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Abstract

It is well known in physics – and even in pop culture – that time is the fourth dimension.2

Obviously the time dimension (t) is not exactly the same as the other three (x, y, and z), but

it is more closely analogous than many people realize. The tx plane has a geometry and even a

trigonometry, just as the xy plane does. For example, what would be called a slope in the xy plane

is called a velocity when it occurs in the tx plane. The relativistic addition-of-velocities rule is

nonlinear for the same reason that slope is a nonlinear function of angle: it’s just trigonometry.

Leveraging our understanding of the xy plane makes it easy to understand the essential features

of special relativity, including the fact that no object can be accelerated to the speed of light, and

the fact that the speed of light is the same for all observers.

The geometry of spacetime is remarkably similar to the geometry of ordinary space, with just

one salient difference. This can be understood at many levels. In this paper, we focus on the

simplest levels, using pictures, vectors, and a little bit of trigonometry. (In Ref. 1, we re-explain

and validate the ideas using a more formal approach.)

Additional Keywords: rotation/boost; angle/rapidity; slope/velocity; correspondence principle;

hyperbolic trigonometry; gorm.
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I. REVIEW OF ROTATIONS

We assume the reader has a basic understanding of what it means to rotate something

in the xy plane. It is, however, worth reviewing some of the basic ideas, to establish the

notation and to lay the foundation for further developments. We begin by examining the

effect of a small xy rotation, such as is shown in figure 1.
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FIG. 1: Small Rotations

We start with a vector V pointing in the x̂ direction, as shown on the left side of figure 1.

We rotate it by an angle ε to form another vector V ′. When ε is small, the difference vector

(V ′ − V ) is very nearly perpendicular to V . The difference vector is shown in red in the

figure. We can express the effect of the rotation as:

If V = x̂

then V ′ = x̂ + ε ŷ
(1)

If instead we start with a vector pointing in the ŷ direction, as shown on the right side

of figure 1, the effect is very similar: rotation causes the vector to pick up a component in a

perpendicular direction. For our chosen direction of rotation, the new component is in the

negative x direction:

If V = ŷ

then V ′ = ŷ − ε x̂
(2)

Rotating a sum of vectors is the same as rotating each of the summands separately. Since

any vector in the xy plane can be written as a linear combination of x̂ and ŷ, we can rotate

any vector simply by combining equation (1) and equation (2). The overall effect is:

If V =

 q x̂

+ r ŷ



then V ′ =

 q x̂ − ε r x̂

+ ε q ŷ + r ŷ


(3)
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FIG. 2: Larger Rotations

When we consider larger rotations, it is not satisfactory to plug in a larger value of ε

in these equations (perhaps as shown on the left side of figure 2). Instead, we break the

large rotation into a sequence of small rotations – all in the xy plane – each of which is well

described by equation (3), as shown on the right side of the figure.

If you do the math, combining N rotations each of size ε = θ/N , you get one overall

rotation of size θ. In the limit of large N , the overall rotation can be expressed in the

familiar form:

If V =

 q x̂

+ r ŷ



then V ′ =

 cos(θ) q x̂ − sin(θ) r x̂

+ sin(θ) q ŷ + cos(θ) r ŷ


(4)

If this expression for V ′ is not familiar, a helpful exercise is to set q = 1 and r = 0 and evaluate this

expression for various values of θ from zero to 360◦ in steps of 30◦. Plot the resulting V ′ vectors.

It is easy to see that equation (3) is a consequence of equation (4), by considering what

happens when θ becomes very small. (If that’s not obvious, you can verify it by evaluating

cos(θ) and sin(θ) for small values of θ using a calculator. Make sure the calculator accepts

θ in radians.) It is also straightforward to prove the converse, namely that equation (4) is

necessarily and uniquely the result of applying equation (3) N times ... but we defer the

proof to Ref. 1.

II. INTRODUCTION TO BOOSTS

A small boost is just a small change in velocity ... which is something we already under-

stand in terms of basic physics. Let’s see if we can parlay our understanding of small boosts
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into an understanding of large boosts, by treating boosts the same way we treated rotations

in the previous section. (A good discussion of boosts, with much additional detail, can be

found in Ref. 3.)

We start by plotting the position of a particle as a function of time. Such a plot is familiar

from high-school physics. We choose to call it by a slightly fancy name, namely the world

line of the particle, plotted on a spacetime diagram. Note that we plot the t axis vertically,

as is conventional in the field of relativity. This has several advantages, including the fact

that the x axis is horizontal in both figure 3 and figure 1. (Beware that this conflicts with

the convention commonly used in introductory physics, which plots motion as x versus t

with the t axis horizontal.)
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FIG. 3: Small Boosts

For starters, let’s consider a particle at rest in our reference frame. If we take a step

along the world line of the particle, the t coordinate changes, but the x coordinate does not.

We can represent this act – stepping along the world line – by a vector that points in the t̂

direction, such as the vector V on the left side of figure 3.

Next consider a second particle that is moving with a small velocity relative to the first

particle. (We say it has been boosted by an amount ε in the tx plane.) If we take a step

along this particle’s world line, the t coordinate changes in the usual way, but we also pick

up a slight change in the x coordinate, as shown by the vector V ′ on the left side of figure 3.

Such a step can be represented by a vector of the form t + ε x. The boost operation itself

can be represented as:

If V = t̂

then V ′ = t̂ + ε x̂
(5)

We emphasize that up to this point, we have done nothing subtle or tricky. We take a

step in the V ′ direction along the particle’s world line. It has a certain slope, a certain ∆x

over ∆t. This is just velocity. This is just prosaic high-school physics.
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The units in equation (5) bear some explaining. As a preliminary step, we choose to

measure distance in meters and measure time in jiffies, where a jiffy is the time it takes

for light to travel one meter. In these units, c = 1 meter per jiffy. As the next step,

we take to heart the profound correspondence between space and time, and decide that a

jiffy just another name for a meter; specifically, a meter of extent in the timelike direction.

As the final step, we drop the distinction between ordinary meters (spacelike meters) and

jiffies (timelike meters). In these units, c = 1. For the same reason, ε is dimensionless in

equation (5), just as it was in equation (1).

Remark: This is the first subtle step in the derivation. It is not obvious from nonrelativis-

tic mechanics what value to use for c. For now we can consider it an arbitrary conversion

factor from spacelike units to timelike units. Later we can ascertain that c must be the

speed of light. This can come from the Michelson-Morley experiment, or perhaps from an

examination of the Maxwell equations; details are beyond the scope of this document.

Presumably you have noticed that equation (5) and equation (1) have essentially the same

form and the same meaning. You may be wondering whether the discussion of boosts will

simply retrace the discussion of rotations. It almost will, but not quite. The next equation

we write will not quite be identical to equation (2).

It turns out that if you take a vector in the x̂ direction and boost it in the tx plane, the

result is as shown on the right side of figure 3. It can be expressed as:

If V = x̂

then V ′ = x̂ + ε t̂
(6)

Remark: The plus sign in equation (6) stands in contrast to the minus sign in equation (2).

This is the second – and last – subtle step in the whole discussion. This seemingly-innocuous

change of sign has the most profound consequences, as will be discussed in section V.

But first, we should finish working out the general formula for boosts. Boosting a sum

of vectors is the same as boosting each of the summands separately, so we can combine

equation (5) and equation (6) as follows:

If V =

 p t̂

+ q x̂



then V ′ =

 p t̂ + ε q t̂

+ ε p x̂ + q x̂


(7)
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To understand a large boost, we break it into a sequence of small boosts – all in the tx

plane – each of which is well described by equation (7), as shown in figure 4.

FIG. 4: Larger Boosts

If you do the math, combining N boosts each of size ε = ρ/N , you get one overall boost

of size ρ. In the limit of large N , the overall boost can be expressed in the form:

If V =

 p t̂

+ q x̂



then V ′ =

 cosh(ρ) p t̂ + sinh(ρ) q t̂

+ sinh(ρ) p x̂ + cosh(ρ) q x̂


(8)

It is easy to see that equation (7) is a consequence of equation (8), by considering what

happens when ρ becomes very small. (If that’s not obvious, you can verify it by evaluating

cosh(ρ) and sinh(ρ) for small values of ρ using a calculator. Some students might benefit from

making a graph of the cosh() and sinh() functions, perhaps by hand or perhaps by means

of a spreadsheet.) It is also straightforward to prove the converse, namely that equation (8)

is necessarily and uniquely the result of applying equation (7) N times ... but we defer the

proof to Ref. 1.

Remark: In the relativity literature, the symbol β has long4 been used to represent the

quantity tanh(ρ). Similarly, γ is used to represent cosh(ρ).

III. THE CORRESPONDENCE BETWEEN ROTATIONS AND BOOSTS

We now adopt the tactic of exhibiting the correspondence by putting rotations in the left

column and boosts in the right column.
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A rotation is a change of angle (θ). A boost is a change of rapidity (ρ).

The idea of angle is particularly useful,

because a sequence of rotations of sizes

θ1, θ2, θ3 – all in the yx plane – has the

same effect as one big rotation of size θ,

where θ = θ1 + θ2 + θ3.

The idea of rapidity is particularly useful,

because a sequence of boosts of sizes ρ1,

ρ2, ρ3 – all in the tx plane – has the same

effect as one big boost of size ρ, where

ρ = ρ1 + ρ2 + ρ3.

Sometimes we are interested in the slope,

which is equal to tan(θ). Note that slope

does not have the additivity property

mentioned in the previous paragraph, ex-

cept when the slope is very small. For

instance, figure 2 can be thought of as six

wedges piled on top of each other, tip atop

tip. The top of the first wedge has a slope

of 1 part in 6, but that does not mean that

six wedges combine to make a 1:1 slope.

In fact they make a slope that is more

than 1.5:1, quite a bit more than a lin-

ear extrapolation would have predicted.

As you add more wedges, the slope grows

more and more quickly. Soon it passes

through infinity and becomes negative.

Sometimes we are interested in the 3-

velocity, which is equal to tanh(ρ). Note

that velocity does not have the additiv-

ity property mentioned in the previous

paragraph, except when the velocity is

very small. For instance, figure 4 can be

thought of as a sequence of six boosts:

Each particle in the sequence is moving

relative to the previous one with a speed

of 1/6th of the speed of light, but that

does not mean that particle #6 is mov-

ing relative to particle #0 at 100% of the

speed of light. In fact, the combined ve-

locity is only 76% of the speed of light,

quite a bit less than a linear extrapola-

tion would have predicted. As you make

more and more such boosts, the combined

velocity keeps growing more and more

slowly. It asymptotically approaches the

speed of light.

The locus of the arrowheads in figure 2 is

a circle. It is the result of rotating a given

vector V by various amounts.

The locus of the arrowheads in figure 4 is

a hyperbola.5 It is the result of boosting

a given vector V by various amounts.
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Not coincidentally, the coefficients ap-

pearing in equation (4) are circular trig

functions:  cos(θ) − sin(θ)

sin(θ) cos(θ)

 (9)

Not coincidentally, the coefficients ap-

pearing in equation (4) are hyperbolic trig

functions:  cosh(ρ) sinh(ρ)

sinh(ρ) cosh(ρ)

 (10)

IV. ROTATED AND BOOSTED OBSERVERS

In previous sections, we have considered multiple vectors (notably V and V ′) using only

one frame of reference. We now wish to change viewpoints, and henceforth consider only one

vector at a time, using multiple frames of reference (notably Joe’s frame and Moe’s frame).

This is sometimes called using passive transformations, in contrast to the previous active

transformations. The observers will be rotated and boosted, but the vector V will not. The

basis vectors in Joe’s frame are t̂J , x̂J , and ŷJ . Similarly, the basis vectors in Moe’s frame

are t̂M , x̂M , and ŷM .

Keep in mind that our spacetime diagrams have the t axis pointing upward, as is con-

ventional in the field of relativity.

These ideas are depicted in figures 5, 6, and 7. Each figure has two diagrams, one for

rotations (on the left) and one for boosts (on the right).

The lines in the diagram are drawn according to the following rules:

constant x constant y or t

Joe solid blue dashed blue

Moe solid red dashed red

Moe’s frame is angled relative to Joe’s

frame. In the three figures, the angle is

θ = 0.25, 0.50, and 0.75 radians respec-

tively.

Moe’s frame is moving relative to Joe’s

frame. In the three figures, the rapidity

is ρ = 0.25, 0.50, and 0.75 respectively.
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FIG. 5: Rotation and Boost (0.25)
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FIG. 6: Rotation and Boost (0.50)

A rotation mixes x and y, in the following

sense:

A boost mixes t and x, in the following

sense:

A vector that has only an x component

in Moe’s frame has both x and y compo-

nents in Joe’s frame. The y per unit x is

what Joe calls the slope.

A vector that has only a t component in

Moe’s frame has both t and x components

in Joe’s frame. The x per unit t is what

Joe calls the 3-velocity.
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FIG. 7: Rotation and Boost (0.75)

We define the slope as m := tan(θ). (Re-

call that we are measuring angles in radi-

ans.)

We define the 3-velocity as v = tanh(ρ).

(Recall that we are measuring velocities

in units of meters per jiffy.)

When θ is small, tan(θ) is equal to θ to

first order. That means slope is synony-

mous with angle, when the slope is small.

When ρ is small, tanh(ρ) is equal to ρ to

first order. That means velocity is syn-

onymous with rapidity, when the velocity

is small.

As θ increases from zero to 90 degrees,

tan(θ) starts out equal to θ but soon

becomes larger – eventually very much

larger than θ. This can be seen in the

figures: Find the x and y components by

projecting the black arrow onto the axes.

As always, the slope is y per unit x.

As ρ increases from zero to very large

values, the 3-velocity starts out equal to

ρ, but soon becomes smaller – eventu-

ally very much smaller than ρ. This can

be seen in the figures: Find the x and t

components by projecting the black arrow

onto the axes. As always, the 3-velocity

is x per unit t.
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When Moe’s frame is angled relative to

Joe’s frame by an amount θ, Moe will de-

compose the vector V into components

one way, while Joe will decompose the

same vector differently:

V =

 q x̂M

+ r ŷM

 (11)

=

 cos(θ) q x̂J − sin(θ) r x̂J

+ sin(θ) q ŷJ + cos(θ) r ŷJ



When Moe’s frame is moving relative to

Joe’s frame by an amount ρ, Moe will de-

compose the vector V into components

one way, while Joe will decompose the

same vector differently:

V =

 p t̂M

+ q x̂M

 (12)

=

 cosh(ρ) p t̂J + sinh(ρ) q t̂J

+ sinh(ρ) p x̂J + cosh(ρ) q x̂J


for arbitrary scalars q and r. This conveys

the same physics as equation (4).

for arbitrary scalars p and q. This conveys

the same physics as equation (8).

We now wish to discuss lengths and angles. We have to be careful, because a space-

time diagram is not an entirely faithful representation of spacetime. That is, we wish to

describe events that take place in the tx plane, which has one spacelike dimension and one

timelike dimension. When we represent this on paper, though, the paper has two spacelike

dimensions. The mapping from spacetime to paper distorts the lengths and angles.

In particular, in each of the six diagrams, the gray-shaded area is a unit square. That is,

edges of each gray area all have unit length, and adjacent edges are perpendicular. This is

obvious in the rotation diagrams, but somewhat less obvious in the boost diagrams. (Also

we need to be careful what we mean by “unit” length, as discussed below.)

In all cases, it is obvious to Moe that the gray area is square, since it is aligned with his

axes. Joe also recognizes the gray area as being square, but to confirm this he has to do

some calculations.

As always, we use the dot product to formalize and quantify our notion of lengths and

angles.

11



The familiar dot product can be defined

by postulating

x̂ · x̂ = ŷ · ŷ = ẑ · ẑ = 1

x̂ · ŷ = ŷ · ẑ = ẑ · x̂ = 0

(13)

The four-dimensional dot product can be

defined by postulating

t̂ · t̂ = −1

x̂ · x̂ = ŷ · ŷ = ẑ · ẑ = 1

t̂ · x̂ = x̂ · ŷ = ŷ · ẑ = ẑ · t̂ = 0

(14)

The dot product is commutative and distributes over addition in the usual way.

We hereby define the gorm of a vector to be the dot product of the vector with itself.

If the gorm is positive, we say the vector is spacelike. If the gorm is negative, we say the

vector is timelike. If the gorm is zero, we say the vector is lightlike, or equivalently null.

Let A and B be two points (i.e. events) in spacetime, and let V be the displacement

vector, V := B−A. If V is spacelike, we define the chord length to be
√

V · V , which is also

called the invariant spatial interval. If on the other hand V is timelike, we define the chord

time to be
√
−V · V , which is also called the invariant time interval. For a null vector, the

invariant interval is zero. Chord length and chord time are discussed in Ref. 8.

In equation (14), the minus sign in the definition of t̂ · t̂ tells us that our notion of

perpendicularity in spacetime will be different from the corresponding notion in ordinary

space. This peculiar minus sign is necessary to be consistent with the peculiar plus sign in

equation (6), and vice versa.

We say two non-null vectors are perpendicular or equivalently orthogonal if and only if

their dot product is zero.

In simple Euclidean space, only one no-

tion of “norm” is needed, namely |V | :=
√

V · V . The quantity V · V is simply

called the norm squared.

In Minkowski space, we need to think

clearly about three different quantities:

the gorm, the chord time, and the chord

distance. It’s not clear we should define a

“norm” at all, but if we do, it must be de-

fined differently for timelike and spacelike

vectors. The gorm must not be thought

of as the norm squared.
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Beware that the literature is horribly in-

consistent in its definition of “the” invari-

ant interval, aka “the” spacetime inter-

val, often blurring the distinction between

timelike intervals and spacelike intervals.

The vector qx̂ + rŷ is perpendicular to

rx̂ − qŷ, for any coefficients q and r, as-

suming both x̂ and ŷ are spacelike.

The vector pt̂+qx̂ is perpendicular to qt̂+

px̂, for any coefficients p and q, assuming

t̂ is timelike and x̂ is spacelike.

Among other things, this means that in

figure 1, the difference vectors are per-

pendicular to the position vectors in ac-

cordance with equation (4).

Among other things, this means that in

figure 3, the difference vectors are per-

pendicular to the position vectors in ac-

cordance with equation (8).

It also allows Joe to verify that on the

left side of figure 5, adjacent edges of gray

squares are in fact perpendicular.

It also allows Joe to verify that on the

right side of figure 5, adjacent edges of

the gray square are in fact perpendicular,

even though they may not look that way

at first glance.

All observers agree that the edges of the

gray squares have gorm equal to 1.

All observers agree that the spacelike

edge of the gray square has gorm equal

to 1. They also agree that the other edge

– the timelike edge – has gorm equal to

-1. We call this a unit square, since -1 fits

the mathematical definition of unit.

V. DISCUSSION

A. Evidence Against Competing Hypotheses

The geometry of the xy plane is deter-

mined by the coefficients in equation (3). 1 −ε

ε 1

 (15)

The geometry of the tx plane is deter-

mined by the coefficients in equation (7). 1 ε

ε 1

 (16)
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Our attention is captured by the element in the upper-right corner, since that is the only

difference between equation (15) and equation (16).

This element tells us about the so-called breakdown of simultaneity at a distance. That

is, it tells us that time as perceived by Moe is offset relative to the time perceived by Joe

– offset by an amount depending on the distance (x), and also depending on Moe’s velocity

relative to Joe. This is illustrated by the right half of figure 3 and quantified by equation (6).

Throughout most of history, i.e. before relativity, this contribution was assumed to be

zero. Everybody tacitly assumed that timekeeping was independent of location and indepen-

dent of velocity. Indeed it is very nearly independent, unless you have a combination of large

distances, multiple reference frames with high relative velocity, and highly accurate time-

keeping – as you can see from the structure of equation (6). It was not until the end of the

19th century that Michelson and Morley did experiments that disproved the pre-relativity

assumptions.

Michelson and Morley observed that the speed of light was the same in all reference

frames. The geometry of the tx plane as defined by equation (8) has exactly this property,

as you can see in e.g. figure 6. The loosely-dashed diagonal line represents the speed of light.

Notice how Moe’s t axis and x axis are both tilted toward the diagonal, so that anything

that lies along the diagonal in Joe’s frame also lies along the diagonal in Moe’s frame.

The Michelson-Morley experiment, and innumerable others like it, are sufficient to tell

us that the upper-right element in equation (16) must be +ε, not zero or anything else.

Einstein said any theory should be as simple as possible, but not simpler. We have seen

that special relativity is as simple as it possibly could be. The geometry of the tx plane

is as closely analogous to the geometry of the xy plane as it possibly could be. The only

difference is that the sign in equation (6) differs from the sign in equation (2). Virtually all

of special relativity can be seen as arising from this one little change. Specifically:

– This is what makes spacetime different from plain old space.

– This is what makes the timelike dimension t different from the spacelike dimensions

x, y, and z.

– This is why you cannot accelerate an object to the speed of light or beyond.

– This is why the speed of light is the same for all observers.

It is worth taking a moment to consider what would happen if the upper-right element

in equation (16) were changed to a −ε, thereby making boosts behave the same as ordinary
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spacelike rotations. That would make the theory very simple ... but alas too simple, because

it would make the time axis just another space axis. You would be able to interchange the

t axis and the x axis by an ordinary rotation, and you could travel backward and forward

in time just as easily as you move east and west.

B. What is Invariant and What Isn’t

In section IV, we used passive transformations. That is, in figure 6, there is one vector –

only one vector – shown in black. If we switch from Joe’s reference frame to Moe’s reference

frame, the vector is unaffected. The vector neither knows nor cares who, if anyone, is

observing it. For background on this, see Ref. 7.

We did this to make the following point: According to the “geometric” approach, special

relativity primarily describes the geometry of spacetime. It does not depend on anything

funny happening to the vectors, clocks, rulers, odometers or other objects that inhabit

spacetime. Objects are neither Lorentz contracted nor time dilated; they are completely

unaffected by boosts. The components obtained by projecting a vector onto this-or-that

reference frame are affected, but that is a property of the projective geometry of the situation,

not a property of the vector itself. This idea and its consequences are discussed in Ref. 8.

VI. EXERCISE

As suggested in Ref. 3, suppose we have a spaceship. Initially it is at rest with respect to

the earth. It then accelerates steadily, such that the passengers aboard the spaceship feel a

constant 1G acceleration, always in the same direction. Question: At the end of one year,

how fast is the spaceship going, relative to the earth?

Solution: In the first second, the spaceship picks up a velocity of v1 = 9.8 meters per

second. We know this from basic physics, and the definition of 1G. This corresponds to

a rapidity of ρ1 = v1/c = 3.27e-8. The rapidity-change in each second thereafter is the

same, as you can verify by considering how things look in a reference frame instantaneously

comoving with the spaceship. After one year (3.16e7 seconds) this adds up to ρ = 1.03,

which is an amusing result in itself: one G for one year gives you about one unit of rapidity.

Since tanh(1.03) = 0.77, we conclude that the 3-velocity is 77% of the speed of light.
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Our method of solution made heavy use of the additivity property discussed in section III.

This is easy to understand by analogy to rotations.

There are other ways of solving this problem, but none easier or more elegant.

VII. PEDAGOGICAL IMPLICATIONS

1. Spacetime diagrams are highly recommended as a way of introducing the main ideas

of special relativity. Among other things, they can be used to introduce the idea of

treating time and space on the same footing, and treating boosts and rotations on the

same footing. Ref. 3 is the “gold standard” in this area.

It is, alas, rather time-consuming to draw the spacetime diagrams with the required

accuracy. Therefore it is worth finding a way to do some of the work in advance.

A very useful first step is to prepare some “spacetime graph paper” containing two

sets of axes: one set of ordinary unboosted (x, t) axes, plus another set of boosted

axes, carefully drawn with the correct angles and the correct units.

Often it is remarkably easy to compute the diagrams. Many drawing programs have a

way of applying an arbitrary linear transformation to a sub-image. This can be used

to boost vectors, or even more complex objects. All the diagrams in this paper were

computed.

2. Writing the Lorentz transformation in terms of hyperbolic trig functions [equation (10)]

makes it well-nigh unforgettable, in analogy to a rotation written in terms of the more-

familiar circular trig functions [equation (9)].

3. A further advantage is that equation (10) gives a complete and correct description of

special relativity. In contrast, saying “rulers contract” and “clocks slow down” has

several problems. For starters, it gives an incomplete description, since it describes

only two of the four terms in equation (10). This is a common source of confusion

among non-experts. At the very least, you need to add a statement of breakdown of

simultaneity at a distance.

4. The traditional approach to teaching relativity emphasizes that it is weird and rife

with paradoxes, using rulers that can’t be trusted and clocks that can’t be trusted. In
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contrast, we argue8 that it is pedagogically better to teach students that relativity is

not particularly weird or paradoxical; indeed it is in many ways closely analogous to

the geometry of ordinary Euclidean space. Time and space are most easily understood

in terms of proper distance and proper time, which do not contract or slow down.

5. For that matter, in an introductory discussion, you need not say anything whatsoever

about clocks or rulers. All you really need is equation (5) which describes low-velocity

behavior, as inherited from basic physics via the correspondence principle, plus equa-

tion (6) which describes the offset of simultaneity at a distance. Everything else follows

from that.

6. In this paper we have considered only xy rotations and tx boosts. In general, one

must consider all combinations of xy, yz, and zx rotations, plus tx, ty, and tz boosts.

This is the topic of another paper1.

Note that when we consider combinations of boosts in more than a single direction,

it is provably impossible to have a full discussion of boosts without also discussing

rotations. That is because it is easy to construct a sequence of boosts whose net effect

is a pure rotation (with no net boost). An example of this is the Thomas precession.

To say the same thing another way, purely spacelike rotations form a subgroup of the

Lorentz group, whereas boosts do not. (If you don’t know what this means, don’t

worry about it.)

7. The sophisticated reader will have noticed that many of the equations in this paper

could be expressed more compactly using matrices. The formatting of the equations

is intentionally suggestive. However, we have avoided relying on matrices or linear-

algebra ideas, so that the paper will be understandable to a wider audience. The

geometry of spacetime can be understood using nothing beyond high-school-level vec-

tors and trigonometry.

8. Similarly, the sophisticated reader will have noticed that what we have called an

infinitesimal rotation is only a half-step removed from being a Lie derivative. As

early as 1906, Poincaré9 showed that the Lorentz transformations formed a group,

and discussed the group’s Lie algebra. However, if you don’t know what that means,

don’t worry about it.
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9. Our approach upholds the pedagogical principle that learning proceeds from the known

to the unknown. We assume the students have some previous knowledge of rotations

and vectors in ordinary 3-space. We build on this to explain the closely-analogous

concepts of boosts and 4-vectors in spacetime. As usual, a side-benefit is that it

broadens and deepens their understanding of the previously-known topics.
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