How to Represent

Multi-Dimensional Rotations,

Including Boosts
John Denker

1 Introduction

In this document, we discuss rotations, including simple rotations in the plane but also including compound
rotations around multiple axes in three or more dimensions. We briefly survey four ways of pictorially
representing rotations: two vectors in the plane of rotation, triad before and after rotation, axis plus amount
of rotation, and yaw /pitch/roll. These can (respectively) be formalized in terms of (respectively) Clifford
algebra i.e. quaternions, matrices, Rodrigues vectors, and Euler angles. See section 12.

Also, there is a deep relationship between ordinary rotations (in D = 3 space) and boosts' (in D = 1+ 3
spacetime). Therefore we would like to represent rotations in a way that is consistent with special relativity.
In fact Clifford algebra makes the generalization from ordinary space to spacetime as simple as it could
possibly be: it suffices to change one minus sign in one equation. See section 5.

We discuss the Clifford algebra representation in some detail, because it is ideal for keeping track of rotations
per se, especially if there are many different rotations to keep track of. It is elegant, it is efficient, and it is
easily converted to any other representation. This has the pedagogical advantage of requiring only a small
step beyond an elementary understanding of vectors. In particular, matrices are not required. (If you're
not familiar with matrices, just skip the few places in this document that mention matrices. You will still
be able to represent compound rotations — including boosts — in arbitrarily-many dimensions, using Clifford
algebra alone.) This representation is older than you might think, considerably older than any notion of
vector cross product (reference 1, reference 2, and reference 3).

The matrix representation is particularly efficient if you have one particular rotation and wish to apply it
repeatedly, using it to rotate a large number of vectors. The advantage is most conspicuous in four or more
dimensions. See section 7.

Being able to deal with rotations has many practical applications. For instance, suppose you want to build
an autopilot or a flight simulator. You need to be able to figure out the overall effect of a long sequence of
rotations about multiple axes.

Most people, unless they are unusually well trained or unusually gifted, have a hard time visualizing rotations
in D = 3 or higher. For example, here’s a puzzle: suppose you apply 90 degrees of yaw followed by 90 degrees
of roll. What’s the overall effect? Answer: it is a 120 degree rotation, and the plane of rotation is given by
x4+ y+ 2z =0. It can also be seen as a cyclic permutation of the z, y, and z axes. Most people find this
puzzle somewhat discombobulating the first time they see it. See section 4.4.

Contents

1 Introduction 1

2 The Product-of-Vectors Representation 3
2.1 Half-Angles o o 3

LA boost is just a change in velocity.

CONTENTS
3 Digression: Clifford Algebra

4 How To Do Calculations
4.1 General Procedure
4.2 A First Example: 180 Degree Rotation o
4.3 Normalization e
4.4 Another Simple Example: Compound Rotationin D=3.
4.5 Rotations in a Rotating Frame
4.6 Bootstrapping Small Angles to Large Angles Lo

5 Spacetime and Boosts

6 Four or More Dimensions

7 Representation and Computation
7.1 Double Coverage e e
7.2 Basis . . .o e e
7.3 Dimensions; Number of Components

7.4 Computational Load L

8 Example: Combining Rotations in VRML

9 Reflections
9.1 Basic Reflections e e
9.2 Reflection from a Moving Mirror e

9.3 Rotations in Terms of Reflections

10 Rotating from One Vector to Another

11 Quaternions and Pauli Matrices in terms of Clifford Algebra

12 Survey of Ways to Represent Rotations

13 Clifford Algebra Desk Calculator

14 References

© o N OH o ot W«

11

15

17
17
17
18
19

20

21
21
22
22

23

23

24

25

29

2 THE PRODUCT-OF-VECTORS REPRESENTATION 3
2 The Product-of-Vectors Representation

Rather than talking about the axis of rotation, we choose to emphasize the plane of rotation. This has many
advantages; among other things, it works equally well in D = 2 flatland, in D = 3 space, in D = 1+ 3
spacetime, et cetera. This permits unification and simplification of many ideas.

Also, once you get used to it, the plane of rotation just “looks” more natural than an axis of rotation. If
you are sitting in an aircraft, you can see the plane of rotation for yaw-wise rotations spread out in front
of you, running left/right. It is somewhat less natural to visualize the vertical axis (even though the two
representations are technically equivalent in D = 3). Similarly it is natural to think of the pitching motion
as motion in a vertical plane, rather than as motion around a horizontal axis.

As we shall see below, you can encode both the plane of rotation and the amount of rotation by specifying two
vectors. The plane containing the two vectors is the plane of rotation, and the angle between the two vectors
tells us something about the angle of rotation; specifically, it tells us the half-angle, as will be discussed in
section 2.1.

The exact choice of vectors doesn’t matter; there are many different pairs of vectors that specify the same
rotation. In the language of Clifford Algebra, this means that only the product of the two vectors matters. For
an introduction to Clifford algebra, and its application to geometry and physics, see reference 4, reference 5,
reference 6, and reference 7.

This technique (representing a rotation as a product of vectors) is Lorentz-invariant. That is, if Alice is
using a frame that is rotated relative to Bob’s frame, and also moving relative to Bob’s frame, everybody
agrees as to what rotation is represented by a given product-of-vectors.

There are no singularities in the product-of-vectors representation i.e. Clifford algebra i.e. quaternions. In
contrast, there are nasty singularities in the Euler angle representation, as discussed in section 12.

2.1 Half-Angles

There is one slight quirk with the product-of-vectors representation. The angle between the vectors cannot
directly represent the whole angle of rotation. To see why not, consider 180 degree rotations. If you start
out heading north then apply 180 degrees of yaw, you wind up heading south, right-side up. In contrast, if
you start out heading north and apply 180 degrees of pitch, you wind up facing south upside down.

The problem is that two vectors with a 180 degree angle between them are collinear, so there are many
inequivalent planes that contain both vectors.

There is a simple way to fix this problem: Let the angle between the vectors represent half the angle of
rotation. That is, given two vectors in the plane of rotation, we define the rotor angle to be the angle
between the two vectors. The rotor represents a rotation, where the rotation angle is twice the rotor angle.
Loosely speaking, we say a rotor is half of a rotation.

A 180 degree rotor represents a 360 degree rotation. For this special rotation, you don’t need to specify the
plane of rotation, so the fact that these two vectors are collinear isn’t a problem. It all works out.

This half-angle business may seem like a kludge, but in fact it has a deep physical significance. One way to
see the significance is in terms of reflections, as discussed in section 9.3.

The rotor angle is half the rotation angle.

3 DIGRESSION: CLIFFORD ALGEBRA 4

3 Digression: Clifford Algebra

In the previous section we argued on geometric and pictorial grounds that two vectors in the plane of rotation
should provide a nice representation of rotations.

That leaves us with the question of how best to quantify this notion. We shall see that Clifford algebra is
the perfect tool for this. Sometimes the same ideas are discussed in terms of quaternions, which correspond
to a subset of Clifford algebra, as discussed in section 11.

Clifford algebra is not very complicated; it is only a few small steps beyond ordinary vector algebra. It is
amazingly elegant, and is useful for many, many things, not just rotations. Since this document is focussed
on rotations, this is not the place for a general tutorial on Clifford algebra. Instead we rely on reference 4
and reference 7.

To proceed, you need to appreciate the existence of scalars, vectors, and bivectors. (There also exist trivectors
et cetera, although we have no immediate need of them.) You should learn to visualize such things, as in
figure 1. We will explain how to form the sums and geometric products of such things.

Scalar Vector Bivector Trivector

Figure 1: Scalar, Vector, Bivector, and Trivector

However, to make this document at least formally self-contained, we recite here the most crucial properties
of Clifford algebra. (If you want to understand the concepts the lie behind this formalism, please see the
references, especially reference 4.

Suppose we can find three linearly-independent spacelike vectors. That means we must live in a space with at
least three dimensions. (The generalization to any number of dimensions, from D = 2 on up, is straightfor-
ward.) Applying the Gram-Schmidt algorithm to these vectors, we can construct three orthonormal vectors,
namely 71, v2, and 3. We do not attribute any special properties to these vectors, beyond being orthonormal
and spacelike; in particular they do not need to be aligned with the cardinal directions up/down, east/west,
or anything like that.

Multiplication of orthogonal vectors is anticommutative, and the product is a bivector:

viv; =—7; v (bivector) (1)
for all i # j.
The product of parallel vectors is a scalar. Spacelike unit vectors are normalized like this:

vy = +1 (scalar) (2)

4 HOW TO DO CALCULATIONS 5

for all 7.

Sometimes we also notice that timelike vectors exist. The timelike unit vector (7o) is normalized differently:
YooY = —1 (scalar) (3)

Clifford Algebra also defines the reverse of a product of vectors, formed by writing all the vectors in the
reverse order. For example:
IfC = a+b Y1 Y2
thenC™~ = a+byam

(4)

for any scalars a and b.

We can use our set of orthonormal vectors as a basis, expressing any vector in the space as a linear combination
of basis vectors.

This approach — expressing everything in terms of components relative to a given basis — is definitely not
the most elegant approach, and is usually not even the easiest approach, but it seems expedient in this case,
for a couple of reasons: (1) Many of the illustrative examples (below) revolve around perpendicular vectors,
and it’s nice to have a set of such vectors lying around. (2) Computers are good at manipulating numbers,
but not so good at manipulating real physical objects like vectors and bivectors. So in computer programs,
such as the one mentioned in section 13, at some point we need to project our vectors (etc.) onto a particular
basis, and manipulate the components.

In contrast, if you want to see what the more-physical less-numerical approach looks like, see reference 4.

4 How To Do Calculations

4.1 General Procedure

Now we are in a position to quantify the idea of using two vectors to represent the plane of rotation and the
amount of rotation. In section 2 we introduced, qualitatively, the idea of rotor angle.

We now define a simple rotor to be the product of two vectors, normalized to unity (as discussed section 4.3).
By product we mean the geometric product, as defined by Clifford algebra. (Non-simple rotors will be
discussed in section 6.)

Note that there is a one-to-one correspondence between quaternions and a subalgebra of Clifford
algebra, as discussed in section 11.)

Also note that a rotor is not a bivector; in general it has a scalar piece as well as a bivector piece.

We will show that equation 5 is the completely general formula for using a rotor r to rotate a vector v. We
have not yet proved or even motivated? this result; instead we pull the formula out of thin air and then
show, in retrospect, that it has the desired behavior. The key formula is:

o' =rur (5)

where v is the unrotated vector, v’ is a vector that is rotated relative to v by some angle §, and r is is a
rotor with rotor angle ¢ = §/2.

21t is possible to motivate equation 5 in terms of reflections, as discussed in section 9.3. However, this seems like robbing
Peter to pay Paul, since the reflection formula is not particularly more intuitive than equation 5, and is usually just pulled out
of thin air and justified a posteriori.

4 HOW TO DO CALCULATIONS 6

That’s all there is to it. Given two vectors in the plane of rotation, you can use them to build a rotor r.
Then you can use the rotor r to perform rotations in accordance with equation 5.

Compound rotations are represented by a product of rotors in the obvious way; see section 8 and section 13
for details and reference 8 for luridly explicit details.

4.2 A First Example: 180 Degree Rotation

The simplest possible rotor is the product - 2. Since the vectors «; and 7, are perpendicular, the rotor
angle must be 90 degrees, and the corresponding rotation angle is 180 degrees. Let’s do the math:
(ey)mryz) = (7))
= —(m72)r (6)
= N

where all we needed were the axiomatic anticommutation relations (equation 1) and the fact that multipli-
cation is associative. Similarly we have:

(2m)12(1172) = —(r2n)reem)
= —(r21nn (7)
= —’}/2
whereas in contrast, vectors perpendicular to the 1 2 plane are unaffected by the rotation:
(27)1s(nr2) = +7s (8)
and in general, for any arbitrary vector in D = 3 space:
If v= ay1+by+cys
Then o' = (yey1)(ay1 +by2 + cv3)(7172) (9)

= —am—bytcys

which is exactly the correct behavior for a 180 degree rotation in the ;72 plane. (Here a, b, and ¢ are
arbitrary scalars.) This rotation is depicted in figure 2.

Figure 2: Rotor Angle and Rotation Angle

It is worth emphasizing that this result is a direct consequence of the axioms of Clifford algebra, plus our
decision to represent a simple rotor as a product of vectors.

4.3 Normalization

If we want equation 5 to represent rotations, we must choose vectors such that their product is normalized to
unity. Without this constraint, we would be inadvertently representing size-changing transformations as well
as rotations. It suffices for the rotor to be a product of unit vectors, but in all generality only the product
must be normalized. That is, if we have a rotor r which is the geometric product of spacelike vectors P and
Q, i.e. r = PQ, it is sufficient but not necessary for the vectors P and @ to be separately normalized. All
we really require is that:

gorm(r) =1 (10)

4 HOW TO DO CALCULATIONS 7

where the gorm of r is, by definition, the scalar part of »~ r. For example, the gorm of (a + bvs3) is equal
to (a? + b?), for arbitrary scalars a and b. For details, see reference 4.

4.4 Another Simple Example: Compound Rotation in D = 3
Let’s return to the puzzle posed in section 1. That is, suppose you apply 90 degrees of yaw followed by 90
degrees of roll. What’s the overall effect?

We can easily compute the answer using rotors. We start with the rotor

cos(45°) + sin(45°)y2 3 (11)

which we hope will represent a 45 degree rotor angle, and hence a 90 degree rotation in the 7, 3 plane. You
can verify this by considering the product of r with itself, namely:

(V(:5) + V(D)2 1) (V(:5) + V(:5)1273) = 7273 (12)

which we recognize as the 90 degree rotor angle (i.e. 180 degree rotation) that we saw in section 4.2.

Similarly, the rotor
cos(45°) + sin(45°)y3 71 (13)

represents a 45 degree rotor angle (i.e. 90 degree rotation) in the v3~; plane.

If we multiply these two rotors together, we get an interesting result:

(V(5) + V(D)1 7)V(E) +V(E)ey) = S+572+ 5727 ++-5 7371 (14)
— o H o) 172772 Y3 TY3 71
= cos(60°) + sin(60°) N
and we can, on sight, identify the rotor angle as 60 degrees (corresponding to a 120 degree rotation), and
we can see that the plane of rotation is specified by x + y + z = 0. That is equivalent to saying the axis of
rotation is a vector perpendicular to the x + y 4+ 2z = 0 plane, i.e. a vector pointing in the [1, 1, 1] direction.
(The factor of /3 in the denominator is so that the fraction as a whole is a unit bivector, i.e. the bivector
has gorm=1.)

For readers who are familiar with matrices, we mention that the rotation matrix corresponding
to the rotor in equation 14 is

00 1
1 00 (15)
01 0

One advantage of the matrix representation is that it shows quite clearly that the rotation in
question produces a cyclic permutation of the 1, 72, and 73 axes ... as advertised in section 1.

The disadvantage is that for most people, it is hard to ascertain the plane of rotation by looking
at a typical rotation matrix.

Here is the general rule for combining rotations: If you carry out a rotation described by rotor r; and then
follow it by another rotation described by rotor rs, the overall rotation can be described by the rotor r,
where:

T="T17T2 (16)

That’s all there is to it; you just multiply the rotors, in order.

4 HOW TO DO CALCULATIONS 8

When we say the rotors appear “in order” in equation 16, that means left-to-right. That’s not because we
read from left to right, but rather because when we rotate a vector we want r; to be applied first and 7o
to be applied second, in accordance with equation 5. When we have a compound rotation, we can expand
equation 5 as follows:
o= ror

= (rira)~vrire

= ryryurir

= ry(rivr)r

(17)

The point is that when we write 1 and 75 in the correct order, the first rotor stands next to the vector v in
equation 17 and therefore gets applied first in accordance with the usual rules of arithmetic, as shown by the
parentheses in the last line of equation 17. Note that 77" also stands next to v on the left just as r; stands
next to v on the right, which is consistent with the fact that (r1re)™~ = r3 ry".

Philosophical remark: In this section, and also in section 4.5, we are treating rotations as objects
unto themselves. That is, we focus on the rotation operators directly. In this section, paid little
attention to using the rotors to rotate this-or-that vector; instead we mainly considered the effect
of one rotation on another.

4.5 Rotations in a Rotating Frame

In the previous section, we expressed the rotors in terms of basis vectors (71, 72, and ~3) that remained fixed
in space. That seems so natural and reasonable that non-experts might imagine that it is the only reasonable
way of doing business ... but it is not.

In aircraft (as well as boats and spacecraft) one way to describe rotations is in terms of yaw, pitch, and roll,
as defined in figure 3. Rotations defined in this way require special treatment, because the axes are attached
to the aircraft, not fixed in space. Therefore, if the aircraft turns, the new yaw-wise direction is different
from the old yaw-wise direction ... and similarly for pitch and roll.

copyright © 2002 jsd

Figure 3: Yaw, Pitch, and Roll

Using axes attached to the aircraft is entirely conventional and is entirely sensible from the pilot’s point of
view.

4 HOW TO DO CALCULATIONS 9

It is remarkably easy to switch back and forth between axes attached to the aircraft and axes fixed in space,
as we now explain:

Conventionally, the aircraft axes are called X, Y, and Z. That means yaw is a rotation in the XY plane,
pitch is a rotation in the ZX plane, and roll is a rotation in the Y Z plane.

Consider the following scenario: Initially, the aircraft axes {X, Y, Z} happen to coincide with the fixed-in-
space axes {71, V2, Y3}

The pilot begins by performing some amount of roll. This is a rotation in the Y Z plane, which is also a
rotation in the -9 ~y3 plane. Let this rotation be represented by rotor r;. Next, the pilot performs some
amount of pitch. This is a rotation in the ZX plane ... but it is not a rotation in the ~3-y; plane. We need
to take into account that the current ZX plane is different from the original ZX plane. Let the second
rotation be represented by the rotor ro = a + b Z X, for suitable scalars ¢ and b ... where Z and X are the
current Z and X vectors.

It is easy to describe the current ZX plane in terms of things we already know. We can use the rotor r; to
rotate the original Z vector and also to rotate the original X vector. Specifically,

Z = rAsr
X = r"myr (18)
so the compound rotation r; o can be expressed as
riry = ri(a+b(ryyzr 1Y 171)) (19)
= (a+byyn)n

where it should be noted that on the LHS of the equation, r is the leftmost factor, while on the RHS of the
equation, ry is the rightmost factor. Also on the RHS, the factor in front of r; is definitely not equal to rs,
but looks hauntingly similar to 7o, since it involves the same coefficients a and b, and involves vectors that
were initially equal to Z and X.

This tells us something very interesting: If you know how to describe a rotation relative to the axes attached
to the aircraft, you can also describe it relative to axes fixed in space using the same components, provided
you multiply the rotors in the reverse order ... reversed relative to equation 5.

This trick about reversing the order of the operations is not dependent on Clifford algebra per se; it is a
direct result of the basic geometry of rotations, and of how we have defined the XY Z axes. The basic logic
is that when you apply the Nth rotation, if it comes to you described relative to the aircraft axes, you need
to undo the previous N — 1 rotations to understand how it looks relative to the original axes. You perform
it, then re-do the other N — 1 rotations. When you apply that logic at each step, the overall result is a
complete end-for-end reversal of the order of the steps. You can find this discussed in classical mechanics
books (e.g. Goldstein) under the heading of “passive versus active transformations”

This trick is valuable because the same routines you use for keeping track of rotations relative to fixed axes
can be used for keeping track of rotations relative to rotating axes, with essentially zero extra work. In fact
it is so easy that people sometimes forget that the two schemes are conceptually different ... so be careful;
remember which is which.

4.6 Bootstrapping Small Angles to Large Angles

In section 4.2 and section 4.4 we used the notion that orthogonality corresponds to a 90 degree angle to
construct some interesting rotors. In this section, we derive more general expressions, covering rotors with
any angle whatsoever.

Let’s consider the situation shown on the left side of figure 4. We start with a vector v equal to v; and form
another v’ by adding a tiny displacement vector in a perpendicular direction, so that:
If voi= M

then v = 1 +eve (20)

4 HOW TO DO CALCULATIONS 10

Figure 4: Rotation by a Small Angle

Similar words apply to the right side of figure 4. We start with a vector v equal to 2 and form another v’
by adding a tiny displacement vector in a perpendicular direction, so that:
If Vo= Y

then v = 73 —€em (21)

Note that equation 20 has a plus sign, while equation 21 has a minus sign. This expresses a very important
fact about the geometry of space. The minus sign occurs in the latter and not in the former because we are
rotating in the 1 2 direction, not in the opposite direction (y271).

Rotating a sum of vectors is the same as rotating each summand separately, so we can combine equation 20
and equation 21 as follows:

If voo= a1
+b72
then o = ay1 — €bm (22)

+eayy + by

We can take equation 22 as the definition of what we mean by rotation in the 7; 72 plane, in the limit of
small angles. We shall soon verify that this definition is consistent with everything we already know about
rotations. (Note that the angle € is measured in radians.)

We can use the vectors v and v’ from equation 20 to construct a rotor r, as follows:
r = vv
= mnn+ern) (23)
= 1+4+eviy

where the last line is obtained simply by carrying out the indicated multiplications, and (as usual) simplifying
by use of the normalization condition, equation 2. It is an easy exercise to show that taking the vectors v
and v’ from equation 21 (instead of equation 20) would produce exactly the same rotor r in equation 23.

Let’s see what happens when we use this rotor to rotate something. We start with v = v, and create a new

vector v as follows:
o= oy

= (I+erey)nl+ere) (24)
= 7 +27+0(?)

where the terms of order €2 can be neglected when € is small.

Then, comparing the last line of equation 24 with equation 20, we find that v is rotated relative to v by
the angle 2e. That is, once again the rotation angle is twice the rotor angle.

Now we have all the fundamentals in place. We can start reaping the rewards.

The first thing to do is to consider larger rotations. Since we have constructed a rotationally-invariant
representation of rotations, it is easy to represent repeated rotations, just by piling on additional copies of
the rotation operator in accordance with equation 16.

5 SPACETIME AND BOOSTS 11

Applying this idea, we can investigate what happens if we apply N copies of an infinitesimal rotation:

V=1 +erpy)V ol +en) (25)
where it is our intention that v’ be a vector rotated relative to v by the angle Ne.

Now, the powers on the RHS have a very interesting structure. In the limit of small €, we can write

(1 +emy2)" = exp(Neyiv2) (26)
and we can expand the exponential in the familiar power series. (Equivalently, you can expand the LHS
using the binomial theorem.) The result might look messy at first, but it can be greatly simplified by using
the fact that v; y2 1 72 = —1 whenever v, and 5 are orthonormal and spacelike.

In the limit of large N, the first few terms of the series are, after simplification:
1 1 1
exp(07172) = 1+ 0717 = 507 = 56y + 00+ (27)

where any angle 6 can be written as a multiple of €, that is, 8 := Ne. Although € is small, we are not
assuming that 6 is small.

Collecting all the scalar terms, we recognize the series for cos(#). The remaining terms remind us of the series
for sin(f). (Indeed, if you don’t recognize the power series for sin and cos functions, you could perfectly well
use the power series to define those functions, and derive therefrom all the functions’ interesting properties,
using the methods described in reference 9.)

In any case, we discover that:
7(6) = cos(6) + 1 y2 sin(0) (28)

which is a wonderful result. We did not start out assuming that rotations would be periodic. All we did is
turn the crank on the formalism, and it told us that rotations are periodic.

Let’s see what happens if we apply the rotor in equation 28 to a vector, according to the prescription in
equation 5. We get
[cos(6) + 2 71 sin(6)] 11 [cos(8) + 7172 sin(6)]
= (cos?(0) — sin*()) y1 + 2 cos(f) sin(6) 72 (29)
= co0s(20) y1 + sin(20) vo

where we have used the trigonometric double-angle identities. We find that the rotor angle is half the rotation
angle, even for non-infinitesimal angles.

5 Spacetime and Boosts

By definition, spacetime refers to any system where we have one or more timelike dimensions, in addition to
one or more spacelike dimensions. The most familiar example is D = 1 + 3 spacetime, where we have one
timelike dimension and three spacelike dimensions, but other possibilities should not be ruled out.

In spacetime, it is useful to categorize rotations as follows:
e There are rotations where the plane of rotation is purely spacelike. Unsurprisingly, these are called
spacelike rotations. These are the ordinary rotations with which you are familiar.
e There are rotations where the plane of rotation is spanned by one timelike vector and one spacelike
vector. These are called boosts.

5 SPACETIME AND BOOSTS 12

e In the uncommon case where we have multiple timelike directions, there can be rotations where the
plane of rotation is spanned by two linearly-independent timelike vectors. These doubly-timelike ro-
tations are so uncommon — and mathematically so similar to purely spacelike rotations — that we will
have nothing further to say about them.

The physical interpretation is that boosting an object changes its velocity, just as rotating a line changes its
slope. For more about the physical meaning of boosts, see reference 10.

The effect of a typical boost is depicted in figure 5. You can see that is analogous to — but not identical to
— figure 4.

V=1,
Figure 5: A Small Boost

The geometry and trigonometry of boosts is very similar to the familiar geometry and trigonometry of
spacelike rotations ... but not quite identical, as we now discuss.

Note: Some authors define “rotation” to include only spacelike rotations, excluding boosts. How-
ever, we wish to make a pedagogical and philosophical point, by treating the spacelike and timelike
dimensions on the same footing. We shall see that they are as similar as they possibly could be,
short of being absolutely identical. We should get used to living in a four-dimensional universe.

Let’s analyze a boost, following the same recipe as in section 4.

If voo= a"yo
+b 71
then o = ayy + €by (30)

+eayr + bm

We can take equation 30 as the definition of what we mean by rotation in the o, plane, in the limit of
small angles. This is analogous to — but not identical to — equation 22. In particular, the minus sign in
equation 22 has been replaced by a plus sign in equation 30. This is the crucial difference between spacetime
and ordinary Euclidean space.

Once again, we can construct rotors by forming the product of vectors:
r = ovv
= (0 +en)
—14+evom (31)
—1—€emno
I+emivo

1

where the last line was derived by multiplying the RHS by —1, and the & sign should be interpreted as “having
the same physical effect” since the rotor —r has the same physical effect as the rotor r, in accordance with
equation 5.

Note that both of the factors (y9) and (v + €~1) are timelike vectors. They come from the RHS of figure 5.
Also: It is an easy exercise to show that the exact same value of r could have been obtained by multiplying
two spacelike vectors from the LHS of figure 5, namely (v1) and (y1 + €70).

5 SPACETIME AND BOOSTS 13

If we multiply together a large number of such rotors, we find an equation analogous to equation 27, except
that all the minus signs are turned into plus signs, because vy y1 Yo 71 = +1 for timelike 7y and spacelike ~; .
So instead of equation 28, we get

r(0) = cosh(#) + v1 v sinh(6) (32)
that is, the rotor in the timelike direction is just the same, except that it uses hyperbolic trig functions where
spacelike rotors use circular trig functions. In this equation @ is called the rotor angle.

The rotor in equation 32 can be written in various ways as the product of two unit vectors, either two

spacelike unit vectors or two timelike unit vectors. Examples include:
r(6) cosh(0) + 1 o sinh()

Y1 [71 cosh(8) + o sinh(6)]

Yo [0 cosh(6) + 1 sinh(0)]

(33)

It

If it’s not obvious, you should verify directly that the factor in square brackets is in fact a unit vector.

Let’s see what happens if we apply the rotor in equation 32 to a vector, according to the prescription in
equation 5. In analogy to equation 29, we get
[cosh(8) + o1 sinh(8)] 1 [cosh(8) + v1 o sinh(6)]
= (cosh?(#) + sinh?(6)) v + 2 cosh(#) sinh(8) o
= cosh(20) v1 + sinh(26) o
= cosh(p) 11 + sinh(p) 70

(34)

where the last line is exactly what we would expect to obtain as the result of boosting v; by a rapidity p.
(See reference 11 for more about the idea of rapidity.) We see that the rapidity is twice the rotor angle, even
for non-infinitesimal angles: p = 26. The calculation involves nothing more than carrying out the indicated
multiplications, then using the hyperbolic trigonometric double-angle identities.

These are stunning results. They are simultaneously elegant, easy to use, and very powerful. See reference 10
for more about this.

Given two or more spacelike vectors {71, 72, - - -}, Clifford algebra gives us a nice representation of the rotation
group. Given a timelike vector -y and the aforementioned spacelike vectors, we get a nice representation of
the entire Lorentz group. That is, we can represent any combination of boosts and rotations in any direction

. and the formalism treats them all on the same footing, with a few caveats that will be discussed shortly.

We should have expected an intimate connection between boosts and rotations, because it has long been
known that a sequence of boosts (not all in the same direction) can be used to produce a pure rotation.

Of course, space and spacetime have many things in common, but they are not exactly the same. First let’s
consider what they have in common:

In Euclidean space, 1 is perpendicular to v2. The
product 1 2 defines the plane of rotation, and
plays a crucial role in the infinitesimal rotor r =
1+ ey 7.

Specifically, if we recall the definition of r(6) from
equation 28, 1 2 is just the derivative of r with
respect to 6:

dr

a0 . =712 (35)

In spacetime, ~q is perpendicular to v;. The prod-
uct y1 o defines the plane of rotation, and plays a
crucial role in the infinitesimal rotor r = 14€ 71 7p.

Specifically, if we recall the definition of r(#) from
equation 32, 1 yg is just the derivative of r with
respect to 6:

dr

w . =717 (36)

If you don’t know what a derivative is, you can just ignore equation 35 and equation 36.

5 SPACETIME AND BOOSTS

The geometry of space can be quantified using cir-
cular trig functions, such as sin() and cos().

In the zy plane, you can turn x into y by a 90
degree rotation, and you can turn x into —x by a
180 degree rotation.

By itself, the product v; 2 is a large-angle rotor.
It is what we get from equation 28 when the rotor
angle is m/2 radians. The scalar component of the
rotor goes to zero at this point.

The geometry of spacetime can be quantified us-
ing hyperbolic trig functions, such as sinh() and
cosh().

Now let’s consider the ways in which space and spacetime differ:

In the tz plane, you cannot turn ¢ into x by any
kind of rotation (including boosts) no matter how
large or how small. Similarly you cannot turn ¢
into —t (reversing the flow of time) by any kind of
rotation. For more on this, see reference 10.

By itself, the product 71 o is not a rotor. It has
gorm equal to —1, whereas all rotors must have
gorm equal to +1. If you want a large boost in-
volving 71 79, you need to write something like

14

v/2+ 1 70, which is what we get from equation 32
when the rotor angle is In(14+/2), i.e. about 0.881.
The scalar component of the rotor never goes to
zero.

Let’s be clear: At some point you may be tempted to think of 1 v9 as a large angle boost, in analogy to
Y1 Y2 ... but you must resist the temptation. That is, 1 7o represents the plane of rotation, and it is the
derivative of a rotor, but it is not a rotor unto itself. To understand why this must be so, consider the
following argument: First of all, the set of all rotations is a continuous family of transformations; that is, for
every possible rotation, there are other rotations nearby. The same goes for rotors: For every rotor, there
are other rotors nearby. Secondly, a rotor with gorm equal to 1 cannot be near a rotor with gorm equal
to -1. Thirdly, the rotor family is connected to the identity. That is, you can always set the rotor angle to
zero in equation 32 and get a trivial rotor that represents the identity transformation. This trivial rotor has
gorm equal to 1. All the rotors near the identity have gorm equal to 1, and by induction all the rotors in
the world have gorm equal to 1.

Aficionados might wish to define the concept of improper rotor, namely elements of the even-grade
subalgebra having gorm equal to —1. These represent improper rotations, including reflections
and the like. Details are beyond the scope of the present discussion.

Also note that spacelike rotations and timelike rotations (aka boosts) do not cover all the possibilities. It is
possible to have rotors such as ¢ := 1 4 6 y2(y0 + 1) which is neither timelike nor spacelike. The trick is
that 79 + 1 is a null vector. This ¢ has gorm equal to 1 for all values of 8. This is not as weird as it might
at first seem; such a rotor might describe a rocket that turns as it accelerates. This rotor ¢ sits right on
the dividing line, halfway between boosts and ordinary spacelike rotations. This is another reason why it is
unhelpful to think of boosts as being different from rotations. It is better to lump them all together under
the name “rotation} no matter whether the plane of rotation is spacelike, timelike, or null. A boost in the
x direction is just a rotation in the xt plane.

Also beware that when we draw a spacetime diagram, such as figure 5, we are using paper, which has
two spacelike dimensions, to represent the vy~ plane, which in reality has one spacelike and one timelike
dimension. As a result, the geometry of the diagram-on-paper is not an entirely faithful representation of
the geometry of spacetime. In particular, the true notion of angle in the vy, plane is not well represented
in the diagram, especially when the angle is large. This makes it difficult to develop intuition about angles
in spacetime. However, the mathematics is straightforward: just as the geometry of space can be quantified
using circular trig functions, the geometry of spacetime can be quantified using hyperbolic trig functions, as
you can see by comparing equation 29 with equation 34.

6 FOUR OR MORE DIMENSIONS 15
6 Four or More Dimensions

You might think that four dimensions is just like three dimensions, except 33% bigger. That is almost true,
but not quite. There are some things that happen in four dimensions that are categorically different from
what happens in three dimensions.

Unless otherwise stated, everything in this section applies to the case of four spacelike dimensions ... and
also applies equally well to spacetime. That is, in this section we assume the fourth dimension is spacelike
(7474 = 1), but very similar remarks apply when it is timelike (7474 = —1).

Executive summary: In this section, we will explain what we mean by the following:

e In any number of dimensions from two on up, any rotation (including boosts), and any
combination of rotations (including boosts) can be represented by the equation V! =~V r
where 7 is an element of the even-grade subalgebra.

e In two or three dimensions, but not four or more, we can represent an arbitrary rotor as the
product of vectors.

That means that the mathematics always works. The mathematics gets more laborious as
we move to higher dimensions, but the axioms remain the same, the logic remains the same, and
the basic pattern of the calculations remains the same. You can use most of your intuition about
two-dimensional and three-dimensional rotations as a guide to arbitrary rotations — including
boosts — in four dimensions and higher.

One downside is that our ability to picture the most-general rotor as simply the product of
two vectors is impaired in four dimensions and higher. Another downside is that four dimensions
is considerably worse that 33% more laborious than three dimensions; it is typically about twice
as laborious, as discussed in section 7.4.

Let’s do an example. Let’s pick two typical rotors (analogous to the ones we already encountered in equa-
tion 12) and see what happens when we multiply them. In four or more dimensions, the following example
is reasonably typical:

r = \/.54—\/.5’}/1’}/2
r = Tr1T2

= 5+ 577 +.5737% + .57 72737

We see that this product contains only even terms: a scalar term, a couple of bivector term, and a grade=4
term. (Some of these terms may vanish in special cases.)

If we are working in a three-dimensional space (which includes the case where we simply restrict our attention
to a three-dimensional subset of a larger space), the situation is markedly simpler. There is no such thing
as 74 in three dimensions, so if we try to make something analogous to equation 37, the most complicated
thing we can make is something like this:

ry = \/.5+\/.5’7172
ro = \/.5—}-\/.5’}/3’}/2
T = T1T9 (38)

= DH4+D57v+ 5737
= 54+.5(v1+73)7

where we have just replaced every occurrence of 74 with 7o and simplified the results using the axioms of
Clifford algebra.

Equation 38 differs from equation 37 in two ways:

6 FOUR OR MORE DIMENSIONS 16

In two or three dimensions, there cannot be any In four or more dimensions, it is perfectly OK to
grade=4 term. If you try to construct a 4-blade have grade=4 terms.

of the form a A b A ¢ A d, the fourth factor (d)

is necessarily linearly dependent on the previous

factors, so the product necessarily vanishes.

In two or three dimensions, any object that is ho- In four or more dimensions, it is possible to have
mogeneous of grade 2 is necessarily a 2-blade, i.e. grade-2 objects that are not 2-blades, but rather
the wedge product of two vectors. the sum of 2-blades.

If you are good at visualizing things in four dimensions, figure 6 shows how to visualize a non-blade. On
the left, just for reference, is a four-dimensional hypercube. On the right, we see two blades: one yellow,
one green. These blades cannot be added edge-to-edge to form a single blade representing their sum, as we
would do in three dimensions. We can’t do that, because the two blades have no edge in common. Indeed,
no vector in the yellow plane is parallel to any vector in the green plane, and vice versa. Therefore the sum
of these blades is homogeneous, but is not a blade.

Figure 6: Sum of Blades is Not a Blade

There is a nice formalism for handling rotors in general (including both simple and non-simple rotors), as
we now discuss: Start with all the elements in our Clifford algebra, and form a subset by throwing away
any elements that contain any odd-grade terms, keeping only the even-grade blades and sums of even-grade
blades. If you take any two elements from this subset and multiply them, you get another element of this
subset. Therefore we say this subset is closed under multiplication. It is also true that this subset is closed
under addition and subtraction. Therefore we conclude that this is not just a subset, it is a full-blown
subalgebra, namely the even-grade subalgebra of our original Clifford algebra.

In all generality, we define a rotor to be an element of the even-grade subalgebra having gorm equal to 1.
We define a simple rotor to be one containing no terms higher than grade=2. Some useful facts include:
e Any rotor can be represented as the product of rotors. It will either be the product of two timelike
rotors, or the product of two spacelike rotors (not one of each).
e The product of any two rotors is a rotor. We say the set of rotors is closed under multiplication. (It
is not closed under addition or subtraction.)
e In two or three dimensions, all rotors are simple. (This includes D = 1+ 1 spacetime and D = 1 + 2
spacetime, as well as D = 2 flatland and ordinary D = 3 space.)
e In four or more dimensions, the product of simple rotors is not necessarily a simple rotor.
e In four or five dimensions, an arbitrary rotor can be written as the product of two simple rotors.
e In physics, i.e. in the case of D = 1 + 3 spacetime, any arbitrary combination of rotations (including
boosts) can be expressed as a simple spacelike rotation followed by a boost.

When looking at equation 37, you may wonder how much trouble is caused by the fact that the grade=2
terms don’t form a blade. The answer is, surprisingly little trouble. It turns out that in equation 37, the
overall rotor can be written as r = r1 5. That is, r is not a simple rotor, but it can be visualized as the
product of two simple rotors.

Note: in equation 37 the two rotors commute, i.e. 71 7o = ro 1. In four dimensions, an arbitrary rotor can
always be represented as the product of two simple rotors that commute (hint: Gram-Schmidt orthogonal-
ization), but this is not always the most natural representation; you are free to use two rotors that don’t
commute, if you find that more convenient.

7 REPRESENTATION AND COMPUTATION 17

Also, if you are computing things in terms of components relative to some basis, as discussed in section 7.2,
the same set of basis bivectors that is used to represent an arbitrary 2-blade is also sufficient to represent an
arbitrary sum of 2-blades, so the existence of non-blades causes no extra work at all.

7 Representation and Computation

7.1 Double Coverage

You should not imagine that there is a one-to-one relationship between rotors and rotations. Actually it is
a two-to-one relationship. Any given rotation can be represented by two inequivalent rotors (r and —r). If
you rotate something by 27 radians in any plane, you get back the same attitude, but the rotor picks up a
minus sign. You need to rotate 47 radians to get back the original rotor.

This has practical significance if you have a computer program that needs to check whether a given attitude
(represented by rotor r1) is close to the desired attitude (represented by rotor 7). It does not to suffice to
see whether r; is close to ry in a component-by-component numerical sense; you have to check r; against
both ro and —rs.

Before you decide that this is a defect in the Clifford algebra approach, note that there are situations in this
world where a 47 rotation is equivalent to no rotation, but a 27 rotation is not. One example is the rotation
of the wavefunction of a fermion. Examples can be found in the classical, macroscopic world: The Dirac
string trick and the Philippine wine-glass trick. Details are beyond the scope of the present discussion.

The product-of-vectors representation may be even cleverer, even more profound than you initially thought.

7.2 Basis

In theoretical physics, almost anything worth saying can be said without reference to a particular basis.

However, when it comes time to do numerical calculations, it is often most practical to express vectors,
bivectors, et cetera in terms of some chosen basis.

In a space where 71, 72, 3 are the basis vectors, the natural basis for the bivectors is

Ugy = 72v3 (the YZ plane)
u, = 7371 (the ZX plane) (39)
u, = =7y2 (the XY plane)

That is, any plane can be represented as a linear combination of these three basis planes. (For more on this
and its relationship to quaternions, see section 11.)

Using this basis for the bivectors we can represent any rotor in three dimensions by four numbers [z, y, z; w]
where w is the scalar piece and z, y, and z are the coefficients that describe the bivector piece. Specifically,

T=wW+TU+ YUy + 2 U (40)

This expansion will be be put to good use in section 8.

Also: Tt is almost but not quite possible to represent a rotor in three dimensions using only three numbers, not
four, because it is almost possible to infer the scalar piece using the normalization condition (equation 10).
Even if you could infer the scalar piece, it would be more efficient to carry it around explicitly anyway, rather
than recomputing it every time it was needed.

7 REPRESENTATION AND COMPUTATION 18

If you ever want to convert from the rotor representation to the matrix representation, here’s the procedure.
Given a rotor of the form of the form w + x vy27v3 + y 371 + 2 7172, the corresponding rotation matrix is

wwtzr—yy—zz —2(wz—2xy) 2(wy+xz)
2(wz+zy) wwHyy—zz—zx 2wz —yz) (41)
—2(wy —x2) 2wz +y2) WW+z22—Yyy—Tx

The Perl program mentioned in section 13 implements this matrix and uses it to convert rotors to matrices.

If you are wondering where equation 41 comes from, just apply the most-general rotor to the most-general
vector, as follows:

(w— 27273 — Y371 — 27172)[av1 + by2 + cys)(w + zy273 + Y371 + 27172) (42)

Then just collect terms, as follows: How does the ; term depend on b7 Those terms go in the middle of the
top row of the matrix ... and similarly for all the other terms. In three (or fewer) dimensions, the trivector
terms occur in pairs that cancel out, so they have no impact on the final result in equation 41.

7.3 Dimensions; Number of Components

We use the word clif to denote an arbitrary element of the Clifford algebra. A clif could be a vector, scalar,
bivector, etc. — or a sum thereof. For more about the terminology, see reference 4.

The number of components required to describe a clif depends on the number of dimensions involved, i.e.
the number of basis vectors in some chosen basis set. The first few cases are shown in this table, borrowed
from reference 4:
1s 1lv
1s 2v 1b
1s 3v 3b 1t
1s 4qu 6b 4t 1q

I
=W N

(43)

Slvlvlw
|

where s means scalar, v means vector, b means bivector, ¢ means trivector, and ¢ means quadvector. You
can see that it takes the form of Pascal’s triangle. On each row, the total number of components is 2.

The even-grade components are shown in boldface. On each row, the number of even-grade components is
9(D-1)

For the purpose of representing rotors, you can ignore the odd-grade components in equation 43, but it is
nice to have them there, because they help explain the number of even-grade components.

To make things really explicit, the number of components ordinarily required is as follows:

e In two dimensions, a rotor has two components, namely one scalar component and one bivector com-
ponent.

e In three dimensions, a rotor has four components, namely one scalar component and three bivector
components. Any grade=2 contribution can be represented as a linear combination of the three basis
bivectors.

e In four dimensions, a rotor has eight components, namely one scalar component, six bivector compo-
nents, and one quadvector component. Any grade=2 contribution, be it a blade or a sum of blades,
can be represented as a linear combination of the six basis bivectors.

So we see that representing a rotor in four dimensions requires twice as many components as in three
dimensions, which in turn requires twice as many components as in two dimensions.

7 REPRESENTATION AND COMPUTATION 19

7.4 Computational Load

In three-dimensional space, when you calculate the geometric product of two vectors, there will be four
numbers you need to keep track of. This makes it significantly more compact than the rotation-matrix
representation, which requires nine numbers in D = 3.

In spacetime, a rotor can be specified using 8 numbers, which is significantly less than the matrix represen-
tation, which requires 16 numbers.

In D dimensions, a rotor is ordinarily represented using 2(P~1) numbers, while a matrix requires D? numbers.
The situation is summarized in the following table:

Dimensionality | # of components

rotor matrix
3 4 9
4 8 16
D 2(D71) D2

We now move from the question of storage space to the question of computational effort required to calculate
a compound rotation. If we use the rotor representation, all we need to do is multiply rotors, as suggested
by equation 16. If we use the matrix representation, all we need to do is multiply matrices. The level of
computational effort required is summarized in the following table:

Dimensionality | m ultiplications required

rotor matrix
3 16 27
4 64 64
D 4(D7 1) D3

From this we can see that the rotor representation is computationally advantageous in D = 3. The advantage
vanishes in D = 4, and turns into a disadvantage in very high-dimensional spaces.

Things get worse (but only slightly worse) when we ask how much computational effort is required to apply
a given rotation to a vector. In the matrix representation, that involves just one matrix-vector product,
while in the rotor representation, we need to perform two products, because there is a rotor on the left and
on the right of the vector.

The situation is summarized in the following table:

Dimensionality m ultiplications required
rotor matrix
3 28 9
4 96 16
D 40=1 1 O(D*2P=Y)y D2
This is unflattering to the rotor representation ... but we should keep things in perspective, as we now

discuss:

To summarize the overall situation:

e If you have a whole bunch of rotations (i.e. rotation operators) and you want to keep track of them
as objects unto themselves, you should use the rotor representation. You can store rotors efficiently,
and you can compute with them efficiently using equation 16 (in D = 4 or less). You can also easily
convert the rotor representation to other representations.

8 EXAMPLE: COMBINING ROTATIONS IN VRML 20

e On the other hand, if you have one particular rotation and you want to apply it to a whole bunch of
vectors, equation 5 is not very efficient. But don’t panic. Just convert the rotor to a matrix using
equation 41 (which is very efficient), and then apply the matrix to all your vectors (which is also very
efficient).

8 Example: Combining Rotations in VRML

Here is a very practical example. In VRML (virtual reality modeling language) a rotation is represented by
specifying the axis of rotation and the amount of rotation. Specifically, the amount of rotation is specified in
radians, and the axis must be specified as a unit vector. (If you inadvertently use a non-unit vector, weird
things will happen.) For example, a 90 degree rotation around the X axis is represented by (1 0 0 1.5708).

It is easy to convert back and forth between this representation and the geometric-algebra representation.
If the VRML representation is (X,Y, Z, 0), the scalar piece of the rotor is cos(6/2) and the components of
the bivector piece are [X sin(0/2),Y sin(6/2), Z sin(6/2)].

If you want to calculate a compound rotation, the easiest method is to convert to the rotor representa-
tion, multiply the rotors, and then convert back to the VRML representation. This approach has several
advantages, including:

e [t is straightforward to combine two rotors by multiplying them according to the axioms of geometric
algebra. This is in contrast to the VRML representation, where it isn’t at all obvious how to combine
things.

e It is straightforward to convert the geometric algebra representation back to the VRML representation,
since the components of the bivector tell you the axis of rotation. This is in contrast to the rotation-
matrix representation, where although multiplication is easy enough, converting back to the VRML
representation would be tricky.

e The process is bulletproof, by which I mean there is no danger of “gimbal lock” such as might plague
you in the Euler-angle representation, due to singularities at the poles.

The perl program mentioned in Reference 8 knows how to perform this calculation. The principle of operation
of the program is as follows: Let the first VRML rotation be (X1, Y1, Z1,61). Then the corresponding rotor
is

71 = 0T XUy F Y1 Uy 21U,

where

21 = cos(01/2)

x = X sin(6,/2) (44)
11 = Y sin(6,/2)

21 = 7 sin(61/2)

where u, etc. are defined by equation 39.
We define the second rotor r5 in the corresponding way, i.e. just change “1” to “2” everywhere in equation 44.

To calculate the compound rotation, we just multiply the rotors. Each rotor is represented by four numbers,
so (before simplification) there will be sixteen terms in the product, namely:
THMTe = C1C2
+ alrruy +y1uy + 21 0]
+ cofrous + Y2 uy + 22Uy
—T1x2 —T1Y2Ur TT122Uy
Ty T2u; —Y1Y2 Y1 22U
—21 T2 Uy +21Y2Uy —Z1 22

9 REFLECTIONS 21

and then it’s just a matter of simplifying by collecting like terms. The result is a rotor, represented by four
numbers in the usual way.

Here is an amusing tangential thought: The program takes the arccosine at one point. I have
learned through bitter experience to be careful with arccosines. The problem is that when the
input routine takes the cosine of 0, it is insensitive to the sign of . That is, cos(d) looks a whole
lot like cos(—#). Then when the output routine takes the arccosine, you might or might not get
back the original 8, depending on whether or not it was in the top half or the bottom half of the
unit circle. The only reason this is not a problem for the code in reference 8 is that the input
routine also calculates sin(6) and factors it into the bivector piece of the rotor. So if your rotation
angle is in the bottom half of the unit circle, it will get flipped to the top half, but this is OK
because the axis of rotation will get flipped end-for-end.

9 Reflections

9.1 Basic Reflections

The reflection of a vector v in a flat mirror can be expressed by the simple formula:
w = —ava (46)

where a is a unit vector in the direction normal to the mirror. Obviously you can use —a instead of a and
it doesn’t change anything.

Here are some examples:
—rrx — - (normal incidence)

—zyr — vy (grazing incidence) (47)

In three-dimensional space, a normal in the = direction corresponds to a mirror in the yz plane. In four-
dimensional spacetime, a normal in the x direction corresponds to a mirror in the xzt hyperplane, which
makes sense if you think of it as the world-line of a stationary mirror.

World-lines cannot be spacelike, so you cannot have a mirror in the xyz hyperplane, and the normal cannot
be timelike. However, a mirror that is in motion can have a smallish timelike component to its normal.
Therefore it is worthwhile to extend the previous equation. As is so often the case, the timelike component
behaves “almost” but not quite the same as the other components.

—rxx — —I (normal incidence)

—rTyr — 4y (grazing incidence)

—xte — 4t (48)
—trt — - M

—ttt o+t 0

For example, let’s consider a mirror perpendicular to the x axis. In three-dimensional space, the mirror
resides in the yz plane. In spacetime, if the mirror is stationary, the world-line of the mirror resides in the
yzt hyperplane. In either case, the unit normal vector is z, as you can verify by direct computation.

Hint: A vector is perpendicular to a plane if and only if it is perpendicular to every vector in
the plane. This reduces the workload when checking to see whether things are perpendicular.
Further hint: by definition, two vectors are perpendicular if their dot product is zero. In the
present example, z is obviously perpendicular to y, z, and t.

9 REFLECTIONS 22

Suppose there is an incoming photon, with 4-momentum p; = [1,—1,0,0]. That corresponds to normal
incidence. After it reflects off the mirror, the momentum will be:
b2 = —Ip1x
~ [1,1,0,0] (49)

which makes sense. The 3-velocity of the photon has been reversed.

9.2 Reflection from a Moving Mirror

Now let’s set the mirror in motion in the x direction. The moving mirror resides in the yz(ct+sz) hyperplane,
where ¢ = cosh(p), s = sinh(p), and p is the rapidity. The expression for the hyperplane comes from boosting
each of the constituent vectors in the obvious way. The unit normal is not x but rather cx + st. Again it is
straightforward to verify that this is perpendicular to the hyperplane.

Using the same incident photon, namely p; = [1,—1,0, 0], the reflection from the moving mirror will be
ps = —(cx+ st)pi(cx + st)

= [®+ 5%+ 2cs,c? + 5% + 2¢s,0,0] (50)

That’s exactly what you would get by reversing the direction of motion of the photon, and then boosting
it by twice the rapidity of the mirror. This factor of 2 should be familiar from the ordinary non-relativistic
mechanics of a batted ball: you need to boost once to get the ball into the rest frame of the bat, then perform
a simple reflection against the stationary bat, and the boost again to get the result into the lab frame.

Let’s move on to a more complicated but more interesting example: Consider a mirror at 45° to the z and
y axes. In three-dimensional space we consider it to reside in the \/%(x — y)z plane. In spacetime, if the
mirror is stationary, its world-line resides in the \/%(x — y)zt hyperplane. In either case, the unit normal
is \/1/2(x + y), as you can verify by direct computation.

Now let’s set the mirror in motion in the z direction. The moving mirror resides in the \/1/2(cx + st —
y)z(ct+ sz) hyperplane. The unit normal is /1/2(cx + st +y). Again it is straightforward to verify that this
vector is perpendicular to the mirror.

I leave it as an exercise for the reader to work out what happens to p; when it reflects off this mirror. This
is the non-stationary, non-normal-incidence case.

9.3 Rotations in Terms of Reflections

It is not super-important to the current discussion, but there is a deep connection between rotations and
reflections. If you want details, see reference 7, but we include a brief overview here.

In general, if you apply the same reflection operator twice, you get back where you started. Reflecting in one
mirror then reflecting again in a different mirror undoes most of the effects of the reflection — in particular
it undoes the inversion — but it produces a rotation. The amount of rotation is twice the angle between the
two mirrors.

This means that given two vectors that span a half-angle, we can use them to represent a rotation through
the full angle as follows: First, reflect everything in the mirror perpendicular to the first vector, then reflect
everything again in the mirror perpendicular to the second vector. This is entirely equivalent to the procedure
described in section 4; it is just another way of looking at things.

In D = 2, the mirror is the D — 1 = 1 dimensional line perpendicular to the given vector. In D = 3, the
mirror is the D — 1 = 2 dimensional plane perpendicular to the given vector. In D = 4, the mirror is the
D — 1 = 3 dimensional hyperplane perpendicular to the given vector.

10 ROTATING FROM ONE VECTOR TO ANOTHER 23

This interpretation in terms of reflections makes it pretty obvious that this representation is Lorentz-
invariant.

Remember that the rotor angle is half the rotation angle. This can be a source of confusion if you’re not
careful.

10 Rotating from One Vector to Another

In section 9.3, section 2.1, and section 4.1, we considered two vectors that spanned half the angle of the
desired rotation. We now consider the case where there are two vectors that span the full angle. This is not
recommended. In particular, it is ambiguous when the two vectors are oppositely directed.

Here’s the general procedure. If you want the rotation that turns P to the direction of @, construct the
normalized versions Pnorm and Qnorm. Then calculate the bisector B := Ppnorm + @norm)/2. In the
special case when the bisector is zero, rotate 180° in some arbitrarily-chosen plane containing P. Otherwise,
calculate the geometric product PB, and then normalize it.

11 Quaternions and Pauli Matrices in terms of Clifford Algebra

There is a one-to-one correspondence between quaternions and a subalgebra of Clifford algebra, namely the
subalgebra containing only scalars and bivectors.

The basis bivectors in equation 39 are identical to the I, J, K basis quaternions, except each is missing a
minus sign. Specifically, we define the quaternions I, J, and K according to:

I = —u,=y3y (the YZ plane)
J = —uy=72y1 (the ZX plane) (51)
K = —u,=v173 (the XY plane)

The fourth basis quaternion is the plain old scalar 1.

By direct application of the Clifford Algebra axioms (equation 1 and equation 2), you can verify Hamilton’s
celebrated identities I? = J? = K2 = [JK = —1 (reference 1).

The advantage of the Clifford Algebra approach is that you don’t need to spend any effort learning the
algebra of quaternions. Once you know the axioms of Clifford Algebra, you get quaternions (and a lot of
other things) for free.

(The quaternions we have called I, J, and K are more conventionally written as lower-case i, j, and k, but
in this document we capitalize them, for reasons that will become obvious in a moment.)

Another set of objects that serve as generators of rotations are the Pauli spin matrices, namely:

. 01
9z =
0—1
oy = i0 (52)
. 10
7 T | o-1

These behave like the I, J, K quaternions, except each is missing a factor of i, where i := y/—1. Specifically,
you can verify that if we redefine I := i0,, J := ioy, and J := io, then once again we can write Hamilton’s
identities, namely I?2 = J2 = K2 = [JK = —1.

The three Pauli matrices of course go along with a fourth matrix, the unit matrix:
10
S -

12 SURVEY OF WAYS TO REPRESENT ROTATIONS 24
12 Survey of Ways to Represent Rotations

Note: In this section, all rotations live in D = 3 space, unless otherwise specified.

Let’s imagine you are playing charades, and you want to portray a rotation, a very specific rotation. There
are various approaches you could take:

1. You could take some object, such as a book, and show it in the “before” and “after” states (before
rotation and after rotation). It is best to choose an object of no particular symmetry, since rotating a
highly-symmetric object such as a sphere is not very interesting.

You can make this seem more scientific by choosing the “object” to be a triad of linearly-independent
vectors. You need to label the vectors, so you can keep track of which is which. Then the length of
the vectors doesn’t matter, so we can WLoG? take them to be unit vectors. As before, you need to
depict the triad twice, once before and once after rotation.

The formal mathematical version of this approach consists of writing down the rotation matrix. The
left column of the matrix shows where the X unit vector winds up after rotation; the middle column
shows where the Y unit vector winds up, and the right column shows where the Z unit vector winds
up.

Using a matrix to rotate a vector is computationally efficient, as discussed in section 7.4.

The downside is that it is inconvenient to convert from the matrix representation to other representa-
tions.

2. In some circles it is traditional to represent rotations in terms of the Euler angles: yaw, pitch, and roll.
But that does not mean that you can just depict the three angles and quit there, because the Euler
angles are only defined with respect to a particular basis. So you need to depict the basis as well as
the three Euler angles.

If you are doing a lot of calculations, you can keep the basis constant, so the three Euler angles are the
only variables. This means you only need to carry around three variables, which would seem to be an
improvement over the rotation-matrix representation, which requires carrying around nine variables.

Euler angles are semi-reasonable for some applications, especially if the pitch angle and the bank angle?
always remain small, as they do in ordinary non-aerobatic flying. But there are many drawbacks. For
one thing, there are nasty singularities, such as the following: suppose you pitch up 89 degrees. Your
heading® is unchanged, and your bank angle is unchanged. So far so good ... but now continue the
pitch-wise motion another two degrees. Your heading is now reversed (180 degrees from where you
were a moment ago) and your bank angle is upside down (also 180 degrees from where it was a moment
ago).

Any scheme for representing rotations (in D = 3 space) using only three variables will have singularities.
There’s no way around it.

Even if you stay away from the singularities, if you want to describe the results of two consecutive
rotations, the mathematics of Euler angles is not very pretty.

Because the Euler angles depend on a particular choice of basis, they represent rotations in a way that
is not rotation-invariant ... which is pathetic. Of course they have no chance of being relativistically
invariant.

3Without Loss of Generality
4Bank angle is synonymous with roll angle. The verb “roll” refers to a change in the bank angle.
5Heading is synonymous with yaw angle. The verb “yaw” refers to a change in heading.

13 CLIFFORD ALGEBRA DESK CALCULATOR 25

3. Especially in D = 3, you may be accustomed to thinking of every rotation as a rotation about some
axis. So all you need to do is specify the direction of the axis, and the amount of rotation.

This can be formalized in terms of the so-called Rodrigues vector. The direction of the Rodrigues
vector indicates the axis of rotation, and the length represents the amount of rotation.

This representation is not as elegant or as useful as one might have hoped. In particular, if you
compound two rotations, the result is not represented by the sum of the Rodrigues vectors (nor the
product, nor any other simple vector operation).

The Rodrigues vector is not relativistically invariant.

Also, this approach is restricted to D = 3 space only. In D = 2 flatland, it is not necessary — nor even
possible — to specify the direction of rotation as a vector. In D = 4 or higher, including D = 1+ 3
spacetime, it is again impossible to represent the direction of rotation as a vector. In D = 4, it takes
6 numbers to specify the direction of rotation, but a 4-vector has only 4 components. The way out of
this difficulty can be found in the following item.

4. Rather than depicting the axis of rotation, you can depict the plane of rotation. This has tremendous
advantages. For starters, it works equally well in any nontrivial space, including D = 2 flatland, D = 3
space, and D = 1 + 3 spacetime.

This can be formalized as the product of two vectors in the plane, as discussed in section 2.

Note: For all the representations discussed here, we have represented only the amount of rotation and the
orientation of the plane of rotation; we have not attempted to represent the location of the center of the
rotation.

However, there is a theorem that says that a rotation about one center can be decomposed into a rota-
tion around another center, plus a pure translation. We assume everybody understands how to represent
translations. So for simplicity, we consider only rotations around the origin.

13 Clifford Algebra Desk Calculator

I wrote a “Clifford algebra desk calculator” program. It knows how to do addition, subtraction, dot product,
wedge product, full geometric product, reverse, hodge dual, and so forth. Most of the features work in
arbitrarily many dimensions.

Here is the program’s help message. See also reference 8.

Desk calculator for Clifford algebra in arbitrarily many
Euclidean dimensions. (No Minkowski space yet; sorry.)

Usage: ./cliffer [options]

Command-line options include
-h print this message (and exit immediately).
-v increase verbosity.
-i fn take input from file ’fn’.
-pre fn take preliminary input from file ’fn’.
- take input from STDIN

If no input files are specified with -i or --, the default is an
implicit ’--’. Note that -i and -pre can be used multiple times.

13 CLIFFORD ALGEBRA DESK CALCULATOR

A1l -pre files are processed before any -i files.

Advanced usage: If you want to make an input file into a
self-executing script, you can use "#! /path/to/cliffer -i" as
the first line. Similarly, if you want to do some
initialization and then read from standard input, you can use
"#! /path/to/cliffer -pre" as the first line.

Ordinary usage example:
compound rotation: two 90 degree rotations
makes a 120 degree rotation about the 1,1,1 diagonal:
echo -e "1 0 0 90° vrml 0 0 1 90° vrml mul @v" | cliffer
Result:
0.57735 0.57735 0.57735 2.09440 = 120.0000°

Explanation:
*x) Push a rotation operator onto the stack, by
giving four numbers in VRML format
X Y Z theta
followed by the "vrml" keyword.
x) Push another rotation operator onto the stack,
in the same way.
*) Multiply them together using the "mul" keyword.
*x) Pop the result and print it in VRML format using
the "Qv" keyword

On input, we expect all angles to be in radians. You can convert
from degrees to radians using the '"deg" operator, which can be
abbreviated to "°" (the degree symbol). Hint: Alt-0 on some
keyboards.

As a special case, on input, a number with suffix "d" (with no
spaces between the number and the "d") is converted from degrees to
radians.

echo "90° sin @" | cliffer

echo "90 ° sin @" | cliffer

echo "90d sin @" | cliffer
are each equivalent to

echo "pi 2 div sin @" | cliffer

Input words can be spread across as many lines (or as few) as you
wish. If input is from an interactive terminal, any error causes
the rest of the current line to be thrown away, but the program does
not exit. In the non-interactive case, any error causes the program
to exit.

On input, a comma or tab is equivalent to a space. Multiple spaces
are equivalent to a single space.

Note on VRML format: X Y Z theta
[X Y Z] is a vector specifying the axis of rotation,
and theta specifies the amount of rotation around that axis.

13 CLIFFORD ALGEBRA DESK CALCULATOR 27

VRML requires [X Y Z] to be normalized as a unit vector,
but we are more tolerant; we will normalize it for you.
VRML requires theta to be measured in radians.

Also note that on input, the VRML operator accepts either four
numbers, or one 3-component vector plus one scalar, as in the
following example.

Same as previous example, with more output:
echo -e "[1 0 0] 90° vrml dup @v dup @m
[0 0 1] -90° vrml rev mul dup @v @m" | cliffer

Result:
1.00000 0.00000 0.00000 1.57080 90.0000°
[1.00000 0.00000 0.00000
[0.00000 0.00000 -1.00000
[0.00000 1.00000 0.00000
0.57735 0.57735 0.57735 2.09440 120.0000°

[0.00000 0.00000 1.00000
[1.00000 0.00000 0.00000
[0.00000 1.00000 0.00000

L)

Even fancier: Multiply two vectors to create a bivector,
then use that to crank a vector:
echo —e "[1 00] [110] mul normalize [0 1 O] crank @" \
| ./cliffer
Result:
[-1, 0, 0]

Another example: Calculate the angle between two vectors:
echo -e "[-1 00] [110] mul normalize rangle @a" | ./cliffer
Result:
2.35619 = 135.0000°

Example: Powers: Exponentiate a quaternion. Find rotor that rotates
only half as much:
echo -e "[1 00] [010] mul 2 mul dup rangle @a " \
" .5 pow dup rangle Qa @" | ./cliffer

Result:

1.57080 90.0000°

0.78540 = 45.0000°

1+ [0, 0, 118§

Example: Take the 4th root using pow, then take the fourth
power using direct multiplication of quaternions:
echo "[100] [010] mul dup @v

.25 pow dup @v dup mul dup mul @v" | ./cliffer
Result
0.00000 0.00000 1.00000 3.14159 = 180.0000°
0.00000 0.00000 1.00000 0.78540 = 45.0000°
0.00000 0.00000 1.00000 3.14159 = 180.0000°

13 CLIFFORD ALGEBRA DESK CALCULATOR

More systematic testing:
./cliffer.testl

The following operators have been implemented:
help help message

listops list all operators

=== Unary operators

pop remove top item from stack

neg negate: multiply by -1

deg convert number from radians to degrees

dup duplicate top item on stack

gorm gorm i.e. scalar part of V™ V

norm norm i.e. sqrt(gorm}

normalize divide top item by its norm

rev clifford ’7’ operator, reverse basis vectors

hodge hodge dual aka unary ’§’ operator; alt-’ on some keyboards
gradesel given C and s, find the grade-s part of C

rangle calculate rotor angle

=== Binary operators

exch exchange top two items on stack

codot multiply corresponding components, then sum

add add top two items on stack

sub sub top two items on stack

mul multiply top two items on stack (in subspace if possible)
cmul promote A and B to clifs, then multiply them

div divide clif A by scalar B

dot promote A and B to clifs, then take dot product

wedge promote A and B to clifs, then take wedge product
cross the hodge of the wedge (familiar as cross product in 3D)
crank calculate R™ V R

pow calculate Nth power of scalar or quat

sqrt calculate square root of power of scalar or quat
=== Constructors

L mark the beginning of a vector

] construct vector by popping to mark

unpack unpack a vector, quat, or clif; push its contents (normal order)
dimset project object onto N-dimensional Clifford algebra
unbave top unit basis vector in N dimensions

ups unit pseudo-scalar in N dimensions

pi push pi onto the stack

vrml construct a quaternion from VRML representation x,y,z,theta
clif take a vector in D=2%*n, construct a clif in D=n

Note: You can do the opposite via ’[exch unpack]’
=== Printout operators
setbasis set basis mode, O=abcdef 1=xyzabc

dump show everything on stack, leave it unchanged

@ compactly show item of any type, D=3 (then remove it)

©m show quaternion, formatted as a rotation matrix (then remove it)
Qv show quaternion, formatted in VRML style (then remove it)

Qa show angle, formatted in radian and degrees (then remove it)

0x print clif of any grade, row by row

14

14

10.

11.

REFERENCES

Math library functions:

sin cos tan sec csc cot
sinh cosh tanh asin acos atan
asinh acosh atanh 1n log2 1loglO
exp atan2

References

. W. R. Hamilton,
“On a new Species of Imaginary Quantities connected with a theory of Quaternions”
http://www.maths.tcd.ie/pub/HistMath /People/Hamilton /Quaternl/Quaternl.html
Proceedings of the Royal Irish Academy, vol. 2, 424-434 (Nov. 13, 1843).

. H. Grassmann,
“Die Lineale Ausdehnungslehre” (1844).

. W. K. Clifford,
“Application of Grassmann’s Extensive Algebra” American Journal of Mathematics 350-358 (1878)

John Denker,
“Introduction to Clifford Algebra”
www.av8n.com/physics/clifford-intro.htm

. Stephen Gull, Anthony Lasenby, and Chris Doran,
“The Geometric Algebra of Spacetime”
http://www.mrao.cam.ac.uk/ " clifford /introduction /intro /intro.html

. Richard E. Harke,
“An Introduction to the Mathematics of the Space-Time Algebra”
http://www.harke.org/ps/intro.ps.gz

David Hestenes,

“Oersted Medal Lecture 2002: Reforming the Mathematical Language of Physics”
Abstract: http://geocalc.clas.asu.edu/html/Overview.html Full paper:
http://geocalc.clas.asu.edu/pdf/OerstedMedalLecture.pdf

. John Denker,
“cliffer” (program that inputs rotations in VRML format and combines them, printing out the
resulting overall rotation in VRML format)
./cat.cgi/cliffer.pl and ./cat.cgi/clifford.pm

. Feynman, Leighton, and Sands,
The Feynman Lectures on Physics volume I chapter 22 (“Algebra”).

John Denker,
“The Geometry and Trigonometry of Spacetime”
www.av8n.com/physics/spacetime-trig.htm

John Denker,
“Rapidities, Boosts, Rotations, and the Structure of Spacetime”
www.av8n.com/physics/rapidity.htm

29

http://www.maths.tcd.ie/pub/HistMath/People/Hamilton/Quatern1/Quatern1.html
//www.av8n.com/physics/clifford-intro.htm
http://www.mrao.cam.ac.uk/~clifford/introduction/intro/intro.html
http://www.harke.org/ps/intro.ps.gz
http://geocalc.clas.asu.edu/html/Overview.html
http://geocalc.clas.asu.edu/pdf/OerstedMedalLecture.pdf
./cat.cgi/cliffer.pl
./cat.cgi/clifford.pm
//www.av8n.com/physics/spacetime-trig.htm
//www.av8n.com/physics/rapidity.htm

	Introduction
	The Product-of-Vectors Representation
	Half-Angles

	Digression: Clifford Algebra
	How To Do Calculations
	General Procedure
	A First Example: 180 Degree Rotation
	Normalization
	Another Simple Example: Compound Rotation in D=3
	Rotations in a Rotating Frame
	Bootstrapping Small Angles to Large Angles

	Spacetime and Boosts
	Four or More Dimensions
	Representation and Computation
	Double Coverage
	Basis
	Dimensions; Number of Components
	Computational Load

	Example: Combining Rotations in VRML
	Reflections
	Basic Reflections
	Reflection from a Moving Mirror
	Rotations in Terms of Reflections

	Rotating from One Vector to Another
	Quaternions and Pauli Matrices in terms of Clifford Algebra
	Survey of Ways to Represent Rotations
	Clifford Algebra Desk Calculator
	References

