V, but also on the choice of basis. If you pick
a basis vector that points to the northeast, you get a number line
where the mels increase to the northeast ... whereas if you pick a
basis vector that points in the opposite direction, you get a number
line where the mels increase to the southwest.
Because the choice of basis is arbitrary, no physically-significant
answer (or physically-significant question) can ever depend on the
basis or on the mels. Keep in mind that the mels are only a
representation of the vectors, and indeed only part of a
representation; do not think of them as “being” the vectors.
Consider the contrast:



	
Vector
	 	
Mels







	
A vector exists as a physical and mathematical entity unto
itself, independent of whatever representation (if any!) you choose.
In general, try to do as much as you can using the vectors themselves.
A great many theoretical results can be derived quite nicely without
going anywhere near any basis or any mels; see e.g.
equation 6.
	 	
There are some situations where it is expedient to convert vectors
to the corresponding numbers, perform arithmetic on the numbers, and
then convert back. In particular, simple calculators and
spreadsheets are better at dealing with numbers than with abstract
vectors. However, you should think of this as a slightly dirty
trick.






5  Representations for Vectors



As can be seen in the two columns in figure 10, we can classify vectors as being
contravariant versus covariant. This is an important, intrinsic
distinction. It tells us something about the physical significance of
the vectors. However, we defer until section 13 the
discussion of contravariant versus covariant.
In this section we focus mainly on the question of representation,
i.e. the row-to-row distinction in figure 10.

[image: pointy-1form-topo-array]

Figure 10: Various Categories of Vectors



5.1  Pictorial Representations



We can represent vectors using a pictorial representation (as in the
bottom row of figure 10).


5.2  Vector as Array of Mels



We can also represent vectors numericallly, in terms of mels, as in
the top row of figure 10, or equivalently in
equation 12. Changing the representation
does not change the meaning of the vector.
It must be emphasized that in order to represent a physical vector in
terms of mels, you need not only the array of mels but also the
associated basis.
It is a remarkable fact that when working with vectors, certain
mathematical operations can be carried out by working with the mels
instead of the vectors themselves. For example, the following
equation expresses multiplying a vector by a scalar and then adding
another vector:



	
		2 P   	+	Q   	=	R    
		2 	⎡

⎢

⎣		1	
	−2


	⎤

⎥

⎦		 
	




	@B



	+		  	⎡

⎢

⎣		5	
	3


	⎤

⎥

⎦		 
	




	@B



	=		  	⎡

⎢

⎣		7	
	−1


	⎤

⎥

⎦		 
	




	@B





	
             (13)




where we have expanded each of the vectors (P, Q, and R) in
terms of its mels in a particular basis. This is guaranteed to work,
because the operation of expanding a vector in terms of its components
in a particular basis is a linear operation.
The remarkable thing is that you can carry out the calculation in
equation 13 without knowing the details of the basis. The
basis vectors just go along for the ride. You need the basis vectors
if you want to know the physical significance of the equation, but in
this situation you can do the arithmetic without knowing the physical
significance. Just grind out the multiplications and additions: 2(1)
+ 5 = 7 and 2(−2) + 3 = −1.
Therefore, it is possible to drop the “@B” specifiers from
equation 13 and still have a mathematically-correct
equation. Provided the arrays uphold the vector-space axioms, it is
OK to say that the arrays themselves are vectors, even if we cannot
assign any physical significance to them.
On the other hand, you have to be careful, because there are plenty of
other situations where it would not be safe to drop the basis
specifiers. See e.g. equation 23.
What’s worse, horrendous confusion arises from the fact that some
computer languages throw around the word “vector” with a meaning
quite different from the physics meaning. They apply it to lists of
numbers, and to lists of non-numerical objects, even when the lists do
not uphold the vector-space axioms. In math and physics, such a thing
would be called a list, array, or sequence.




5.3  Vector as Topological Object



The things we have been calling physical vectors could also be called
mathematical vectors or topological vectors. It is tempting to
call them geometric vectors but that is not quite right, because
as discussed in section 13 there are important physical
situations where we have a topology but don’t have a geometry. Some
(but not all) of the things you would like to do with vectors can be
done using only topology, without geometry.
A topological vector is an object P that lives in some space,
possibly ordinary three-dimensional position-space, or possibly some
more abstract space. The topological vector has direct, inherent
significance in that space. Topological vectors can be diagrammed as
arrows or by contours, without reference to any basis, as shown in the
lower row in figure 10.
Pointy vectors can be added using the tip-to-tail rule. A similarly
direct, graphical rule can be used to add one-forms.
There is no unique way to expand a topological vector in terms of its
components. That is, without some nontrivial additional information,
we cannot assign any physical significance to an expression of the
form



	
P =
	⎡

⎢

⎣		a
		b


	⎤

⎥

⎦	       (?allegedly?)
             (14)




because we don’t know which observer’s basis is to be used. It
makes incomparably more sense to write:


	
P =
	⎡

⎢

⎣		a
		b


	⎤

⎥

⎦		 
	




	@ Moe

	
             (15)




which means



	
P =  a ex(@M)  +  b ey(@M)
             (16)




where ex(@M) and ey(@M) are the basis vectors
in Moe’s frame. The interesting thing is that we can
equally well express P as:



	
P =
	⎡

⎢

⎣		p
		q


	⎤

⎥

⎦		 
	




	@ Joe

	
             (17)




which means



	
P =  p ex(@J)  +  q ey(@J)
             (18)




where ex(@J) and ey(@J) are the basis
vectors in Joe’s frame. Note that all four of these expressions
(equation 15) through equation 18) are
simultaneously valid descriptions of the same topological vector
P, since a ex(@M) + b ey(@M) = p ex(@J)
+ q ey(@J).


5.4  Names of Basis Vectors



Beware: The notation here is inelegant and potentially confusing.
Note the contrast:



	
When talking about basis vectors, ex is a vector unto
itself. It is the basis vector in the x direction.
	 	
In equation 22, P is a vector and P1 is one of its mels.
P1 is not a vector.




If you wanted to, you could think of e as some sort of higher-rank
object, as a vector of vectors, so that the vector ex is a
component of this higher-rank object. This is logical, but requires a
bit of sophistication. For now, especially in an introductory course,
it is simpler to say that the subscript x is just part of the name
of the vector ex.
To repeat: When we are talking about the basis vector ex, the
subscript x is part of the name of the vector, and indicates which
member of the basis set we are talking about, namely the basis vector
in the x-direction. The ex vector has components of its own; its
x-component can be written as (ex)x.
Sometimes people try to alleviate this problem by choosing different
names for the basis vectors. One choice is to use {i, j, k}
instead of {ex, ey, ez}. Some people like to
decorate unit vectors by writing a hat over them, as in {î,
ĵ, k̂}. Another version of this is {x̂,
ŷ, ẑ}. To summarize:



		
ex → x̂ → î → i 	 
	ey → ŷ → ĵ → j 	 
	ez → ẑ → k̂ → k
	 

	             (19)





However, I don’t recommend any of the substitutions in equation 19, for reasons to be discussed below. The {ex,
ey, ez} notation is better. However, there is one
improvement we can make: We can use numbers (rather than letters) to
identify the coordinates, and then use corresponding numbers to
identify the basis vectors. That is: the coordinates names {x1,
x2, x3} turn out to be more practical than {ex, ey,
ez}. The correspondence is:



		
x → x1   	 
	y → x2   	 
	z → x3   	 
	t → x0
	 

	             (20)





The basis vectors are numbered accordingly. Also, in the
Clifford-algebra literature, basis vectors are commonly denoted by
γ rather than e. That is,



		
ex → e1 → γ1 	 
	ey → e2 → γ2 	 
	ez → e3 → γ3 	 
	et → e0 → γ0
	 

	             (21)





In equation 21, all three options for naming unit vectors have
the same potential to cause confusion, because e1 looks like a
1-component just as much as ex looks like an x-component.
Using γ instead of e isn’t a fundamental change, but reduces
the conflict with other uses of the symbol e. For the rest
of this document, we will use γ.
The practice of using subscripts to denote which basis vector is
well established in the math and physics community and is unlikely to
change anytime soon The obvious disadvantage is that is a never-ending
source of confusion for students. The practice does however have some
significant advantages, such as allowing expressions such as
equation 16 to be written more compactly:



		
P	 	=	 	P1 γ1(@M)  +  P2 γ2(@M)  
	P	 	=	 			 
	∑
	i

	 Pi γi(@M)   


	P	 	=	 	Pi γi(@M)


	             (22)





where the last line uses the Einstein summation convention,
i.e. implied summation over repeated indices.


6  Choice of Basis





6.1  Using a Basis, or Not



When working with vectors, often you can calculate everything you need
to know without ever using a basis. On the other hand, sometimes it
helps to have a basis.
You get to choose the basis. Sometimes one particular
basis is obviously convenient, but sometimes there are lots
of possibilities.
Any complete set of orthonormal vectors can be used as a basis. You
can choose any basis set you like (but keep in mind that other folks
may choose differently).
Beginners should choose one basis and stick with it until the end of
the calculation. If the initially-chosen basis turns out to be
inconvenient, restart the calculation from the beginning using a
better basis, and use the new basis consistently throughout.


6.2  Changing or Comparing Bases



In more advanced settings, it may be convenient to do part of
the calculation in one basis, and part in another. A rough idea
of how this works is shown in In figure 11.

[image: rot-50]

Figure 11: One Vector, Two Reference Frames

Joe’s reference frame is shown in blue, while Moe’s
reference frame is shown in red. The
topological vector P is shown by the heavy black arrow. It does not
“belong” to either frame; it is a real topological object with its
own independent existence. Joe looks at P from one viewpoint, while
Moe looks at it from another viewpoint.
The crucial point is that P is not changed when we switch from one
reference frame to another. The topological vector neither knows nor
cares who – if anyone – is looking at it.
Similarly, if we have a vector relationship such as P = Q + R, we
can add the vectors A and R graphically, tip to tail, without
reference to any coordinate system. All observers agree that P is
the sum of Q and R ... even if they do not agree about the
x-components, y-components, et cetera.
If we choose to expand the vector P in terms of components, as in
equation 23, we find that a is not numerically equal to
p, and b is not numerically equal to q. Nevertheless,
equation 23 is in fact an equation, expressing the equality
of two topological vectors:



	
	⎡

⎢

⎣		p
	q


	⎤

⎥

⎦		 
	




	@ Joe

	
=
	⎡

⎢

⎣		a
	b


	⎤

⎥

⎦		 
	




	@ Moe

	
             (23)




Metaphorically speaking, this is like writing 2·12 =
3·8 ... it’s two expressions for the same thing. More
precisely, the meaning of equation 23 is explained
above; see equation 15 and equation 17.
Note that it would be a mistake to leave off the “@Moe” and “@Joe”
specifiers from equation 23. That would leave us with a
false equation:


	
☠     	⎡

⎢

⎣		p
	q


	⎤

⎥

⎦	
=
	⎡

⎢

⎣		a
	b


	⎤

⎥

⎦	    ☠
             (24)




By convention, in an equation such as equation 24, if no
basis is specified it is implied that the basis is the same on both
sides of the equation. As another way of saying the same thing, two
arrays (as in equation 24) are equal if-and-only if the
corresponding components are equal.
In this case they cannot be equal. That is to say, if
equation 23 is true, then equation 24 must be
false. You can easily prove this by using figure 11 to
graphically evaluate p and q (the projections of the vector onto
Joe’s axes) versus a and b (the projections of the vector onto
Moe’s axes). You can also infer this by comparing
equation 16 to equation 18.


6.3  Laws Independent of Basis



All the fundamental laws of physics are independent of the choice of
basis. That means it is possible (and indeed common) for the basis
vectors to have no direct physical significance. Sometimes it is
convenient to choose basis vectors that are related to the
physically-relevant vectors, but this is by no means necessary.
	


			
The fundamental laws of physics are independent of
	the choice of basis.





	     




If you see a law that seems to depend on the choice of basis, you
should find a better way of expressing the law.


6.4  Conventional Basis?



In some situations there may be a “conventional” basis, but the
conventions are definitely context-dependent; they vary from situation
to situation.
	When drawing a perspective view of three axes, drawing on a
chalkboard, some people like to draw the x-axis as if it were
sticking out the front of the board toward the audience, while the
y-axis extends more-or-less horizontally rightward across the board,
and the z-axis extends vertically upward.
	Other people like to draw the x-axis extending more-or-less
horizontally across the board, while the y-axis sticks into
the space behind the board, and the z-axis extends vertically
upward.
	In aeronautical engineering, the x-axis of the aircraft
conventionally extends out the front, while the y axis extends
out the starboard wing, and the z axis extends downward through
the belly of the aircraft.

Note that all three of the foregoing examples are right-handed
systems.
Note that when describing directions on paper, even when the paper is
lying on a table, it is conventional to speak of the “vertical”
direction as if the paper were hanging on a wall. This conflicts with
almost all other uses of the word “vertical”, but that’s how it is.


7  Some Examples





7.1  Vector of Interest versus Basis



Suppose we are interested in some force F and some velocity v. We
choose to expand these in terms of some basis vectors {γ1,
γ2}, so that


		
F	 	=	 	F1 γ1 + F2 γ2     
	v	 	=	 	v1 γ1 + v2 γ2     

	             (25)





Note that F is a vector, whereas the mels F1 and F2
are scalars.
We can apply this expansion to the physical situation shown in
figure 12. We observe that v1 is positive, v2
is positive, F1 is zero, and F2 is negative in this situation.
In this example, we have spelled things out in enough detail that
there is no doubt as to the correct interpretation. So this counts as
a good example.

[image: vector-vs-basis]

Figure 12: Vector of Interest versus Basis

Now let’s consider a contrasting example, based on figure 13. The variable I represents the current. In this
diagram, the magenta arrowhead must be considered a basis vector.
Suppose we calculate that at the moment of interest, the value of I
is negative. This means that the physical current is flowing in the
direction opposite to the magenta arrowhead.

[image: lc-circuit]

Figure 13: LC Circuit

Note the contrast:



	
In figure 13, a negative I-value means the
current is flowing in the direction opposite to the arrowhead.
	 	
In
figure 12, a negative F2-value does not mean that
the force is opposite to the red F vector. It just means that the
force vector is opposite to the γ2 vector.




It is not particularly obvious from looking at figure 13
that the magenta arrowhead is mean to represent a basis vector, not
the physical current. See section 7.3 for more on this.
This is a perennial source of confusion. Part of the problem is that
the current is constrained to move in one dimension, along the wire.
The same problem arises in mechanics, when we consider one-dimensional
motion. In one dimension, there is a one-to-one correspondence
between vectors and scalars, and sometimes people get sloppy about the
distinction between F (the vector) and F1 (the mel).
Figure 13 is an example of sloppy usage. The variable I
is a scalar. Presumably it represents the mel. If you
want to think of the current as a vector with direction and magnitude,
you have to multiply I by the basis vector. Alas, there is not any
conventional symbol for representing this vector, so far as I know.
You might think that the situation would be even more confusing in
higher-dimensional spaces, but ironically it’s actually less
confusing. That’s because when there are two or more dimensions, it’s
more obvious what’s a vector and what’s a scalar.
One should never talk about vectors as being “positive” or
“negative”. It’s a bad practice in a one-dimensional space, and an
outright impossibility in a higher-dimensional space. That’s because
“positive” means greater than zero, and there cannot be any
“greater-than” relationship when D>1. Even in one dimension, it
is good practice to talk about vectors in terms of magnitude and
direction, rather than positive and negative. If the basis vector is
rightward and the physical vector is leftward, say that it is
leftward; don’t say it is negative. The notion of positive and
negative should be restricted to scalars only. Given a vector F in
two or more dimensions,1 you can say that one of its mels such as
F1 is positive or negative, but the whole vector F can never be
positive or negative.
In any case, remember that in figure 12, the physical
vector F exists independently of whatever basis (if any) you choose
to use.
Constructive suggestion: Whenever possible, label your vectors so as
to make it clear what is a basis vector and what is not, as we have
done in figure 12. See section 12 for
some related suggestions.


7.2  Anecdote



When I started graduate school, the very first homework assignment
involved a vector pointing to the left. Every first-year student
diagrammed it as an arrow pointing to the left, and quantified it as a
negative number. The grader (a third-year grad student) marked every
student wrong.
Some of us got out our torches and pitchforks and marched to the
grader’s office to explain a few things, as shown in
figure 14.

[image: vanhelsing-villagers]

Figure 14: Villagers with Torches and Pitchforks



7.3  Current Vectors on Circuit Diagrams



Consider the simple circuit shown in figure 15.

[image: current-vector]

Figure 15: Current Vector + Basis Vectors

In a fundamental sense, “the” current is the same everywhere in the
circuit, yet numerically I2 is the negative of I1.

	
The smart way to deal with this is to recognize
that “the” current is a one-dimensional vector!




This comes as a shock to some people, but really I’m just giving a
name to a widespread, conventional, tremendously useful practice. The
first crucial application is to say that the symbol “–>–’ is a
basis vector while numbers such as I1 and I2 are not
vectors, but merely mels. This allows us
to write an expression in terms of mels: 2


		
I1	 	=	 	− I2	    	(with a minus sign)


	             (26)





In contrast, we can also write an expression in terms of vectors:


		
“the” current	 	=	 	vector     
	 	 	=	 	[ I1 ]@a        
	 	 	=	 	[ I2 ]@b	    	(with no minus sign)


	             (27)





where as before, [⋯]@F is my favorite notation for
expressing a vector in terms of its mels relative to the
specified basis F.
As always, there is an isomorphism between one-dimensional vectors and
plain old scalars, but isomorphic is not the same as
indistinguishable. The crucial distinction here is that vectors can
be expanded in terms of a chosen basis, while scalars cannot. This is
crucial because different people can choose different bases.
The following may make you feel better about the fundamental physics:
An electron moving through space has a velocity, and the velocity is a
vector. If we confine the electron to a wire, the average velocity is
constrained to be parallel (or anti-parallel!) to the wire ... but it
is still a vector. If velocity is a vector, then current must be a
vector.
The current in a wire is assumed to run along the wire, but that still
leaves a question as to which of the two possible directions. It is a
longstanding and necessary tradition that in circuit diagrams such as
figure 15, we take I2 to be a scalar, and the
corresponding physical current vector is I2 times a unit vector.
The direction of the unit vector is indicated by an arrowhead.
Introductory textbooks often disguise this issue because they can use
20/20 hindsight to arrange the arrowheads so that all (or nearly all)
DC currents have positive components. However, in the real world of
circuit analysis, even for DC circuits you often have to draw the
diagram and define your variables before you know which way the
current will be flowing … and for AC circuits talking about
“the” direction of the current is pointless anyway.
To repeat: The arrowhead on the diagram does not say that the
current flows in the direction of the arrowhead! If I2 is
negative, the direction of current flow is opposite to the arrowhead.
The arrowhead is just a basis vector, like the magenta vectors in
figure 12. It may help to note that the arrowhead has
no length associated with it; it’s just a disembodied arrowhead, not a
complete arrow, so it cannot possibly represent the magnitude and
direction of the actual current.


7.4  Voltage Vectors on Circuit Diagrams



It should go without saying that the voltage drop ΔV is
another one-dimensional vector. There are a couple of different
conventions for diagramming the voltage basis vectors. These are
shown in figure 16.

[image: voltage-vector]

Figure 16: Voltage Vector + Basis Vectors

For the upper two resistors, the basis direction is indicated by the
+ and − signs. This allows us write3


		
ΔV1	 	=	 	−ΔV2


	             (28)





Using another convention for the third resistor, we can write the
voltage between points a and b as follows:


		
Vab	 	=	 	− Vba


	             (29)





Vab is the negative of Vba, even though they are
representing exactly the same physics. Purists might prefer to write
this as ΔVab and ΔVba, but in practice,
engineers don’t bother to write the deltas in situations like this,
because the meaning is 100% clear already.
Note: This underscores the #1 rule of electrical engineering: Draw the circuit diagram. Without that, nobody knows what you’re
talking about. It’s amazing how often callow students think they
can solve the problem in their head, without drawing the diagram, in
situations where super-smart professional engineers draw the
diagram.


8  Discussion



In any situation where there is only one reference frame being used,
the distinction between arrays and topological vectors is not very important.
However, in many situations – in physics as well as life in general
– it is important to be able to see things from more than one point
of view. The technique of switching from one reference frame to
another has been standard procedure in physics since at least the time
of Galileo.
The fundamental laws of physics can be written as topological vector equations,
valid in any reference frame, and indeed valid even if you don’t have
any reference frame at all. Examples include the second law of motion
and the Maxwell equations, which are conventionally represented in
terms of 3-dimensional topological vectors, so that the representation is
manifestly invariant with respect to arbitrary rotations in
3-dimensional space.
 Tangential remark: With a bit of extra work, these laws
can be re-expressed in terms of 4-dimensional topological vectors, making
manifest their invariance with respect to arbitrary rotations
in spacetime – including boosts – as discussed in
reference 2 ... but if you don’t know what this
remark means, don’t worry about it. 
The best use of topological vectors and arrays is to use them
together, leveraging one against the other. Topological vectors are
particularly useful at the conceptual and strategic level, to set up
the outline of the calculation and carry out the major steps. Every
so often along the way, expanding the topological vector as an array
of components in a chosen basis is useful for evaluating this-or-that
subexpression. An amusing example of this combined approach can be
found in reference 3.
It is important to think clearly about both topological vectors and
arrays. Alas, the fact that people heretofore have used the same term
– “vector” – to refer to two different concepts makes it hard to
think clearly about either one.
Students’ proficiency with topological vectors seems to be a regrettably
non-monotonic
function of their overall sophistication:
	

	a)  They start out with a gut feeling about vectors,
based on their hands-on experience with the topology
and geometry of three-dimensional space.
In early grades they learn to draw vectors as arrows. They add
them graphically, tip-to-tail. They compare them graphically,
comparing them as to magnitude and direction.
	
	b)  Later they learn about arrays of numbers, matrices, and all
that. They add arrays by adding the elements numerically, element
by element. (This assumes that the representations are all based on
the same basis; otherwise the arrays shouldn’t be added at all.) So
far, so good.The problem is that all too commonly, their knowledge of arrays of
numerical elements interferes with and detracts from their
understanding of topological vectors. The mels get improperly
separated from their basis.

	
	c)  Finally when they become truly sophisticated, they start
making use of geometrical vector concepts again. This may include
the more formal ideas mentioned in section 9. They draw
pointy vectors as arrows, and draw one-forms as contours. They
learn to appreciate the distinction between a tensor and the matrix
elements of that tensor.




9  More-Formal Terminology



The thing we have been calling a topological vector is properly called
a tensor; all our examples have been rank=1 tensors. Similarly, the
thing we have been calling an array is properly called a matrix; all
our examples have been rank=1 matrices, i.e. columnar matrices with
N elements (as opposed to the more common square matrices with
N×N elements). Therefore in an array of mels, the mels could
also be called matrix elements. In this document we call them simply
mels.
Tensors exist as geometric objects unto themselves, independent of
their representation in terms of matrices in this-or-that basis.
Tensors can be represented by matrices in much the same way as numbers
can be represented by numerals.
We postponed calling topological vectors and arrays by their proper
names (tensors and matrices) for pedagogical reasons. As the saying
goes, learning proceeds from the known to the unknown. The important
ideas in this paper do not require any prior knowledge of tensors or
matrices.


10  Projections versus Mels





10.1  Special Case: D=1



Vectors in one dimension are a special case, because there is an
isomorphism between the vectors and the scalars.
This causes problems in an introductory physics class, because the
usual practice is to introduce vectors in connection with
one-dimensional motion. It makes sense to keep things as simple as
possible, hence D=1. On the other horn of the dilemma, it makes
sense to develop good habits and avoid bad habits that will have to be
unlearned later.
Suggestion: Avoid writing equations of the form



		
v→	 	=	 	17		    	???


	             (30)





and especially avoid


		
v→	 	>	 	0		    	???	
	v→	 	is	 	“positive”		    	???


	             (31)





because the LHS of these equations is a vector while the RHS is a
scalar. Also, in equation 31, the “>” operator
only exists for scalars. In D=1, such equations are arguably
technically acceptable, but they are pedagogically unsound, because
they blur the distinction between vectors and scalars.
Constructive suggestion: Better alternatives exist. 
	
Rather than saying the vector “positive”, you could say the
vector is “directed rightward”.
	You could introduce a unit vector γ on Day One,
as in figure 17.
[image: number-line-vector]

Figure 17: Scalars and Basis Vector

You can use this to keep track of the distinction between vectors and
scalars. For example it allows you to write


		
v	 	=	 	17 γ		     	a vector equation	
	v · γ	 	=	 	17	     	a scalar equation


	             (32)





where we have dropped the arrow from v in accordance with the
no-decoration policy explained in section 12.




10.2  General Case



It is useful to distinguish:

	
a mel versus

	a projection (which may be a mel times a basis vector)


Beware that the word “component” is ambiguous. Depending on
context, it can refer either to a mel or to a projection, as follows:
	
An array element can be considered a
“component” of an array. Each array element is just a number. If
you know all the array elements of a given array, you can reconstruct
the array by putting all the array elements together in order. But
even so, it’s just an array, not yet a vector.

	A projection can be considered a “component” of a
topological vector. Each projection is a topological vector unto
itself. If you project a given vector onto each member of a
complete set of orthogonal directions, you can reconstruct the vector
by adding the projections together, using the tip-to-tail rule.


For any topological vector V, this means:
	
the mel Vx is the scalar
V · x̂, while

	the projection of V onto the x direction
is the vector
(V · x̂) x̂.

To avoid ambiguity, it may help to avoid the term “component”
altogether; if you mean “mel” say “mel” (or perhaps “matrix
element”), and if you mean “projection” say “projection”.
Projections have the nice property that we can take projections
in any direction, not just along some pre-ordained set of basis
directions. In general, the projection operator in the q-direction
is


	
	Pq := 		q q
	
	q · q

	
      for any nonzero vector q
             (33)




so that Pq(V) is the projection of V in the q-direction. This
allows you to form projections in the direction of some q
that is physically relevant to the problem. You don’t want to
be restricted to a pre-ordained basis that typically has little or no
physical significance.
As a rule, whenever you can formulate the problem topologically,
using projections, you’re better off doing it that way, rather
than introducing a basis and grinding out the mels.
	


			
The physics is in the arrows and contours,

	not in the mels.





	     




The denominator in equation 33 ensures that the projection
operator works properly for any nonzero q, not just for
unit vectors.
 Tangential remark: It is important to keep computers in
their place. When simple computer programs work with vectors,
they use numerical mels internally ... but so what? The
physics is still in the arrows and contours, not in the mels.
By way of analogy, computers do arithmetic using binary
internally, but that doesn’t mean we humans should switch to using
binary for everyday purposes. I’ve never seen a 110111 MPH
speed-limit sign. (I keep expecting some smart-aleck student to
make one, but it hasn’t happened yet.) 
Some textbooks are better about this than others. Some of them define
vectors as arrows ... but then lapse into a mel-based formalism soon
as they start doing actual calculations, weakening the connection to
the real physics.
If you are in a hurry, you can judge a textbook according
to how it defines the dot product.

	

	a)  Some books define A · B := Ax Bx + Ay By + Az Bz.
This is not appropriate for a physics book.
	
	b)  Some books define A · B := |A| |B| cos(θ). This is OK
for an introductory physics book. It assumes prior
knowledge of what cos(⋯) means.
	
	c)  It is often advantageous to take a more axiomatic approach,
as outlined in section 11.

A second quick way of checking a text involves looking to see if the
term “projection operator” is in the index. Alas I don’t know of
any general-physics text that passes this test. (If anybody knows of
one, please tell us about it.)
A more thorough check of the text involves looking at the
end-of-chapter problems to see if they involve geometric relationships
between vectors, as opposed to grinding out numerical mels.


11  Axiomatic Definition of Dot Product



The cleanest and classiest way I know to define the dot product is to
postulate the existence of three vectors in space (or four
vectors in spacetime) for which we know the dot products. It is not
necessary to assume these vectors are orthonormal, but without loss of
generality we will do so, for convenience.
We postulate the existence of at least one set of basis vectors with
the following properties:



		
γx · γx = 1	 
	γy · γy = 1	 
	γz · γz = 1	 
	γx · γy = γy · γz = γz ·
γx = 0
	 

	             (34)





which just says the basis is orthonormal. In spacetime, we generalize
equation 34 as follows:



		
γt · γt = −1	 
	γx · γx = 1	 
	γy · γy = 1	 
	γz · γz = 1	 
	γx · γy = γy · γz = γz ·
γx = 0	 
	γx · γt = γy · γt = γz ·
γt = 0
	 

	             (35)





but if you aren’t doing relativity you can ignore
equation 35; don’t worry about it.
We do not assume there is only one basis. Given any such basis, you
can construct innumerable other bases by taking linear combinations.
In any case, we postulate that the dot product is bilinear ... which
is the same as saying there is a distributive law, such that “dot”
distributes over “plus” as follows:



		
A · (C + D)	 	=	 	A · C + A · D
	(A + B) · C	 	=	 	A · C + B · C


	             (36)





Given all that, you can calculate the dot product of any two vectors
by expanding each vector in terms of the basis vectors in accordance
with equation 16, redistributing the terms in accordance
with equation 36, and then dotting the basis vectors using
equation 34.
We can write any possible vector as a linear combination of the basis
vectors. Then we can take the dot product of any vector by
direct appeal to the axioms. In particular, as a corollary
of this definition of dot product, suppose we have two spacelike vectors
A and B that are known in terms of linear combinations of the
basis vectors, namely


		
A	 	:=	 	Axex + Ayey + Azez	
	B	 	:=	 	Bxex + Byey + Bzez	

	             (37)





then their dot product is



	
A · B = AxBx + AyBy + AzBz      (spacelike)
             (38)




as you can verify by direct substitution and turning the crank. We
emphasize that equation 38 is not the definition
of dot product; it is merely a corollary, valid under certain
conditions. (The corresponding expression for spacetime vectors has
a minus sign in it, not all plus signs.)
When we follow this approach, the dot product defines what we
mean by angle. It also defines what we mean by length. This is
important in abstract and/or unfamiliar spaces, where the notions of
angle and length might not have been intuitively obvious. In
particular, equation 34 has an elegant, simple, but very
nontrivial extension to spacetime, as discussed in
reference 2.
This approach (the axiomatic definition of dot product) reverses the
idea in item (b), allowing us to define cos(θ) := A · B /
|A| |B|.



12  Some Suggestions



	




	1.   
 If you are diagramming vectors, draw the physically-relevant
topological vectors. Draw them to scale. This is a purely analog
representation. Such vectors can be compared visually, comparing them
as to direction and magnitude. Such vectors can be added graphically,
adding them tip-to-tail.


	
	2.   
 If you are going to quantify the vectors in terms of
arrays of mels, be sure to keep track of what the basis vectors
are. The mels don’t mean anything if we don’t know the basis
vectors. The connection between mels, basis vectors, and general
geometric vectors is defined by equation 16 or equivalently
equation 18.


	
	3.   
 Combining the two previous items, it is likely that you will
want to draw both the physically-relevant vectors and the basis
vectors, as in figure 12. Make it clear which is
which.


	
	4.   
 It is not worth using distinctive symbols for
vectors (such as boldface letters, or letters decorated with arrows
over them). In the expression F=ma, even without decorations it is
well known that F and a are vectors, while m is a scalar. By
way of analogy: we use ordinary letters of the alphabet for lengths,
areas, volumes, et cetera, and we are able to tell which is which from
the definition of the symbols. We can analyze the dimensions and
units to check that we have done everything right. By the same token,
we can use ordinary letters to represent vectors. The vectorial
character is part of the “units” and “dimensions” of the quantity.As discussed in reference 4, a name is not the same as an
explanation. Do not expect the structure of a name or symbol to tell
you everything you need to know. Most of what you need to know
belongs in the legend. The name or symbol should allow you to look up
the explanation in the legend.
The convention of using boldface to represent vectors fails both in
handwritten notes and in ASCII email. The convention of drawing an
arrow atop the symbol fails in email.
The convention of using a decorated letter to represent a vector while
the corresponding undecorated letter represents the magnitude of
the vector is cute, but is not worth the trouble. If you want the
magnitude of F, write |F| explicitly. The cost of writing |F|
when you want the magnitude is infinitesimal compared to the cost of
decorating F when you want the whole vector.
Perhaps most importantly: All schemes involving decorated vectors fail
miserably in the context of Clifford algebra, aka geometric algebra,
where some quantities have both a scalar piece and a vector piece.
See reference 5. A rotor is an important example with a
scalar piece and a bivector piece.




13  Contravariant versus Covariant Vectors



It is remarkable that the mathematical definition of “vector space”
(as set forth in reference 1) does not include any
mention of a dot product.
That means we can have vector spaces for which we have no notion of
length and no notion of angle. An important physical example of this
is thermodynamics. As discussed in reference 6, there
is an abstract space – state space – where there are various
“functions of state” including energy (E), entropy (S), enthalpy
(H), pressure (P), temperature (T), volume (V), et cetera.
The gradient vectors dE, dS, dH, dP, dT,
dV, et cetera are well defined (usually if not always), but there
is no way of knowing the angle between such vectors. (Occasionally
somebody will assume that a certain pair of such vectors is
orthogonal, but there is no advantage to making such an assumption.
If you do the math right, any valid result that can be obtained with
such an assumption can be obtained without it, in every case I’ve ever
seen.)
Such vector spaces tend to come in pairs, pairing a space of pointy
vectors with a space of one-forms. That’s a good thing, because
either member of the pair by itself wouldn’t be very useful.
If you visualize a pointy vector as a little arrow
with a “tip” and a “tail”, you absolutely should not visualize a
1-form the same way.
Suppose we want to visualize the gradient of some landscape. If you
visualize the gradient as a pointy vector, it points uphill. In
many cases, though, you are better off visualizing the gradient as a
one-form, corresponding to contour lines that run across the
slope.
You can judge the magnitude of the 1-form according to how closely
packed the contour lines are. Closely-packed contours represent a
large-magnitude 1-form. To say the same thing the other way, the
spacing between contours is inversely related to the magnitude
of the one-form.
Contour lines have the wonderful property that they behave properly
under a change of coordinates: if you take a landscape such as the one
in figure 10.
and stretch it horizontally (keeping the altitudes
the same) as shown in figure 18, the slopes become less. The
contour lines on the corresponding topographic map spread out by the
same stretch factor, as they should, to represent the lesser slope.
In contrast, if you try to represent the gradient by pointy vectors,
the representation is completely broken by a change in coordinates.
As you stretch the map, the pointy vector doesn’t stretch; it has to
get shorter to represent the lesser slope. If you want to
represent a gradient, pointy vectors aren’t nearly so well-behaved as
1-forms; they aren’t attached to the real landscape the way contour
lines are.

[image: hump]

Figure 18: Stretching a Coordinate Decreases the Slope

Of course, pointy vectors are needed also; they are appropriate for
representing the location of one point relative to another in this
landscape. These location vectors do stretch as they should
when we stretch the map.

	 	   	pointy vector	   	one-form	
	
	Example:	   	distance	   	slope 
	Represented by:	   	column vector	   	row vector	
	When we stretch the map:	   	gets bigger	   	gets smaller 
	Adjective:	   	contravariant	   	covariant 
	Dirac notation:	   	ket |⋯⟩	   	bra ⟨⋯|




See reference 7 for more about Dirac bra-ket notation.


14  Position is Not a Vector



This may seem somewhat nitpicky ... but doing it right is just as easy
as doing it wrong, so why not do it right?
Position is not a vector. A position is a zero-sized point. A
position has neither direction nor magnitude.

The displacement vector from one position to another is a vector
... even though the positions themselves are not vectors.

You are not obliged to choose an origin, and your origin (if any) may
be different from mine (if any). However, if you do choose an origin,
you can establish a one-to-one correspondence between positions and
vectors, namely radius vectors, by considering the displacement from
the origin. However, this must be considered secondary, optional, and
gauge-dependent. That is, it depends on the choice of origin, which is
arbitrary.
	The displacement vector from one position to another is best
defined in terms of the positions themselves. This is obviously
independent of the choice of origin, if any. However, the
displacement vector can also be computed by subtracting radius
vectors. In that case, the displacement vector is once again
independent of the choice of origin, as it should be, as it must
be. This independence can be understood as a consequence of the
vector-space axioms. Hint: Subtract the two radius vectors
graphically.
	As a consequence of the above, people sometimes write the
displacement vector by “subtracting” two positions. If you take it
literally, in terms of ordinary subtraction, this makes no sense
whatsoever; you can’t subtract apples from apples and get
oranges. Instead you should consider it an idiomatic expression. It
is a convenient shorthand, and everybody knows what it means:
Position B “minus” position A denotes the displacement vector
from A to B. (This includes the subtractions implied by the
Δ symbol.)
	It must be emphasized that the laws of physics never depend on
the choice of origin. They may depend on various displacement
vectors, but never on position per se. This is an example of an
invariance. There are a handful of similar invariances, which are
among the most fundamental laws of physics. Other examples include
Galileo’s principle of relativity. Position invariance is so
fundamental that people often take it for granted, but they
shouldn’t.



15  Vector Attachment



In figure 19 and similar diagrams, the following rules
apply: The black arrows represent a vector field. For each arrow, the
black circle tells which point in the field is being described by the
vector. We call this the point of attachment. The length and
orientation of the arrow tells us the magnitude and direction of the
field at that point.
As emphasized in section 2.1, a vector has
direction and magnitude, but it emphatically does not have a location.
Therefore these diagrams need both an arrow and a small circle; the
arrow represents the direction and magnitude, while the circle
represents the location.
Suppose we wish to depict a divergence-free field, such as a magnetic
field or the steady flow of a conserved fluid. There are several ways
of doing this, some of which work better than others.
In figure 19, each vector is plotted in such a way that
the point of attachment coincides with the midpoint of the arrow.

[image: vec-attach-05]

Figure 19: Velocity Vectors Attached at the Midpoint




	
For figure 20, the point of attachment
coincides with the tail of the arrow.
	 	
For figure 21,
the point of attachment coincides with the tip of the arrow.







	
[image: vec-attach-00]
	 	
[image: vec-attach-10]

	
Figure 20: Velocity Vectors Attached at the Tail
	 	
Figure 21: Velocity Vectors Attached at the Tip

	
	 	




The contrast is worth emphasizing:
	In terms of fundamental physics, or rather mathematics, that all
three of these diagrams represent exactly the same vector field. The
field is being evaluated at the same six points, and at each point the
direction and magnitude of the field is the same in all three figures.
The locations of the black arrows mean nothing; only the magnitudes
and directions are meaningful. (The locations of the points of
attachment are meaningful, but the locations of the arrows are not.)
	In terms of psychology and pedagogy, the three figures are very
different. In terms of the art and science of “display of
quantitative information”, the three figures are very different. At
first glance it “looks” like the vector field in figure 20 is spiraling outward, and that the vector field in
figure 21 is spiraling inward ... neither of which is an
accurate perception.For most purposes, figure 19 is a much better depiction,
insofar as it is easier to interpret correctly. Remember, we are
trying to depict a divergence-free field. Figure 19
“looks” divergence-free. That is to say, it quite appropriately
“looks” like the vector is just pulling you along a field line, with
no tendency to pull you away from the field line.


Remember that a vector has a direction and magnitue but not a
location. In diagrams such as these, you could perfectly well plot
the arrow a couple of centimeters away from the point of attachment if
you thought that would help. It would mean exactly the same thing.


16  Mutations





16.1  So-Called «Bound Vectors»



As mentioned in section 2.2, a vector does not have a
location. It has a direction and magnitude, and nothing more.
In physics, there are some physical situations where a full
description requires more than a vector. For example, you might need
to know both the force and torque. 
	The best approach is to use a vector to represent the force and
a bivector to represent the torque. This is clean, simple, and correct.
	A less-clever approach is to describe the situation using a
force and a “line of action”. This is convenient in some
situations but not others. One problem is that not every torque has a
well-defined line of action. Also this representation is a mess when
you want to add two torques. More importantly, it is a profound
misconception to imagine that the “line of action” is somehow
«associated» with the force. In reality, it’s part of the overall
situation, but it is not part of the force.
	An even worse idea is to describe the situation in terms of a
force and a “point of application”. This has all the problems of
the previous representation, and more besides.
	A yet worse idea is to systematically corrupt the notion of
force and the notion of vector, by introducing a so-called «bound
vector» that has a direction, magnitude, and point of application.
This is a terrible idea. In particular, any such «bound vector» is
not a vector.

As mentioned in section 2.2, when you draw an arrow
it has a magnitude, direction, and position. Therefore the arrow is
not an entirely faithful representation of a vector. To represent a
vector, you musth use your imagination to detach the arrow from its
location, so that only the direction and magnitude remain.


17  Conclusions



It is useful to deal with vectors as objects unto themselves,
i.e. vectors with direction and magnitude. Vectors can be added
tip-to-tail, without reference to components.
It is also useful sometimes to represent vectors in terms of
components, and to work with arrays of numerical mels.
A valuable and easily-achievable goal is to be able to see things
both ways. A skilled person should be able to switch from basis A
to basis B to no basis at all and back again.
We should avoid the interference mentioned in item (b) in
section 8. That is, we should teach people to use arrays
of mels while deepening – not lessening – their understanding of
topological vectors as real, physical objects that have meaning
independent of their mels, independent of any basis, and
independent of any observers.
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1
	The situation is murky for
one-dimensional vectors, because there is a one-to-one correspondence
between scalars and one-dimensional vectors. Still, in any case, it
is usually a bad idea to think of vectors as being positive or
negative.

	2
	Here we are
assuming that Kirchhoff’s laws apply, namely that no current is being
diverted by stray capacitances.

	3
	Here we are
assuming Kirchhoff’s rules apply, i.e. assuming the voltage is not
affected by any stray mutual capacitances.
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