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Chapter 0

Introduction

0.1 Overview

Real thermodynamics is celebrated for its precision, power, generality, and elegance. However, all
too often, students are taught some sort of pseudo-thermodynamics that is infamously confusing,
lame, restricted, and ugly. This document is an attempt to do better, i.e. to present the main ideas
in a clean, simple, modern way.

The �rst law of thermodynamics is usually
stated in a very unwise form.

We will see how to remedy this.

The second law is usually stated in a very un-
wise form.

We will see how to remedy this, too.

The so-called third law is a complete loser. It
is beyond repair.

We will see that we can live without it just
�ne.

Many of the basic concepts and terminology
(including heat, work, adiabatic, etc.) are
usually given multiple mutually-inconsistent
de�nitions.

We will see how to avoid the inconsistencies.

Many people remember the conventional �laws� of thermodynamics by reference to the following
joke:1

0) You have to play the game;
1) You can't win;
2) You can't break even, except on a very cold day; and
3) It doesn't get that cold.

It is not optimal to formulate thermodynamics in terms of a short list of enumerated laws, but if
you insist on having such a list, here it is, modernized and clari�ed as much as possible. The laws
appear in the left column, and some comments appear in the right column:

1This is an elaboration of the jocular laws attributed to C.P. Snow. I haven't been able to �nd a more precise
citation.
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The zeroth law of thermodynamics tries to tell
us that certain thermodynamical notions such
as �temperature�, �equilibrium�, and �macro-
scopic state� make sense.

Sometimes these make sense, to a useful ap-
proximation . . . but not always. See chapter
3.

The �rst law of thermodynamics states that
energy obeys a local conservation law.

This is true and important. See section 1.2.

The second law of thermodynamics states that
entropy obeys a local law of paraconservation.

This is true and important. See chapter 2.

There is no third law of thermodynamics. The conventional so-called third law alleges
that the entropy of some things goes to zero
as temperature goes to zero. This is never
true, except perhaps in a few extraordinary,
carefully-engineered situations. It is never im-
portant. See chapter 4.

To summarize the situation, we have two laws (#1 and #2) that are very powerful, reliable, and
important (but often misstated and/or con�ated with other notions) plus a grab-bag of many lesser
laws that may or may not be important and indeed are not always true (although sometimes you
can make them true by suitable engineering). What's worse, there are many essential ideas that are
not even hinted at in the aforementioned list, as discussed in chapter 5.

We will not con�ne our discussion to some small number of axiomatic �laws�. We will carefully
formulate a �rst law and a second law, but will leave numerous other ideas un-numbered. The
rationale for this is discussed in section 7.10.

The relationship of thermodynamics to other �elds is indicated in �gure 1. Mechanics and many
other �elds use the concept of energy, sometimes without worrying very much about entropy. Mean-
while, information theory and many other �elds use the concept of entropy, sometimes without wor-
rying very much about energy; for more on this see chapter 22. The hallmark of thermodynamics
is that it uses both energy and entropy.

E
ne
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y

E
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py

Mechanics

Information Theory

Thermodynamics

Figure 1: Thermodynamics, Based on Energy and Entropy
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0.2 Availability

� This document is available in PDF format at
http://www.av8n.com/physics/thermo-laws.pdf
You may �nd this advantageous if your browser has trouble displaying standard HTML math
symbols.

� It is also available in HTML format, chapter by chapter. The index is at
http://www.av8n.com/physics/thermo/

0.3 Prerequisites, Goals, and Non-Goals

This section is meant to provide an overview. It mentions the main ideas, leaving the explanations
and the details for later. If you want to go directly to the actual explanations, feel free to skip this
section.

(1) There is an important distinction between fallacy and absurdity. An idea that makes wrong
predictions every time is absurd, and is not dangerous, because nobody will pay any attention
to it. The most dangerous ideas are the ones that are often correct or nearly correct, but then
betray you at some critical moment.

Most of the fallacies you see in thermo books are pernicious precisely because they are not

absurd. They work OK some of the time, especially in simple �textbook� situations . . . but
alas they do not work in general.

The main goal here is to formulate the subject in a way that is less restricted and less deceptive.
This makes it vastly more reliable in real-world situations, and forms a foundation for further
learning.

In some cases, key ideas can be reformulated so that they work just as well � and just as

easily � in simple situations, while working vastly better in more-general situations. In the
few remaining cases, we must be content with less-than-general results, but we will make them
less deceptive by clarifying their limits of validity.

(2) We distinguish cramped thermodynamics from uncramped thermodynamics as shown in �g-
ure 2.

On the left side of the diagram, the system
is constrained to move along the red path,
so that there is only one way to get from A
to Z.

In contrast, on the right side of the dia-
gram, the system can follow any path in the
(S, T ) plane, so there are in�nitely many
ways of getting from A to Z, including
the simple path A → Z along a contour
of constant entropy, as well as more com-
plex paths such as A → Y → Z and
A → X → Y → Z. See chapter 19 for
more on this.
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Indeed, there are in�nitely many paths
from A back to A, such as A→ Y → Z →
A and A → X → Y → Z → A. Paths
that loop back on themselves like this are
called thermodynamic cycles. Such a path
returns the system to its original state, but
generally does not return the surroundings
to their original state. This allows us to
build heat engines, which take energy from
a heat bath and convert it to mechanical
work.

There are some simple ideas such as spe-

ci�c heat capacity (or molar heat capac-
ity) that can be developed within the limits
of cramped thermodynamics, at the high-
school level or even the pre-high-school
level, and then extended to all of thermo-
dynamics.

Alas there are some other ideas such as
�heat content� aka �thermal energy con-
tent� that seem attractive in the context
of cramped thermodynamics but are ex-
tremely deceptive if you try to extend them
to uncramped situations.

Even when cramped ideas (such as heat capacity) can be extended, the extension must be
done carefully, as you can see from the fact that the energy capacity CV is di�erent from the
enthalpy capacity CP , yet both are widely (if not wisely) called the �heat� capacity.

(3) Uncramped thermodynamics has a certain irreducible amount of complexity. If you try to
simplify it too much, you trivialize the whole subject, and you arrive at a result that wasn't
worth the trouble. When non-experts try to simplify the subject, they all-too-often throw the
baby out with the bathwater.

(4) You can't do thermodynamics without entropy. Entropy is de�ned in terms of statistics.
As discussed in chapter 2, people who have some grasp of basic probability can understand
entropy; those who don't, can't. This is part of the price of admission. If you need to brush
up on probability, sooner is better than later. A discussion of the basic principles, from a
modern viewpoint, can be found in reference 1.

We do not de�ne entropy in terms of energy, nor vice versa. We do not de�ne either of them
in terms of temperature. Entropy and energy are well de�ned even in situations where the
temperature is unknown, unde�nable, irrelevant, or zero.

(5) Uncramped thermodynamics is intrinsically multi-dimensional. Even the highly simpli�ed
expression dE = −P dV + T dS involves �ve variables. To make sense of this requires multi-
variable calculus. If you don't understand how partial derivatives work, you're not going to
get very far.

Furthermore, when using partial derivatives, we must not assume that �variables not mentioned
are held constant�. That idea is a dirty trick than may work OK in some simple �textbook�
situations, but causes chaos when applied to uncramped thermodynamics, even when applied
to something as simple as the ideal gas law, as discussed in reference 2. The fundamental
problem is that the various variables are not mutually orthogonal. Indeed, we cannot even
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de�ne what �orthogonal� should mean, because in thermodynamic parameter-space there is no
notion of angle and not much notion of length or distance. In other words, there is topology
but no geometry, as discussed in section 8.7. This is another reason why thermodynamics is
intrinsically and irreducibly complicated.

Uncramped thermodynamics is particularly intolerant of sloppiness, partly because it is so
multi-dimensional, and partly because there is no notion of orthogonality. Unfortunately,
some thermo books are sloppy in the places where sloppiness is least tolerable.

The usual math-textbook treatment of partial derivatives is dreadful. The standard notation
for partial derivatives practically invites misinterpretation.

Some fraction of this mess can be cleaned up just by being careful and not taking shortcuts.
Also it may help to visualize partial derivatives using the methods presented in reference 3.
Even more of the mess can be cleaned up using di�erential forms, i.e. exterior derivatives
and such, as discussed in reference 4. This raises the price of admission somewhat, but not
by much, and it's worth it. Some expressions that seem mysterious in the usual textbook
presentation become obviously correct, easy to interpret, and indeed easy to visualize when
re-interpreted in terms of gradient vectors. On the other edge of the same sword, some other
mysterious expressions are easily seen to be unreliable and highly deceptive.

(6) If you want to do thermodynamics, beyond a few special cases, you will have to know enough
physics to understand what phase space is. We have to count states, and the states live in
phase space. There are a few exceptions where the states can be counted by other means; these
include the spin system discussed in section 11.10, the arti�cial games discussed in section 2.2
and section 2.3, and some of the more theoretical parts of information theory. Non-exceptions
include the more practical parts of information theory; for example, 256-QAM modulation is
best understood in terms of phase space. Almost everything dealing with ordinary �uids or
chemicals requires counting states in phase space. Sometimes this can be swept under the
rug, but it's still there.

Phase space is well worth learning about. It is relevant to Liouville's theorem, the �uctu-
ation/dissipation theorem, the optical brightness theorem, the Heisenberg uncertainty prin-
ciple, and the second law of thermodynamics. It even has application to computer science
(symplectic integrators). There are even connections to cryptography (Feistel networks).

(7) You must appreciate the fact that not every vector �eld is the gradient of some potential.
Many things that non-experts wish were gradients are not gradients. You must get your head
around this before proceeding. Study Escher's �Waterfall� as discussed in reference 4 until you
understand that the water there has no well-de�ned height. Even more to the point, study
the RHS of �gure 8.4 until you understand that there is no well-de�ned height function, i.e.
no well-de�ned Q as a function of state. See also section 8.2.

The term �inexact di�erential� is sometimes used in this connection, but that term is a mis-
nomer, or at best a horribly misleading idiom. We prefer the term ungrady one-form. In any
case, whenever you encounter a path-dependent integral, you must keep in mind that it is not
a potential, i.e. not a function of state. See chapter 19 for more on this.

To say the same thing another way, we will not express the �rst law as dE = dW+dQ or any-
thing like that, even though it is traditional in some quarters to do so. For starters, although
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such an equation may be meaningful within the narrow context of cramped thermodynamics,
it is provably not meaningful for uncramped thermodynamics, as discussed in section 8.2 and
chapter 19. It is provably impossible for there to be any W and/or Q that satisfy such an
equation when thermodynamic cycles are involved.

Even in cramped situations where it might be possible to split E (and/or dE) into a thermal
part and a non-thermal part, it is often unnecessary to do so. Often it works just as well (or
better!) to use the unsplit energy, making a direct appeal to the conservation law, equation 1.1.

(8) Almost every newcomer to the �eld tries to apply ideas of �thermal energy� or �heat content�
to uncramped situations. It always almost works ... but it never really works. See chapter 19
for more on this.

(9) On the basis of history and etymology, you might think thermodynamics is all about heat,
but it's not. Not anymore. By way of analogy, there was a time when what we now call
thermodynamics was all about phlogiston, but it's not anymore. People wised up. They
discovered that one old, imprecise idea (phlogiston) could be and should be replaced two
new, precise ideas (oxygen and energy). More recently, it has been discovered that one old,
imprecise idea (heat) can be and should be replaced by two new, precise ideas (energy and
entropy).

Heat remains central to unsophisticated cramped thermodynamics, but the modern approach
to uncramped thermodynamics focuses more on energy and entropy. Energy and entropy are
always well de�ned, even in cases where heat is not.

The idea of entropy is useful in a wide range of situations, some of which do not involve heat
or temperature. As shown in �gure 1, mechanics involves energy, information theory involves
entropy, and thermodynamics involves both energy and entropy.

You can't do thermodynamics without energy and entropy.

There are multiple mutually-inconsistent de�nitions of �heat� that are widely used � or you
might say wildly used � as discussed in section 17.1. (This is markedly di�erent from the
situation with, say, entropy, where there is really only one idea, even if this one idea has
multiple corollaries and applications.) There is no consensus as to �the� de�nition of heat,
and no prospect of achieving consensus anytime soon. There is no need to achieve consensus
about �heat�, because we already have consensus about entropy and energy, and that su�ces
quite nicely. Asking students to recite �the� de�nition of heat is worse than useless; it rewards
rote regurgitation and punishes actual understanding of the subject.

(10) Our thermodynamics applies to systems of any size, large or small ... not just large systems.
This is important, because we don't want the existence of small systems to create exceptions
to the fundamental laws. When we talk about the entropy of a single spin, we are necessarily
thinking in terms of an ensemble of systems, identically prepared, with one spin per system.
The fact that the ensemble is large does not mean that the system itself is large.

(11) Our thermodynamics is not restricted to the study of ideal gases. Real thermodynamics has
a vastly wider range of applicability, as discussed in chapter 22.
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(12) Even in special situations where the notion of �thermal energy� is well de�ned, we do not
pretend that all thermal energy is kinetic; we recognize that random potential energy is
important also. See section 9.3.3.



Chapter 1

Energy

1.1 Preliminary Remarks

Some things in this world are so fundamental that they cannot be de�ned in terms of anything more
fundamental. Examples include:

� Energy, momentum, and mass.

� Geometrical points, lines, and planes.

� Electrical charge.

� Thousands of other things.

Do not place too much emphasis on pithy,
dictionary-style de�nitions. You need to have
a vocabulary of many hundreds of words be-
fore you can even begin to read the dictionary.

The general rule is that words acquire meaning
from how they are used. For many things,
especially including fundamental things, this
is the only worthwhile de�nition you are going
to get.

The dictionary approach often leads to circu-
larity. For example, it does no good to de�ne
energy in terms of work, de�ne work in terms
of force, and then de�ne force in terms of en-
ergy.

The real de�nition comes from how the word
is used. The dictionary de�nition is at best
secondary, at best an approximation to the
real de�nition.

Words acquire meaning
from how they are used.

Geometry books often say explicitly that points, lines, and planes are �unde�ned� terms, but I
prefer to say that they are implicitly de�ned. Equivalently, one could say that they are retroactively
de�ned, in the sense that they are used before they are de�ned. They are initially unde�ned, but
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then gradually come to be de�ned. They are de�ned by how they are used in the axioms and
theorems.

Here is a quote from page 71 of reference 5:

Here and elsewhere in science, as stressed not least by Henri Poincare, that view is out
of date which used to say, �De�ne your terms before you proceed.� All the laws and
theories of physics, including the Lorentz force law, have this deep and subtle character,
that they both de�ne the concepts they use (here B and E) and make statements about
these concepts. Contrariwise, the absence of some body of theory, law, and principle
deprives one of the means properly to de�ne or even to use concepts. Any forward
step in human knowledge is truly creative in this sense: that theory, concept, law, and
method of measurement � forever inseparable � are born into the world in union.

In other words, it is more important to understand what energy does than to rote-memorize some
dictionary-style de�nition of what energy �is�.

Energy is as energy does.

We can apply this idea as follows:

The most salient thing that energy does is to uphold the local energy-conservation law, equation 1.1.

That means that if we can identify one or more forms of energy, we can identify all the others by
seeing how they plug into the energy-conservation law. A catalog of possible starting points and
consistency checks is given in equation 1.2 in section 1.3.

1.2 Conservation of Energy

The �rst law of thermodynamics states that energy obeys a local conservation law.

By this we mean something very speci�c:

Any decrease in the amount of energy in a given region of space must be exactly balanced
by a simultaneous increase in the amount of energy in an adjacent region of space.

Note the adjectives �simultaneous� and �adjacent�. The laws of physics do not permit energy to
disappear now and reappear later. Similarly the laws do not permit energy to disappear from here
and reappear at some distant place. Energy is conserved right here, right now.

It is usually possible1 to observe and measure the physical processes whereby energy is transported
from one region to the next. This allows us to express the energy-conservation law as an equation:

change in energy = net �ow of energy
(inside boundary) (inward minus outward across boundary)

(1.1)

1Even in cases where measuring the energy �ow is not feasible in practice, we assume it is possible in principle.
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The word ��ow� in this expression has a very precise technical meaning, closely corresponding to
one of the meanings it has in everyday life. See reference 6 for the details on this.

There is also a global law of conservation of energy: The total energy in the universe cannot change.
The local law implies the global law but not conversely. The global law is interesting, but not nearly
as useful as the local law, for the following reason: suppose I were to observe that some energy has
vanished from my laboratory. It would do me no good to have a global law that asserts that a
corresponding amount of energy has appeared �somewhere� else in the universe. There is no way
of checking that assertion, so I would not know and not care whether energy was being globally
conserved.2 Also it would be very hard to reconcile a non-local law with the requirements of special
relativity.

As discussed in reference 6, there is an important distinction between the notion of conservation and
the notion of constancy. Local conservation of energy says that the energy in a region is constant
except insofar as energy �ows across the boundary.

1.3 Examples of Energy

Consider the contrast:

The conservation law presented in section 1.2
does not, by itself, de�ne energy. That's be-
cause there are lots of things that obey the
same kind of conservation law. Energy is
conserved, momentum is conserved, electric
charge is conserved, et cetera.

On the other hand, examples of energy would not, by themselves, de�ne energy.

On the third hand, given the conservation law
plus one or more examples of energy, we can
achieve a pretty good understanding of energy
by a two-step process, as follows:

1) Energy includes each of the known examples, such as the things itemized in equation 1.2.
2) Energy also includes anything that can be converted to or from previously-known types of

energy in accordance with the law of conservation of energy.

For reasons explained in section 1.1, we introduce the terms energy, momentum, and mass as
initially-unde�ned terms. They will gradually acquire meaning from how they are used.

Here are a few well-understood examples of energy. Please don't be alarmed by the length of the
list. You don't need to understand every item here; indeed if you understand any one item, you can

2In some special cases, such as Wheeler/Feynman absorber theory, it is possible to make sense of non-local laws,
provided we have a non-local conservation law plus a lot of additional information. Such theories are unconventional
and very advanced, far beyond the scope of this document.
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use that as your starting point for the two-step process mentioned above.
quantum mechanical energy: E = ~ω (1.2a)
relativistic energy in general: E =

√
(m2c4 + p2

xyzc
2) (1.2b)

relativistic rest energy: E0 = mc2 (1.2c)
low-speed kinetic energy: EK = 1/2pxyz · v (1.2d)
high-speed kinetic energy: EK = pxyz · v (1.2e)
universal gravitational energy: EG = GMm/r (1.2f)
local gravitational energy: Eg = mgh (1.2g)
virtual work: dE = −F · dx (1.2h)
Hookean spring energy: Esp = 1/2kx2 (1.2i)
capacitive energy: EC = 1/2CV 2 (1.2j)

= 1/2Q2/C (1.2k)
inductive energy: EL = 1/2LI2 (1.2l)

In particular, if you need a starting-point for your understanding of energy, perhaps the simplest
choice is kinetic energy. A fast-moving book has more energy than it would at a lower speed. Some
of the examples in equation 1.2 are less fundamental than others. For example, it does no good to
de�ne energy via equation 1.2j, if your de�nition of voltage assumed some prior knowledge of what
energy is. Also, equation 1.2c, equation 1.2d and equation 1.2e can all be considered corollaries of
equation 1.2b. Still, plenty of the examples are fundamental enough to serve as a starting point.
For example:

� If you can de�ne charge, you can calculate the energy via equation 1.2k, by constructing a
capacitor of known geometry (and therefore known capacitance). Note that you can measure
charge as a multiple of the elementary charge.

� If you can de�ne time, you can calculate the energy via equation 1.2a. Note that SI de�nes
time in terms of cesium hyper�ne transitions.

� If you can de�ne mass, you can calculate the energy via equation 1.2c. This is a special case
of the more fundamental equation 1.2b. See reference 7 for details on what these equations
mean. Note that you can de�ne mass by counting out a mole of 12C atoms, or go to Paris and
use the SI standard kilogram.

The examples that you don't choose as the starting point serve as valuable cross-checks.

We consider things like Planck's constant, Coulomb's constant, and the speed of light to be already
known, which makes sense, since they are universal constants. We can use such things freely in our
e�ort to understand how energy behaves.

It must be emphasized that we are talking about the physics energy. Do not confuse it with plebeian
notions of �available energy� as discussed in section 1.7 and especially section 1.8.1.

1.4 Remark: Recursion

The description of energy in section 1.3 is recursive. That means we can pull our understanding
of energy up by the bootstraps. We can identify new forms of energy as they come along, because
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they contribute to the conservation law in the same way as the already-known examples. This is
the same basic idea as in reference 8.

Recursive is not the same as circular. A circular argument would be fallacious and useless ... but
there are many examples of correct, well-accepted de�nitions that are recursive. Note one important
distinction: Circles never end, whereas a properly-constructed recursion does end.3 Recursion is
very commonly used in mathematics and computer science. For example, it is correct and convenient
to de�ne the factorial function so that

factorial(0) := 1 and
factorial(N) := N factorial(N − 1) for all integers N > 0

(1.3)

As a more sophisticated example, have you ever wondered how mathematicians de�ne the concept
of integers? One very common approach is to de�ne the positive integers via the Peano axioms. The
details aren't important, but the interesting point is that these axioms provide a recursive de�nition
. . . not circular, just recursive. This is a precise, rigorous, formal de�nition.

This allows us to make another point: There are a lot of people who are able to count, even
though they are not able to provide a concise de�nition of �integer� � and certainly not able to
provide a non-recursive de�nition. By the same token, there are lots of people who have a rock-
solid understanding of how energy behaves, even though they are not able to give a concise and/or
non-recursive de�nition of �energy�.

1.5 Energy is Completely Abstract

Energy is an abstraction. This is helpful. It makes things very much simpler. For example, suppose
an electron meets a positron. The two of them annihilate each other, and a couple of gamma rays go
�ying o�, with 511 keV of energy apiece. In this situation the number of electrons is not conserved,
the number of positrons is not conserved, the number of photons is not conserved, and mass is not
conserved. However, energy is conserved. Even though energy cannot exist without being embodied
in some sort of �eld or particle, the point remains that it exists at a di�erent level of abstraction,
separate from the �eld or particle. We can recognize the energy as being the same energy, even after
it has been transferred from one particle to another. This is discussed in more detail in reference 9.

Energy is completely abstract. You need to come to terms with this idea, by accumulating experi-
ence, by seeing how energy behaves in various situations. As abstractions go, energy is one of the
easiest to understand, because it is so precise and well-behaved.

As another example, consider �gure 1.1. Initially there is some energy in ball #1. The energy
then �ows through ball #2, ball #3, and ball #4 without accumulating there. It accumulates in
ball #5, which goes �ying.

The net e�ect is that energy has �owed out of ball #1 and �owed into ball #5. Even though the
energy is embodied in a completely di�erent ball, we recognize it as the same energy.

Di�erent ball,
same energy.

3You can also construct endless recursions, but they are not nearly so useful, especially in the context of recursive
de�nitions.
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Figure 1.1: Newton's Cradle

1.6 Additional Remarks

1. The introductory examples of energy itemized in section 1.3 are only approximate, and are
subject to various limitations. For example, the formula mgh is exceedingly accurate over
laboratory length-scales, but is not valid over cosmological length-scales. Similarly the formula
1/2mv2 is exceedingly accurate when speeds are small compared to the speed of light, but not
otherwise. These limitations do not interfere with our e�orts to understand energy.

2. In non-relativistic physics, energy is a scalar. That means it is not associated with any
direction in space. However, in special relativity, energy is not a Lorentz scalar; instead
it is recognized as one component of the [energy, momentum] 4-vector, such that energy is
associated with the timelike direction. For more on this, see reference 10. To say the same
thing in other words, the energy is invariant with respect to spacelike rotations, but not
invariant with respect to boosts.

3. We will denote the energy by E. We will denote various sub-categories of energy by putting
subscripts on the E, unless the context makes subscripts unnecessary. Sometimes it is conve-
nient to use U instead of E to denote energy, especially in situations where we want to use
E to denote the electric �eld. Some thermodynamics books state the �rst law in terms of U ,
but it means the same thing as E. We will use E throughout this document.

4. Beware of attaching quali�ers to the concept of energy. Note the following contrast:

The symbol E denotes �the� energy of the
system we are considering. If you feel
obliged to attach some sort of additional
words, you can call E the �system� en-
ergy or the �plain old� energy. This doesn't
change the meaning.

Most other quali�ers change the meaning.
There is an important conceptual point
here: �The� energy is conserved, but (with
rare exceptions) the various sub-categories
of energy are not separately conserved.
For example, the �available� energy is not
necessarily conserved, as discussed in sec-
tion 1.7.
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Associated with the foregoing general conceptual point, here is a speci�c point of terminology:
E is the plain old total energy, not restricted to �internal� energy or �available� energy.

5. As a related point: If you want to calculate the total energy of the system by summing the
various categories of energy, beware that the categories overlap, so you need to be super-careful
not to double count any of the contributions.

� For example, suppose we momentarily restrict attention to cramped thermodynamics
(such as a heat-capacity experiment), and further suppose we are brave enough to de�ne
a notion of �thermal energy� separate from other forms of energy. When adding up
the total energy, whatever kinetic energy was counted as part of the so-called �thermal
energy� must not be counted again when we calculate the non-thermal kinetic energy,
and ditto for the thermal and non-thermal potential energy.

� Another example that illustrates the same point concerns the rest energy, E0, which is
related to mass via Einstein's equation4 E0 = mc2. You can describe the rest energy
of a particle in terms of the potential energy and kinetic energy of its internal parts, or
in terms of its mass, but you must not add both descriptions together; that would be
double-counting.

1.7 Energy versus �Capacity to do Work� or �Available Energy�

Non-experts sometimes try to relate energy to �the capacity to do work�. This is never a good idea,
for several reasons, as we now discuss.

1.7.1 Best Case : Non-Thermal Situation

Consider the following example: We use an ideal battery connected to an ideal motor to raise a
weight, doing work against the gravitational �eld. This is reversible, because we can also operate
the motor in reverse, using it as a generator to recharge the battery as we lower the weight.

To analyze such a situation, we don't need to know anything about thermodynamics. Old-fashioned
elementary non-thermal mechanics su�ces.

If you do happen to know something about thermodynamics, you can quantify this by
saying that the temperature T is low, and the entropy S is small, such that any terms
involving T∆S are negligible compared to the energy involved.

On the other hand, if you don't yet know T∆S means, don't worry about it.

In simple situations such as this, we can de�ne work as ∆E. That means energy is related to the
ability to do work ... in this simple situation.

4Einstein intended the familiar expression E = mc2 to apply only in the rest frame. This is consistent with the
modern (post-1908) convention that the mass m is de�ned in the rest frame. Calling m the �rest� mass is redundant
but harmless. We write the rest energy as E0 and write the total energy as E; they are not equal except in the rest
frame.
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1.7.2 Equation versus De�nition

Even in situations where energy is related to the ability to do work, it is not wise to �de�ne� energy
that way, for a number of practical and pedagogical reasons.

Energy is so fundamental that it is not de�nable in terms of anything more fundamental. You can't
de�ne energy in terms of work unless you already have a solid de�nition of �work�, and de�ning work
is not particularly easier than de�ning energy from scratch. It is usually better to start with energy
and de�ne work in terms of energy (rather than vice versa), because energy is the more fundamental
concept.

1.7.3 General Case : Some Energy Not Available

In general, some of the energy of a particular system is available for doing work, and some of it
isn't. The second law of thermodynamics, as discussed in chapter 2, makes it impossible to use all
the energy (except in certain very special cases, as discussed in section 1.7.1).

See section 15.6 for more about this.

In this document, the word �energy� refers to the physics energy. However, when business executives
and politicians talk about energy, they are generally more concerned about �available energy�, which
is an important thing, but it is emphatically not the same as the physics energy. See section 1.8.1
for more about this. It would be a terrible mistake to confuse �available energy� with the physics
energy. Alas, this mistake is very common. See section 15.6 for additional discussion of this point.

Any attempt to de�ne energy in terms of �capacity to do work� would be inconsistent with thermo-
dynamics, as we see from the following examples:

#1: Consider an isolated system containing a
hot potato, a cold potato, a tiny heat engine,
and nothing else, as illustrated in �gure 1.2.
This system has some energy and some ability
to do work.

#2: Contrast that with a system that is just
the same, except that it has two hot potatoes
(and no cold potato).

The second system has more energy but less ability to do work.

This sheds an interesting side-light on the energy-conservation law. As with most laws of physics,
this law, by itself, does not tell you what will happen; it only tells you what cannot happen:
you cannot have any process that fails to conserve energy. To say the same thing another way:
if something is prohibited by the energy-conservation law, the prohibition is absolute, whereas if
something is permitted by the energy-conservation law, the permission is conditional, conditioned on
compliance with all the other laws of physics. In particular, as discussed in section 9.2, if you want
to transfer energy from the �collective� modes of a rapidly-spinning �ywheel to the other modes,
you have to comply with all the laws, not just conservation of energy. This includes conserving
angular momentum. It also includes complying with the second law of thermodynamics.

Let's be clear: The ability to do work implies energy, but the converse is not true. There are lots of
situations where energy cannot be used to do work, because of the second law of thermodynamics
or some other law.
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Heat
Engine

Hot Potato Cold Potato

Figure 1.2: Two Potatoes + Heat Engine
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Equating energy with doable work is just not correct. (In contrast, it might be OK to connect
energy with some previously-done work, as opposed to doable work. That is not always convenient
or helpful, but at least it doesn't contradict the second law of thermodynamics.)

Some people wonder whether the example given above (the two-potato engine) is invalid because
it involves closed systems, not interacting with the surrounding environment. Well, the example is
perfectly valid, but to clarify the point we can consider another example (due to Logan McCarty):

#1: Consider a system consisting of a room-
temperature potato, a cold potato, and a tiny
heat engine. This system has some energy and
some ability to do work.

#2: Contrast that with a system that is just
the same, but except that it has two room-
temperature potatoes.

The second system has more energy but less ability to do work in the ordinary room-temperature
environment.

In some impractical theoretical sense, you might be able to de�ne the energy of a system as the
amount of work the system would be able to do if it were in contact with an unlimited heat-sink
at low temperature (arbitrarily close to absolute zero). That's quite impractical because no such
heat-sink is available. If it were available, many of the basic ideas of thermodynamics would become
irrelevant.

As yet another example, consider the system shown in �gure 1.3. The boundary of the overall
�system� is shown as a heavy black line. The system is thermally insulated from its surroundings.
The system contains a battery (outlined with a red dashed line) a motor, and a switch. Internal
to the battery is a small series resistance R1 and a large shunt resistance R2. The motor drives a
thermally-insulated shaft, so that the system can do mechanical work on its surroundings.

By closing the switch, we can get the system
to perform work on its surroundings by means
of the shaft.

On the other hand, if we just wait a moder-
ately long time, the leakage resistor R2 will
discharge the battery. This does not change
the system's energy (i.e. the energy within the
boundary of the system) . . . but it greatly de-
creases the capacity to do work.

This can be seen as analogous to the NMR τ2 process. An analogous mechanical system is discussed
in section 11.5.5. All these examples share a common feature, namely a change in entropy with no
change in energy.

To remove any vestige of ambiguity, imagine that the system was initially far below ambient tem-
perature, so that the Joule heating in the resistor brings the system closer to ambient temperature.
See reference 11 for Joule's classic paper on electrical heating.

To repeat: In real-world situations, energy is not the same as �available energy� i.e. the capacity to
do work.

What's worse, any measure of �available� energy is not a function of state. Consider again the two-
potato system shown in �gure 1.2. Suppose you know the state of the left-side potato, including its
energy E1, its temperature T1, its entropy S1, its mass m1, its volume V1, its free energy F1, and its
free enthalpy G1. That all makes sense so far, because those are all functions of state, determined
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R1

R2

Figure 1.3: Capacity to do Work
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by the state of that potato by itself. Alas you don't know what fraction of that potato's energy
should be considered thermodynamically �available� energy, and you can't �gure it out using only
the properties of that potato. In order to �gure it out, you would need to know the properties of
the other potato as well.

For a homogenous subsystem,
loosely in contact with the environment,

its energy is a function of its state.
Its �available energy� is not.

Every beginner wishes for a state function that speci�es the �available energy� content of a system.
Alas, wishing does not make it so. No such state function can possibly exist.

(When we say two systems are �loosely in contact� we mean they are neither completely isolated
nor completely in equilibrium.)

Also keep in mind that the law of conservation of energy applies to the real energy, not to the
�available� energy.

Energy obeys a strict local conservation law.
�Available energy� does not.

Beware that the misde�nition of energy in terms of �ability to do work� is extremely common.
This misde�nition is all the more pernicious because it works OK in simple non-thermodynamical
situations, as discussed in section 1.7.1. Many people learn this misde�nition, and some of them
have a hard time unlearning it.
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1.8 Mutations

1.8.1 Energy

In physics, there is only one meaning for the term energy. For all practical purposes, there is
complete agreement among physicists as to what energy is. This stands in dramatic contrast to
other terms � such as �heat� � that have a confusing multiplicity of technical meanings even within
physics; see section 17.1 for more discussion of �heat�, and see chapter 20 for a more general discussion
of ambiguous terminology.

The two main meanings of �energy� are di�erent enough so that the di�erence is important, yet
similar enough to be highly deceptive.

The physics energy is conserved. It is con-
served automatically, strictly, and locally, in
accordance with equation 1.1.

In ordinary conversation, when people speak
of �energy� � even in a somewhat-technical
sense � they are usually talking about some
kind of �available energy� or �useful energy�
or something like that. This is an important
concept, but it is very hard to quantify, and
it is de�nitely not equal to the physics energy.
Examples include the �Department of Energy�
or the �energy industry�.

For the next level of detail on this, see section 20.3.

1.8.2 Conservation

In physics, there is almost5 only one de�nition of conservation. However, we run into trouble when
we consider the plebeian meanings.

The two main meanings of �conservation� are di�erent enough so that the di�erence is important,
yet similar enough to be highly deceptive.

The main physics de�nition of conservation is
synonymous with continuity of �ow, as de�ned
in equation 1.1. See reference 6.

The plebeian notion of �conservation� means
saving, preserving, not wasting, not dissipat-
ing. It de�nitely is not equivalent to continu-
ity of �ow. Example: �conservation� of endan-
gered wildlife.

For the next level of detail on this, see section 20.4.

1.8.3 Energy Conservation

Combining the two previous ideas, we see that the simple phrase �energy conservation� is practically
begging to be misunderstood. You could su�er from two profound misconceptions in a simple two-
word phrase.

5Beware: You might think the adjective �conservative� refers to the same idea as the noun �conservation�, and this
is almost true, with one exception, as discussed in section 20.4.
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1.8.4 Internal Energy

A great many thermodynamics books emphasize the so-called �internal energy�, denoted U or Ein.
I have never found it necessary to make sense of this. Instead I reformulate everything in terms of
the plain old energy E and proceed from there. For details, see section 7.7.

1.9 Range of Validity

The law of conservation of energy has been tested and found 100% reliable for all practical purposes,
and quite a broad range of impractical purposes besides.

Of course everything has limits. It is not necessary for you to have a very precise notion of the limits
of validity of the law of conservation of energy; that is a topic of interest only to a small community
of specialists. The purpose of this section is merely to indicate, in general terms, just how remote
the limits are from everyday life.

If you aren't interested in details, feel free to skip this section.

Here's the situation:
• For all practical purposes, energy is strictly and locally conserved.
• For all purposes (practical or not), whenever the classical (Newtonian) theory of gravity is an
adequate approximation, energy is strictly and locally conserved.
• In special relativity, the [energy,momentum] 4-vector is locally conserved. In any particular
frame, each component of the [energy,momentum] 4-vector is separately conserved, and energy
is just the timelike component. See reference 6 for a way to visualize continuity of �ow in
spacetime, in terms of the continuity of world-lines.
• Even in general relativity, even when the Newtonian theory does not apply, there is a well-
de�ned notion of conservation of energy, provided we restrict attention to regions of spacetime
that are �at or at least asymptotically �at as you go far away. You need to express ��ow�
in terms of the covariant divergence Tµν;ν not the coordinate divergence Tµν,ν , as discussed
in reference 12. That isn't a special property of energy, but rather a general property of the
conservation idea: continuity of �ow needs to be expressed in terms of the covariant derivative.
• However, if we take a completely unrestricted view of general relativity, the notion of conser-
vation of energy is problematic. For starters, if the universe has the topology of a torus (such
as a donut, or an apple with a wormhole in it), the notion of �energy inside a boundary� is
ill-de�ned, because the fundamental notion of �inside� is ill-de�ned for any contour that winds
through the hole or around the hole, i.e. is not topologically reducible to a point.



Chapter 2

Entropy

2.1 Paraconservation

The second law of thermodynamics states that entropy obeys a local paraconservation law. That
is, entropy is �nearly� conserved. By that we mean something very speci�c:

change in entropy ≥ net �ow of entropy
(inside boundary) (inward minus outward across boundary)

(2.1)

The structure and meaning of equation 2.1 is very similar to equation 1.1, except that it has an
inequality instead of an equality. It tells us that the entropy in a given region can increase, but it
cannot decrease except by �owing into adjacent regions.

As usual, the local law implies a corresponding global law, but not conversely; see the discussion at
the end of section 1.2.

Entropy is absolutely essential to thermodynamics . . . just as essential as energy. The relationship
between energy and entropy is diagrammed in �gure 1. Section 0.1 discusses the relationship between
basic mechanics, information theory, and thermodynamics. Some relevant applications of entropy
are discussed in chapter 22.

You can't do thermodynamics without entropy.

Entropy is de�ned and quanti�ed in terms of probability, as discussed in section 2.6. In some
situations, there are important connections between entropy, energy, and temperature . . . but these
do not de�ne entropy; see section 2.5.7 for more on this. The �rst law (energy) and the second law
(entropy) are logically independent.

If the second law is to mean anything at all, entropy must be well-de�ned always. Otherwise we
could create loopholes in the second law by passing through states where entropy was not de�ned.

Entropy is related to information. Essentially it is the opposite of information, as we see from the
following scenarios.
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2.2 Scenario: Cup Game

As shown in �gure 2.1, suppose we have three blocks and �ve cups on a table.

10 2 3 4

Figure 2.1: The Cup Game

To illustrate the idea of entropy, let's play the following game: Phase 0 is the preliminary phase of
the game. During phase 0, the dealer hides the blocks under the cups however he likes (randomly
or otherwise) and optionally makes an announcement about what he has done. As suggested in the
�gure, the cups are transparent, so the dealer knows the exact microstate at all times. However,
the whole array is behind a screen, so the rest of us don't know anything except what we're told.

Phase 1 is the main phase of the game. During phase 1, we (the players) strive to �gure out where
the blocks are. We cannot see what's inside the cups, but we are allowed to ask yes/no questions,
whereupon the dealer will answer. Our score in the game is determined by the number of questions
we ask; each question contributes one bit to our score. The goal is to locate all the blocks using the
smallest number of questions.

Since there are �ve cups and three blocks, we can encode the location of all the blocks using a
three-symbol string, such as 122, where the �rst symbol identi�es the cup containing the red block,
the second symbol identi�es the cup containing the black block, and the third symbol identi�es the
cup containing the blue block. Each symbol is in the range zero through four inclusive, so we can
think of such strings as base-5 numerals, three digits long. There are 53 = 125 such numerals. (More
generally, in a version where there are N cups and B blocks, there are NB possible microstates.)

1. Example: During phase 0, the dealer announces that all three blocks are under cup #4. Our
score is zero; we don't have to ask any questions.

2. Example: During phase 0, the dealer places all the blocks randomly and doesn't announce
anything. If we are smart, our score S is at worst 7 bits (and usually exactly 7 bits). That's
because when S = 7 we have 2S = 27 = 128, which is slightly larger than the number of
possible states. In the expression 2S , the base is 2 because we are asking questions with 2
possible answers. Our minimax strategy is simple: we write down all the states in order, from
000 through 444 (base 5) inclusive, and ask questions of the following form: Is the actual state
in the �rst half of the list? Is it in the �rst or third quarter? Is it in an odd-numbered eighth?
After at most seven questions, we know exactly where the correct answer sits in the list.

3. Example: During phase 0, the dealer hides the blocks at random, then makes an announcement
that provides partial information, namely that cup #4 happens to be empty. Then (if we follow
a sensible minimax strategy) our score will be six bits, since 26 = 64 = 43.

To calculate what our score will be, we don't need to know anything about energy; all we have to
do is count states (speci�cally, the number of accessible microstates). States are states; they are
not energy states.
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Super�cially speaking, if you wish to make this game seem more thermodynamical, you
can assume that the table is horizontal, and the blocks are non-interacting, so that all
possible con�gurations have the same energy. But really, it is easier to just say that over
a wide range of energies, energy has got nothing to do with this game.

The point of all this is that we can measure the entropy of a given situation according to the
number of questions we have to ask to �nish the game, starting from the given situation. Each
yes/no question contributes one bit to the entropy, assuming the question is well designed. This
measurement is indirect, almost backwards, but it works. It is like measuring the volume of an
odd-shaped container by quantifying the amount of water it takes to �ll it.

The central, crucial idea of entropy is that it measures how much we don't know about the situation.
Entropy is not knowing.

2.3 Scenario: Card Game

Here is a card game that illustrates the same points as the cup game. The only important di�erence
is the size of the state space: roughly eighty million million million million million million million
million million million million states, rather than 125 states. That is, when we move from 5 cups
to 52 cards, the state space gets bigger by a factor of 1066 or so.

Consider a deck of 52 playing cards. By re-ordering the deck, it is possible to create a large number
(52 factorial) of di�erent con�gurations.

Technical note: There is a separation of variables. We choose to consider only the part of the system that

describes the ordering of the cards. We assume these variables are statistically independent of other variables,

such as the spatial position and orientation of the cards. This allows us to understand the entropy of this

subsystem separately from the rest of the system, for reasons discussed in section 2.8.

Also, unless otherwise stated, we assume the number of cards is �xed at 52 ... although the same principles apply

to smaller or larger decks, and sometimes in an introductory situation it is easier to see what is going on if you

work with only 8 or 10 cards.

Phase 0 is the preliminary phase of the game. During phase 0, the dealer prepares the deck in a
con�guration of his choosing, using any combination of deterministic and/or random procedures.
He then sets the deck on the table. Finally he makes zero or more announcements about the
con�guration of the deck.

Phase 1 is the main phase of the game. During phase 1, we (the players) strive to fully describe the
con�guration, i.e. to determine which card is on top, which card is second, et cetera. We cannot look
at the cards, but we can ask yes/no questions, whereupon the dealer will answer. Each question
contributes one bit to our score. Our objective is to ascertain the complete con�guration using the
smallest number of questions. As we shall see, our score is a measure of the entropy of the game.

Note the contrast between microstate and macrostate:

One con�guration of the card deck corre-
sponds to one microstate. The microstate
does not change during phase 1.

The macrostate is the ensemble of microstates
consistent with what we know about the situa-
tion. This changes during phase 1. It changes
whenever we obtain more information about
the situation.
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(1) Example: The dealer puts the deck in some well-known reference con�guration, and announces
that fact. Then we don't need to do anything, and our score is zero � a perfect score.

(2) Example: The dealer puts the deck in the reverse of the reference con�guration, and announces
that fact. We can easily tell which card is where. We don't need to ask any questions, so our
score is again zero.

(3) Example: The dealer starts with the reference con�guration, then �cuts� the deck; that is,
he chooses at random one of the 52 possible full-length cyclic permutations, and applies that
permutation to the cards. He announces what procedure he has followed, but nothing more.

At this point we know that the deck is in some microstate, and the microstate is not changing
. . . but we don't know which microstate. It would be foolish to pretend we know something
we don't. If we're going to bet on what happens next, we should calculate our odds based on
the ensemble of possibilities, i.e. based on the macrostate.

Our best strategy is as follows: By asking six well-chosen questions, we can �nd out which
card is on top. We can then easily describe every detail of the con�guration. Our score is six
bits.

(4) Example: The dealer starts with the standard con�guration, cuts it, and then cuts it again.
The second cut changes the microstate, but does not change the macrostate. Cutting the deck
is, so far as the macrostate is concerned, idempotent; that is, N cuts are the same as one. It
still takes us six questions to �gure out the full con�guration.

This illustrates that the entropy is a property of the ensemble, i.e. a property of the macrostate,
not a property of the microstate. Cutting the deck the second time changed the microstate but
did not change the macrostate. See section 2.4 and especially section 2.7.1 for more discussion
of this point.

(5) Example: Same as above, but in addition to announcing the procedure the dealer also an-
nounces what card is on top. Our score is zero.

(6) Example: The dealer shu�es the deck thoroughly. He announces that, and only that. The deck
could be in any of the 52 factorial di�erent con�gurations. If we follow a sensible (minimax)
strategy, our score will be 226 bits, since the base-2 logarithm of 52 factorial is approximately
225.581. Since we can't ask fractional questions, we round up to 226.

(7) Example: The dealer announces that it is equally likely that he has either shu�ed the deck
completely or left it in the reference con�guration. Then our score on average is only 114
bits, if we use the following strategy: we start by asking whether the deck is already in the
reference con�guration. That costs us one question, but half of the time it's the only question
we'll need. The other half of the time, we'll need 226 more questions to unshu�e the shu�ed
deck. The average of 1 and 227 is 114.

Note that we are not depending on any special properties of the �reference� state. For simplicity, we
could agree that our reference state is the factory-standard state (cards ordered according to suit
and number), but any other agreed-upon state would work just as well. If we know deck is in Moe's
favorite state, we can easily rearrange it into Joe's favorite state. Rearranging it from one known
state to to another known state does not involve any entropy.
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2.4 Peeking

As a variation on the game described in section 2.3, consider what happens if, at the beginning of
phase 1, we are allowed to peek at one of the cards.

In the case of the standard deck, example 1, this doesn't tell us anything we didn't already know,
so the entropy remains unchanged.

In the case of the cut deck, example 3, this lowers our score by six bits, from six to zero.

In the case of the shu�ed deck, example 6, this lowers our score by six bits, from 226 to 220.

This is worth mentioning because peeking can (and usually does) change the macrostate, but it
cannot change the microstate. This stands in contrast to cutting an already-cut deck or shu�ing
an already-shu�ed deck, which changes the microstate but does not change the macrostate. This
is a multi-way contrast, which we can summarize as follows:

Macrostate Changes Macrostate Doesn't Change

Microstate Usually Changes: Shu�ing a deck that
was not already shu�ed.

Shu�ing an
already-shu�ed deck, or
cutting an already-cut
deck.

Microstate Doesn't Change: Peeking at something
that was not already
known.

Doing nothing.

This gives us a clearer understanding of what the macrostate is. Essentially the macrostate is
the ensemble, in the sense that specifying the ensemble speci�es the macrostate and vice versa.
Equivalently, we can say that the macrostate is a probability distribution over microstates.

In the simple case where all the microstates are equiprobable, the ensemble is simply the set of all
microstates that are consistent with what you know about the system.

In a poker game, there is only one deck of cards. Suppose player Alice has peeked but player Bob
has not. Alice and Bob will then play according to very di�erent strategies. They will use di�erent
ensembles � di�erent macrostates � when calculating their next move. The deck is the same for
both, but the macrostate is not. This idea is discussed in more detail in connection withf �gure 2.4
in section 2.7.2.

We see that the physical state of the deck does not provide a complete description of the macrostate.
The players' knowledge of the situation is also relevant, since it a�ects how they calculate the
probabilities. Remember, as discussed in item 4 and in section 2.7.1, entropy is a property of
the macrostate, not a property of the microstate, so peeking can � and usually does � change the
entropy.

To repeat: Peeking does not change the microstate, but it can have a large e�ect on the macrostate.
If you don't think peeking changes the ensemble, I look forward to playing poker with you!
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2.5 Discussion

2.5.1 Connecting Models to Reality

The models we have been discussing are in some ways remarkably faithful to reality. In some
ways they are not merely models but bona-�de examples of entropy. Even so, the entropy in one
situation might or might not convey a good understanding of entropy in another situation. Consider
the following contrasts:

Small Model Systems More Generally

We have been considering systems with only
a few bits of entropy (the cup game in sec-
tion 2.2) or a few hundred bits (the card deck
in section 2.3).

In the physics lab or the chemistry lab, one
might be dealing with 100 moles of bits. A
factor of 6×1023 can have signi�cant practical
consequences.

Entropy is de�ned in terms of probability. En-
tropy is not de�ned in terms of energy, nor vice
versa. There are plenty of situations where the
second law is important, even though the tem-
perature is irrelevant, unknown, and/or unde-
�nable.

In some (albeit not all) practical situations
there is a big emphasis on the relationship be-
tween energy and temperature, which is con-
trolled by entropy.

There are some experiments where it is possi-
ble to evaluate the entropy two ways, namely
by counting the bits and by measuring the
energy and temperature. The two ways al-
ways agree. Furthermore, the second law al-
lows us to compare the entropy of one object
with the entropy of another, which provides
strong evidence that all the entropy in the
world conforms to the faithful workhorse ex-
pression, namely equation 2.2, as we shall see
in section 2.6.

We have been asking yes/no questions. Bi-
nary questions are required by the rules of the
simple games.

Other games may allow more general types of
questions. For example, consider the three-
way measurements in reference 13.

The answer to each yes/no question gives us
one bit of information, if the two answers (yes
and no) are equally likely.

If the two answers are not equally likely, the
information will be less.

So far, we have only considered scenarios
where all accessible microstates are equally
probable. In such scenarios, the entropy is
the logarithm of the number of accessible mi-
crostates.

If the accessible microstates are not equally
probable, we need a more sophisticated notion
of entropy, as discussed in section 2.6.
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Remark on terminology: Any microstates that
have appreciable probability are classi�ed as
accessible. In contrast, microstates that have
negligible probability are classi�ed as inacces-
sible. Their probability doesn't have to be
zero, just small enough that it can be ignored
without causing too much damage.

Thermodynamics is a very practical subject.
It is much more common for some probability
to be negligible than to be strictly zero.

In order to identify the correct microstate with
con�dence, we need to ask a su�cient number
of questions, so that the information contained
in the answers is greater than or equal to the
entropy of the game.

2.5.2 States and Probabilities

If you want to understand entropy, you must �rst have at least a modest understanding of basic
probability. It's a prerequisite, and there's no way of getting around it. Anyone who knows about
probability can learn about entropy. Anyone who doesn't, can't.

Our notion of entropy is completely dependent on having a notion of microstate, and on having a
procedure for assigning a probability to each microstate.

In some special cases, the procedure involves little more than counting the accessible (aka
�allowed�) microstates, as discussed in section 9.6. This type of counting corresponds to
a particularly simple, �at probability distribution, which may be a satisfactory approx-
imation in special cases, but is de�nitely not adequate for the general case.

For simplicity, the cup game and the card game were arranged to embody a clear notion of mi-
crostate. That is, the rules of the game speci�ed what situations would be considered the �same�
microstate and what would be considered �di�erent� microstates. Note the contrast:

Our discrete games provide a model that is di-
rectly and precisely applicable to physical sys-
tems where the physics is naturally discrete,
such as systems involving only the nonclassi-
cal spin of elementary particles. An impor-
tant example is the demagnetization refriger-
ator discussed in section 11.10.

For systems involving continuous variables
such as position and momentum, counting the
states is somewhat trickier ... but it can be
done. The correct procedure is discussed in
section 12.3.

For additional discussion of the relevance of entropy, as applied to thermodynamics and beyond,
see chapter 22.
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2.5.3 Entropy is Not Knowing

The point of all this is that the �score� in these games is an example of entropy. Speci�cally: at
each point in the game, there are two numbers worth keeping track of: the number of questions we
have already asked, and the number of questions we must ask to �nish the game. The latter is what
we call the the entropy of the situation at that point.

Entropy is not knowing.
Entropy measures how much is not known about the situation.

Remember that the macrostate is the ensemble of microstates. In the ensemble, probabilities are
assigned taking into account what the observer knows about the situation. The entropy is a property
of the macrostate.

At each point during the game, the entropy is a property of the macrostate, not of the microstate.
The system must be in �some� microstate, but generally we don't know which microstate, so all our
decisions must be based on the macrostate.

The value any given observer assigns to the entropy depends on what that observer knows about
the situation, not what the dealer knows, or what anybody else knows. This makes the entropy
somewhat context-dependent. Indeed, it is somewhat subjective. Some people �nd this irksome or
even shocking, but it is real physics. For a discussion of context-dependent entropy, see section 12.8.

2.5.4 Entropy versus Energy

Note that entropy has been de�ned without reference to temperature and without reference to heat.
Room temperature is equivalent to zero temperature for purposes of the cup game and the card
game. Arguably, in theory, there is �some� chance that thermal agitation will cause two of the cards
to spontaneously hop up and exchange places during the game, but that is really, really negligible.

Non-experts often try to de�ne entropy in terms of energy. This is a mistake. To calculate the
entropy, I don't need to know anything about energy; all I need to know is the probability of each
relevant state. See section 2.6 for details on this.

States are states;
they are not energy states.

Entropy is not de�ned in terms of energy, nor vice versa.

In some cases, there is a simple mapping that allows us to identify the ith microstate by means of
its energy Êi. It is often convenient to exploit this mapping when it exists, but it does not always
exist.

2.5.5 Entropy versus Disorder

In pop culture, entropy is often associated with disorder. There are even some textbooks that try to
explain entropy in terms of disorder. This is not a good idea. It is all the more disruptive because
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it is in some sense half true, which means it might pass super�cial scrutiny. However, science is not
based on half-truths.

Small disorder generally implies small entropy. However, the converse does not hold, not even
approximately; A highly-disordered system might or might not have high entropy. The spin echo
experiment (section 11.7) su�ces as an example of a highly disordered macrostate with relatively
low entropy.

Before we go any farther, we should emphasize � again � that entropy is a property of the macrostate,
not of the microstate. In contrast, to the extent that �disorder� has any de�nite meaning at all, it is
a property of the microstate. Therefore, whatever the �disorder� is measuring, it isn't entropy. (A
similar microstate versus macrostate argument applies to the �energy dispersal� model of entropy, as
discussed in section 9.8.) As a consequence, the usual textbook illustration � contrasting snapshots
of orderly and disorderly scenes � cannot be directly interpreted in terms of entropy. To get any
scrap of value out of such an illustration, the reader must make a sophisticated leap:

The disorderly snapshot must be interpreted
as representative of an ensemble with a
very great number of similarly-disorderly mi-
crostates. The ensemble of disorderly mi-
crostates has high entropy. This is a property
of the ensemble, not of the depicted microstate
or any other microstate.

The orderly snapshot must be interpreted
as representative of a very small ensemble,
namely the ensemble of similarly-orderly mi-
crostates. This small ensemble has a small
entropy. Again, entropy is a property of the
ensemble, not of any particular microstate (ex-
cept in the extreme case where there is only
one microstate in the ensemble, and therefore
zero entropy).

To repeat: Entropy is de�ned as a weighted average over all microstates. Asking about the entropy
of a particular microstate (disordered or otherwise) is asking the wrong question. If you know what
microstate the system is in, the entropy is zero. Guaranteed.

Note the following contrast:
Entropy is a property of the macrostate. It is
de�ned as an ensemble average.

Disorder, to the extent it can be de�ned at all,
is a property of the microstate. (You might be
better o� focusing on the surprisal rather than
the disorder, as discussed in section 2.7.1.)

The number of orderly microstates is very small compared to the number of disorderly microstates.
That's because when you say the system is �ordered� you are placing constraints on it. Therefore if
you know that the system is in one of those orderly microstates, you know the entropy cannot be
very large.

The converse does not hold. If you know that the system is in some disorderly microstate, you
do not know that the entropy is large. Indeed, if you know that the system is in some particular

disorderly microstate, the entropy is zero. (This is a corollary of the more general proposition that
if you know what microstate the system is in, the entropy is zero. it doesn't matter whether that
state �looks� disorderly or not.)

Furthermore, there are additional reasons why the typical text-book illustration of a messy dorm
room is not a good model of entropy. For starters, it provides no easy way to de�ne and delimit
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the states. Even if we stipulate that the tidy state is unique, we still don't know how many untidy
states there are. We don't know to what extent a shirt on the �oor �here� is di�erent from a shirt
on the �oor �there�. Since we don't know how many di�erent disorderly states there are, we can't
quantify the entropy. (In contrast the games in section 2.2 and section 2.3 included a clear rule for
de�ning and delimiting the states.)

Examples of low entropy and relatively high disorder include, in order of increasing complexity:

1. Quantum mechanical zero-point motion of a particle, such as the electron in a hydrogen
atom. The electron is spread out over a nonzero area in phase space. It is spread in a random,
disorderly way. However, the electron con�guration is in a single, known quantum state, so it
has zero entropy.

2. Five coins in a known microstate.

Technical note: There is a separation of variables, analogous to the separation described in section 2.3. We

consider only the part of the system that describes whether the coins are in the �heads� or �tails� state. We

assume this subsystem is statistically independent of the other variables such as the position of the coins,

rotation in the plane, et cetera. This means we can understand the entropy of this subsystem separately

from the rest of the system, for reasons discussed in section 2.8.

Randomize the coins by shaking. The entropy at this point is �ve bits. If you open the
box and peek at the coins, the entropy goes to zero. This makes it clear that entropy is a
property of the ensemble, not a property of the microstate. Peeking does not change the
disorder. Peeking does not change the microstate. However, it can (and usually does) change
the entropy. This example has the pedagogical advantage that it is small enough that the
entire microstate-space can be explicitly displayed; there are only 32 = 25 microstates.

3. A deck of cards in a known microstate.

Ordinarily, a well-shu�ed deck of cards contains 225.581 bits of entropy, as discussed in
section 2.3. On the other hand, if you have peeked at all the cards after they were shu�ed,
the entropy is now zero, as discussed in section 2.4. Again, this makes it clear that entropy
is a property of the ensemble, not a property of the microstate. Peeking does not change the
disorder. Peeking does not change the microstate. However, it can (and usually does) change
the entropy.

Many tricks of the card-sharp and the �magic show� illusionist depend on a deck of cards
arranged to have much disorder but little entropy.

4. In cryptography, suppose we have a brand-new one time pad containing a million random
hex digits. From our adversary's point of view, this embodies 4,000,000 bits of entropy. If,
however, the adversary manages to make a copy of our one time pad, then the entropy of our
pad, from his point of view, goes to zero. All of the complexity is still there, all of the disorder
is still there, but the entropy is gone.

5. The spin echo experiment involves a highly complicated state that has low entropy. See
section 11.7. This is a powerful example, because it involve a macroscopic amount of entropy.
For a reasonable-sized sample, the total entropy could be on the order of 1 joule per kelvin,
i.e. on the order of 1023 bits, not just a few bits or a few hundred bits).
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2.5.6 False Dichotomy, or Not

There is a long-running holy war between those who try to de�ne entropy in terms of energy, and
those who try to de�ne it in terms of disorder. This is based on a grotesquely false dichotomy: If
entropy-as-energy is imperfect, then entropy-as-disorder �must� be perfect . . . or vice versa. I don't
know whether to laugh or cry when I see this. Actually, both versions are highly imperfect. You
might get away with using one or the other in selected situations, but not in general.

The right way to de�ne entropy is in terms of probability, as we now discuss. (The various other
notions can then be understood as special cases and/or approximations to the true entropy.)

2.5.7 dQ, or Not

We do not de�ne entropy via dS = dQ/T or anything like that, for multiple reasons. For one thing,
as discussed in section 8.2, there is no state-function Q such that dQ = TdS (with perhaps trivial
exceptions). Even more importantly, we need entropy to be well de�ned even when the temperature
is unknown, unde�ned, irrelevant, or zero.

� In the cup game (section 2.2) and in the card game (section 2.3), the temperature is irrelevant
and e�ectively zero.

� In the three-state system with a population inversion (section 11.4), the temperature is unde-
�ned and unde�nable.

2.6 Quantifying Entropy

The idea of entropy set forth in the preceding examples can be quanti�ed quite precisely. Entropy
is de�ned in terms of probability.1 For any classical probability distribution P , we can de�ne its
entropy as:

S[P ] :=
∑
i

Pi log(1/Pi) (2.2)

where the sum runs over all possible outcomes and Pi is the probability of the ith outcome. Here
we write S[P ] to make it explicit that S is a functional that depends on P . Beware that people
commonly write simply S, leaving unstated the crucial dependence on P .

Equation 2.2 is the faithful workhorse formula for calculating the entropy. It ranks slightly below
Equation 27.6, which is a more general way of expressing the same idea. It ranks above various
less-general formulas that may be useful under more-restrictive conditions (as in section 9.6 for
example). See chapter 22 and chapter 27 for more discussion of the relevance and range of validity
of this expression.

1Usually classical probability su�ces, as discussed in section 2.6, but if you really want the most general formu-
lation, the quantum statistics version is discussed in chapter 27.
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Subject to mild restrictions, equation 2.2 applies to physics as follows: Suppose the system is in
a given macrostate, and the macrostate is well described by a distribution P , where Pi is the
probability that the system is in the ith microstate. Then we can say S is the entropy �of the
system�.

Expressions of this form date back to Boltzmann (reference 14 and reference 15) and
to Gibbs (reference 16). The range of applicability was greatly expanded by Shannon
(reference 17). See also equation 27.6.

Beware that uncritical reliance on �the� observed microstate-by-microstate probabilities does not
always give a full description of the macrostate, because the Pi might be correlated with something
else (as in section 11.7) or amongst themselves (as in chapter 27). In such cases the unconditional
entropy S[P ] will be larger than the conditional entropy S[P |Q], and you have to decide which
is/are physically relevant.

In the games discussed above, it was convenient to measure entropy in bits, because we were asking
yes/no questions. Other units are possible, as discussed in section 9.5.

Figure 2.2 shows the contribution to the entropy from one term in the sum in equation 2.2. Its
maximum value is approximately 0.53 bits, attained when P (H) = 1/e.
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Figure 2.2: - P (H) log2 P (H) � One Term in the Sum

Let us now restrict attention to a system that only has two microstates, such as a coin toss, so there
will be exactly two terms in the sum. That means we can identify P (H) as the probability of the the
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�heads� state. The other state, the �tails� state, necessarily has probability P (T) ≡ 1 − P (H) and
that gives us the other term in the sum, as shown by the red curve in �gure 2.3. The total entropy
is shown by the black curve in �gure 2.3. For a two-state system, it is necessarily a symmetric
function of P (H). Its maximum value is 1 bit, attained when P (H) = P (T) = 1/2.
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Figure 2.3: Total Entropy � Two-State System

The base of the logarithm in equation 2.2 is chosen according to what units you wish to use for
measuring entropy. Alternatively, as discussed in section 9.5, you can �x the base of the logarithm
and stick in a prefactor that has some numerical value and some units:

S = −k
∑
i

Pi ln Pi (2.3)

Entropy itself is conventionally represented by big S. Meanwhile, molar entropy is conventionally
represented by small s and is the corresponding intensive property.

People commonly think of entropy as being an extensive quantity. This is true to an excellent ap-
proximation in typical situations, but there are occasional exceptions. Some exceptions are discussed
in section 12.8 and especially section 12.11.

Although it is often convenient to measure molar entropy in units of J/K/mol, other units are
allowed, for the same reason that mileage is called mileage even when it is measured in metric units.
In particular, sometimes additional insight is gained by measuring molar entropy in units of bits
per particle. See section 9.5 for more discussion of units.
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When discussing a chemical reaction using a formula such as

2O3 → 3O2 + ∆s (2.4)

it is common to speak of �the entropy of the reaction� but properly it is �the molar entropy of the
reaction� and should be written ∆s or ∆S/N (not ∆S). All the other terms in the formula are
intensive, so the entropy-related term must be intensive also.

Of particular interest is the standard molar entropy, s◦ i.e. S◦/N , measured at standard temperature
and pressure. The entropy of a gas is strongly dependent on density, as mentioned in section 12.3.

2.7 Microstate versus Macrostate

2.7.1 Surprisal

If we have a system characterized by a probability distribution P , the surprisal of the ith microstate
is given by

$i := log(1/Pi) (2.5)

By comparing this with equation 2.2, it is easy to see that the entropy is simply the ensemble
average of the surprisal. In particular, it is the expectation value of the surprisal. (See equation 27.7
for the fully quantum-mechanical generalization of this idea.)

2.7.2 Contrasts and Consequences

Note the following contrast: For any given microstate i and any given distribution P :

Surprisal is a property of the microstate i. Entropy is a property of the distribution P as
a whole. It is de�ned as an ensemble average.

Entropy is a property of the macrostate
not of the microstate.

A manifestation of this can be seen in item 4.

When you hear that entropy is a property of �the� distribution, the word �the� should not receive
undue emphasis. The complete assertion says that for any given distribution the entropy is a
property of the distribution, and the second half must not be taken out of context. There are
lots of di�erent distributions in this world, and you should not think in terms of �the� one true
distribution. Indeed, it is common to deal with two or more distributions at the same time.

Given just a microstate, you do not know what distribution it was drawn from. For example,
consider the point at the center of the small black circle in �gure 2.4. The point itself has no
uncertainty, no width, no error bars, and no entropy. The point could have been drawn from the
red distribution or the blue distribution; you have no way of knowing. The entropy of the red
distribution is clearly di�erent from the entropy of the blue distribution.
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In a card came such as poker or go �sh, it is common for di�erent players to use di�erent macrostates
(di�erent distributions), even though the microstate (the objective state of the cards) is the same
for all, as discussed in section 2.4. Ditto for the game of Clue, or any other game of imperfect
information. Similarly, in cryptography the sender and the attacker virtually always use di�erent
distributions over plaintexts and keys. The microstate is known to the sender, whereas the attacker
presumably has to guess. The microstate is the same for both, but the macrostate is di�erent.
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Figure 2.4: One Point, Two Distributions

Another obvious consequence of equation 2.5 is that entropy is not, by itself, the solution to all the
world's problems. Entropy measures a particular average property of the given distribution. It is
easy to �nd situations where other properties of the distribution are worth knowing. The mean, the
standard deviation, the entropy, various Rényi functionals, etc. are just a few of the many properties.
(Note that the Rényi functionals (one of which is just the entropy) can be de�ned even in situations
where the mean and standard deviation cannot, e.g. for a distribution over non-numerical symbols.)

For more about the terminology of state, microstate, and macrostate, see section 12.1.

2.8 Entropy of Independent Subsystems

Suppose we have subsystem 1 with a set of microstates {(i)} and subsystem 2 with a set of mi-
crostates {(j)}. Then in all generality, the microstates of the combined system are given by the
direct product of these two sets, namely

{(i)} × {(j)} = {(i, j)} (2.6)

where (i, j) is an ordered pair, which should be a familiar idea and a familiar notation. We use ×
to denote the Cartesian direct product.

We now restrict attention to the less-than-general case where the two subsystems are statistically
independent. That means that the probabilities are multiplicative:

R(i, j) = P (i)Q(j) (2.7)
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Let's evaluate the entropy of the combined system:
S[R] = −

∑
i,j R(i, j) log[R(i, j)]

= −
∑

i,j P (i)Q(j) log[P (i)Q(j)]

= −
∑

i,j P (i)Q(j) log[P (i)]−
∑

i,j P (i)Q(j) log[Q(j)]

= −
∑

j Q(j)
∑

i P (i) log[P (i)]−
∑

i P (i)
∑

j Q(j) log[Q(j)]

= S[P ] + S[Q]

(2.8)

where we have used the fact that the subsystem probabilities are normalized.

So we see that the entropy is additive whenever the probabilities are multiplicative, i.e. whenever
the probabilities are independent.



Chapter 3

Basic Concepts (Zeroth Law)

There are a bunch of basic notions that are often lumped together and called the zeroth law of
thermodynamics. These notions are incomparably less fundamental than the notion of energy (the
�rst law) and entropy (the second law), so despite its name, the zeroth law doesn't deserve priority.

Here are some oft-cited rules, and some comments on each.

We can divide the world into some number of
regions that are disjoint from each other.

If there are only two regions, some people like
to call one of them �the� system and call the
other �the� environment, but usually it is bet-
ter to consider all regions on an equal footing.
Regions are sometimes called systems, or sub-
systems, or zones, or parcels. They are some-
times called objects, especially when they are
relatively simple.

There is such a thing as thermal equilibrium. You must not assume that everything is in
thermal equilibrium. Thermodynamics and
indeed life itself depend on the fact that some
regions are out of equilibrium with other re-
gions.

There is such a thing as temperature. There are innumerable important examples of
systems that lack a well-de�ned temperature,
such as the three-state laser discussed in sec-
tion 11.4.

Whenever any two systems are in equilibrium
with each other, and they each have a well-
de�ned temperature, then the two tempera-
tures are the same. See section 10.1 and chap-
ter 23.

This is true and important. (To be precise, we
should say they have the same average temper-
ature, since there will be �uctuations, which
may be signi�cant for very small systems.)
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Equilibrium is transitive. That is, if A is in
equilibrium with B and B is in equilibrium
with C, then A is in equilibrium with C. See
chapter 23.

This not always true. To understand how it
sometimes goes wrong, we must keep in mind
that there are di�erent types of equilibrium. If
A equilibrates with B by exchange of electrons
and B equilibrates with C by exchange of ions,
interesting things can happen. In particular,
we can build a battery. When the battery is
sitting there open-circuited, all of the compo-
nents are essentially in equilibrium ... local
pairwise equilibrium ... but the two terminals
are not in equilibrium, as you will discover if
you wire up a load.

We can establish equilibrium within a sys-
tem, and equilibrium between selected pairs
of systems, without establishing equilibrium
between all systems.

This is an entirely nontrivial statement.
Sometimes it takes a good bit of engineering
to keep some pairs near equilibrium and other
pairs far from equilibrium. See section 11.11.

If/when we have established equilibrium
within a system, a few variables su�ce to en-
tirely describe the thermodynamic state (i.e.
macrostate) of the system.1 (See section 2.7
and section 12.1 for a discussion of microstate
versus macrostate.)

This is an entirely nontrivial statement, and
to make it useful you have to be cagey about
what variables you choose; for instance:

• Knowing the temperature and pressure
of a parcel of ice gives you more-or-less
a complete description of the thermody-
namic state of the ice.
• Knowing the temperature and pressure
of a parcel of liquid water gives you
more-or-less a complete description of
the thermodynamic state of the water.
• Meanwhile, in contrast, knowing
the temperature and pressure of an
ice/water mixture does not fully deter-
mine the thermodynamic state, because
you don't know what fraction is ice and
what fraction is water.

In addition to all these thermo-related concepts, we must also comply with all the �non-thermal�
laws of physics, including conservation of momentum, conservation of charge, et cetera. This is
discussed in chapter 5.



Chapter 4

Low-Temperature Entropy (Alleged
Third Law)

As mentioned in the introduction, one sometimes hears the assertion that the entropy of a system
must go to zero as the temperature goes to zero.

There is no theoretical basis for this assertion, so far as I know � just unsubstantiated opinion.

As for experimental evidence, I know of only one case where (if I work hard enough) I can make
this statement true, while there are innumerable cases where it is not true:

• There is such a thing as a spin glass. It is a solid, with a spin at every site. At low temperatures,
these spins are not lined up; they are highly disordered. And there is a large potential barrier
that prevents the spins from �ipping. So for all practical purposes, the entropy of these spins
is frozen in. The molar entropy involved is substantial, on the order of one J/K/mole. You
can calculate the amount of entropy based on measurements of the magnetic properties.

• A chunk of ordinary glass (e.g. window glass) has a considerable amount of frozen-in entropy,
due to the disorderly spatial arrangement of the glass molecules. That is, glass is not a perfect
crystal. Again, the molar entropy is quite substantial. It can be measured by X-ray scattering
and neutron scattering experiments.

• For that matter, it is proverbial that perfect crystals do not occur in nature. This is because
it is energetically more favorable for a crystal to grow at a dislocation. Furthermore, the
materials from which the crystal was grown will have chemical impurities, not to mention
a mixture of isotopes. So any real crystal will have frozen-in nonuniformities. The molar
entropy might be rather less than one J/K/mole, but it won't be zero.

• If I wanted to create a sample where the entropy went to zero in the limit of zero temperature, I
would proceed as follows: Start with a sample of helium. Cool it to some very low temperature.
The super�uid fraction is a single quantum state, so it has zero entropy. But the sample as
a whole still has nonzero entropy, because 3He is quite soluble in 4He (about 6% at zero
temperature), and there will always be some 3He around. To get rid of that, pump the sample
through a superleak, so the 3He is left behind. (Call it reverse osmosis if you like.) Repeat this
as a function of T . As T goes to zero, the super�uid fraction goes to 100% (i.e. the normal-�uid
fraction goes to 0%) so the entropy, as far as I know, would go to zero asymptotically.



4�2 Modern Thermodynamics

Note: It is hard to measure the low-temperature entropy by means of elementary thermal mea-
surements, because typically such measurements are insensitive to �spectator entropy� as discussed
in section 12.6. So for typical classical thermodynamic purposes, it doesn't matter whether the
entropy goes to zero or not.
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The Rest of Physics, Chemistry, etc.

The previous sections have set forth the conventional laws of thermodynamics, cleaned up and
modernized as much as possible.

At this point you may be asking, why do these laws call attention to conservation of energy, but not
the other great conservation laws (momentum, electrical charge, lepton number, et cetera)? And for
that matter, what about all the other physical laws, the ones that aren't expressed as conservation
laws? Well, you're right, there are some quite silly inconsistencies here.

The fact of the matter is that in order to do thermo, you need to import a great deal of classical
mechanics. You can think of this as the minus-oneth law of thermodynamics.
• This includes Newton's third law (which is tantamount to conservation of momentum) and
Newton's second law, with the associated ideas of force, mass, acceleration, et cetera. Note
that the concept of pseudowork, which shows up in some thermodynamic discussions, is more
closely related to the momentum and kinetic energy than it is to the total energy.
• In particular, this includes the notion of conservation of energy, which is a well-established part
of nonthermal classical mechanics. From this we conclude that the �rst law of thermodynamics
is redundant and should, logically, be left unsaid (although it remains true and important).
• If you are going to apply thermodynamics to a chemical system, you need to import the
fundamental notions of chemistry. This includes the notion that atoms exist and are unchanged
by ordinary chemical reactions (which merely de�nes what we mean by a �chemical� as opposed
to �nuclear� reaction). This implies about a hundred additional approximate1 conservation
laws, one for each type of atom. The familiar practice of �balancing the reaction equation� is
nothing more than an application of these atom-conservation laws.
• If you are going to apply thermodynamics to an electrical or magnetic system, you need to
import the laws of electromagnetism, i.e. the Maxwell equations.
• The Maxwell equations imply conservation of charge. This is essential to chemistry, in the
context of redox reactions. It means you have to balance the reaction equation with respect to
charge. This is in addition to the requirement to balance the reaction equation with respect
to atoms.

1Subject to the approximation that nuclear reactions can be neglected.



5�2 Modern Thermodynamics

Sometimes the process of importing a classical idea into the world of thermodynamics is trivial, and
sometimes not. For example:

The law of conservation of momentum would
be automatically valid if we applied it by
breaking a complex object into its elementary
components, applying the law to each com-
ponent separately, and summing the various
contributions. That's �ne, but nobody wants
to do it that way. In the spirit of thermody-
namics, we would prefer a macroscopic law.
That is, we would like to be able to measure
the overall mass of the object (M), measure
its average velocity (V ), and from that com-
pute a macroscopic momentum (MV ) obeying
the law of conservation of momentum. In fact
this macroscopic approach works �ne, and can
fairly easily be proven to be consistent with
the microscopic approach. No problem.

The notion of kinetic energy causes trouble
when we try to import it. Sometimes you want
a microscopic accounting of kinetic energy,
and sometimes you want to include only the
macroscopic kinetic energy. There is nontriv-
ial ambiguity here, as discussed in section 18.4
and reference 18.



Chapter 6

Classical Thermodynamics

6.1 Overview

So far we have discussed only a few basic ideas, but already we know enough to handle some
interesting applications.

6.2 Stirling Engine

6.2.1 Basic Structure and Operations

Let's consider a Stirling engine. This is a type of heat engine; that is, it takes in energy and entropy
via one side, dumps out waste energy and entropy via the other side, and performs useful work via
a crankshaft.

In operation, the Stirling engine goes through a cycle of four states {A,B,C,D} connected by four
legs {AB,BC,CD,DA}. The Stirling cycle is rectangle in (T, V ) space, as shown in �gure 6.1.

There are many ways of building a Stirling engine. The ones that are easy to build are not easy to
analyze. (Actually all Stirling engines are infamously hard to analyze.) Let's consider an idealized
version. One way of carrying out the volume-changes called for in �gure 6.1 is shown in �gure 6.2.
You can see that there are two cylinders: an always-hot cylinder at the left, and an always-cold
cylinder at the right. Each cylinder is �tted with a piston. When we speak of �the� volume, we are
referring to the combined volume in the two cylinders.

Cooling

Let's now examine the required temperature-changes. Figure 6.3 shows a more complete picture of
the apparatus. In addition to the two cylinders, there is also a thin tube allowing the working �uid
to �ow from the hot side to the cold side and back again.
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warming at constant small volume

compression at constant low temperature

cooling at constant large volume

expansion at constant high temperature
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Figure 6.2: Stirling Engine : Volume Changes
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cooling at constant large volume
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Figure 6.3: Stirling Engine : Cooling Phase
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Figure 6.3 shows a snapshot taken during the cooling phase, i.e. the BC leg. The two pistons move
together in lock-step, so the total volume of �uid remains constant. As the �uid �ows through the
tube, it encounters a series of heat exchangers. Each one is a little cooler than the next. At each
point, the �uid is a little bit warmer than the local heat exchanger, so it gives up a little bit of
energy and entropy. At each point the temperature di�erence is small, so the transfer is very nearly
reversible. We idealize it as completely reversible.

Warming

warming at constant small volume

copyright © 2015 jsd

Figure 6.4: Stirling Engine : Warming Phase

Figure 6.4 shows a snapshot taken during the warming phase, i.e. the DA leg. Once again, the two
pistons move together in lock-step, so the total volume of �uid remains constant. The volume here
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is less than the volume during the cooling phase, so each piston moves less, but still they force all
the volume to �ow through the tube. (If you're clever, you can arrange that the pistons move with
less velocity during this leg, so that the overall time is the same for both the DA leg and the BC
leg. That is, you can arrange that the �ow rate in moles per second is the same, even though the
�ow rate in cubic meters per second is di�erent. This gives the heat exchangers time to do their
job.)

As the �uid �ows through the tube, it encounters the same series of heat exchangers, in reverse
order. At each point, the �uid is a little bit cooler than the local heat exchanger, so it picks up a
little bit of energy and entropy. At each point the temperature di�erence is small, so the transfer is
very nearly reversible. We idealize it as completely reversible.

The same number of moles of �uid underwent the same change of temperature, in the opposite
direction, so the energy and entropy involved in the DA leg are equal-and-opposite to the energy
and entropy involved in the BC leg. The molar heat capacity at constant volume is a constant,
independent of density, for any ideal gas (or indeed any polytropic gas).

It must be emphasized that during the BC leg and also during the DA leg, no energy or entropy
leaves the system. No energy or entropy crosses the dotted-line boundary shown in the diagram.
The heat exchangers arrayed along the thin tube are strictly internal to the system. They do not
require fuel or coolant from outside. They are like little cookie jars; you can put cookies and and
take cookies out, but they do not produce or consume cookies. At the end of each cycle, they return
to their original state.

Expansion

Figure 6.5 shows the expansion phase. The �uid is all on the hot side of the machine. The piston
is retreating, so the �uid expands. If it were allowed to expand at constant entropy, it would cool,
but we do not allow that. Instead we supply energy from an external source, to maintain the �uid
at a constant temperature as it expands.

Compression

Figure 6.6 shows the compression phase. The �uid is all on the cold side of the machine. The
cold piston is advancing, so the �uid is compressed into a smaller volume. If it were compressed at
constant entropy, it would warm up, but we do not allow that. Instead we supply supply cooling
from an external source, to maintain the �uid at a constant temperature during the compression.

6.2.2 Energy, Entropy, and E�ciency

It must be emphasized that the source that supplies energy and entropy on the left side of �gure 6.5
is in a completely di�erent category from the cookie jars attached to the �ow tube. The source
provides energy and entropy that �ow across the boundary of the system. We imagine that the
external high-side heat bath has an in�nite heat capacity, so that we can extract energy and entropy
from it without changing its temperature.
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Figure 6.5: Stirling Engine : Expansion Phase
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Figure 6.6: Stirling Engine : Compression Phase
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Similar words apply to the cooling system on the right side of �gure 6.6. This is in a completely
di�erent category from the cookie jars, because energy and entropy are crossing the boundary of
the system. We imagine that the low-side heat bath has an in�nite heat capacity, so that we can
dump energy and entropy into it without changing its temperature.

To summarize: Legs AB and CD are in one category (energy and entropy crossing the boundary,
cumulatively, without end) while BC and DA are in another category (energy and entropy being
rearranged interneally, with no net change from cycle to cycle).

The diagrams in this section do not show the crankshaft that delivers useful work to the outside.
However we can easily enough �gure out how much work is involved.

No work is performed on the BC leg or on the DA leg. The volume is the same before and after, so
there is no PdV work. We are assuming an ideal engine, so the pressure on both sides is the same.
The pressure changes during the BC leg (and during the DA leg), but at each instant the pressure
at both ends of the machine is the same.

During the AB leg the volume increases by a certain amount, and then on the CD leg the volume
decreases by the same amount. We know the �uid is hotter on the AB leg, so it has a higher
pressure, so there is a net amount of PdV work done. For an ideal gas, it is easy to do the integral
PdV . You don't even need to assume a monatomic gas; a polyatomic ideal gas such as air is just
as easy to handle. A factor of T comes out in front of the integral.

So, on a per-cycle basis, the energy that comes in on the left is proportional to Thot, while the
energy that goes out on the right is proportional to Tcold.

We de�ne the e�ciency of a heat engine as

ηhe :=
mechanical energy out

energy in (for any heat engine) (6.1)

so for this particular heat engine, given all our idealizations, the e�ciency is

ηhe :=
Thot−Tcold

Thot
(for an ideal Stirling engine) (6.2)

6.2.3 Practical Considerations; Temperature Match or Mismatch

Note that each hardware component in a Stirling engine sits at more-or-less steady temperature
over time. The working �uid changes temperature signi�cantly, but the hardware components do
not. Increasing the thermal contact between the hardware and the �uid (at any given point) makes
the engine work better. (On the other hand, we need to minimize thermal conduction between one
cookie jar and the next, in the regenerator.)

A gas turbine engine (such as you �nd on a jet aircraft) is similar, insofar as the �uid changes
temperature, while the hardware components do not, to any great extent. Also, the working �uid
never comes in contact with hardware that is at a signi�cantly di�erent temperature. It is however
in a di�erent subcategory, in that improving the contact between the working �uid and the hardware
will not make the engine work better.

This stands in contrast to a Carnot cycle, which depends on heating up and cooling down �the�
cylinder that holds the working �uid. This is of course possible in theory, but it is troublesome in
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practice. It tends to reduce the power density and/or the e�ciency of the engine. James Watt's
�rst steam engine su�ered from this problem to a serious degree. It was only later that he �gured
out the advantages of having a separate condenser.

In a third category we have piston engines of the kind that you �nd in an ordinary automobile or
lawn mower. They have the ugly property that the working �uid comes into contact with hardware
at wildly dissimilar temperatures. This limits the e�ciency, especially at low speeds. Making
stronger contact between the working �uid and the cylinder walls would make the engine work
worse. A similar temperature-mismatch problem occurs in the pistons of an external-combustion
piston engines, such as piston-type steam engine, because the steam cools as it expands. (Of course
a steam engine requires good thermal contact in the boiler and the condenser.)

6.2.4 Discussion: Reversibility

As discussed in section 7.1, under mild assumptions we can write

dE = −PdV + TdS (6.3)

We apply this to the heat baths that attach to the left and right side of our engine. We connect to
the heat baths in such a way that we do not a�ect their pressure or volume, so we have simply:

dE = TdS (at constant V ) (6.4)

Since for our engine, ∆E is proportional to temperature, we see that the amount of entropy we
take in from the left is exactly the same as the amount of entropy we dump out on the right. (As
always, it is assumed that no entropy �ows out via the crankshaft.)

This property � entropy in equals entropy out � is the hallmark of a reversible engine. An ideal
Stirling engine is reversible.

A heat engine operated in reverse serves as a heat pump. A household refrigerator is an example:
It pumps energy and entropy from inside the refrigerator to outside. Other heat pumps are used to
provide heat for buildings in the winter.

6.3 All Reversible Heat Engines are Equally E�cient

We now consider the class of all devices that

1. are heat engines,

2. are reversible, and

3. run o� a single hot bath (Thot) and a single cold bath (Tcold).

The claim is that all such engines are equally e�cient.

The proof is stunningly simple and powerful: If you had two reversible heat engines with di�erent
e�ciencies, you could hook them in parallel and create a perpetual motion machine!
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As a corollary: We know the e�ciency of all such devices (for any given pair of temperatures).

The proof is equally simple: Given that all devices that meet our three criteria are equally e�cient,
if you know the e�ciency of one, you know them all. And we do know the e�ciency of one, so we
in fact we know them all. This is called the Carnot e�ciency of a heat engine. It is:

ηhe :=
Thot−Tcold

Thot
(for any 2-bath reversible heat engine) (6.5)

As long as you are getting your energy from a heat bath, it is not possible to design an engine with
greater e�ciency than this, no matter how clever you are.

This is the glory of classical thermodynamics. Sadi Carnot �gured this out long before there was
a modern understanding of what energy is. The result depends on little more than the de�nition
of temperature. In fact, the result can be turned around to serve as an operational de�nition of
temperature: If you have an object at some known reference temperature, and another object at
some unknown temperature, you can operate a reversible heat engine between the two, observe the
e�ciency, and deduce a value for the previously-unknown temperature.

Here's another way of understanding the universal e�ciency result. Imagine we have a heat engine
that is reversible, but less e�cient than we would expect based on equation 6.5. As a heat engine,
it is less e�cient, but as a heat pump it is more e�cient! It is a too-good-to-be-true heat pump.
As a heat pump, it takes in too much entropy on the cold side and ejects too little on the hot side.
This violates the law of paraconservation of entropy (section 2.1).

6.4 Not Everything is a Heat Engine

It must be emphasized that the discussion in section 6.3 applies to heat engines and not otherwise.
In particular, consider an electrochemical fuel cell. If it's done right, the e�ciency of such a thing
vastly exceeds 1− Tcold/Thot. That's OK, because it's not a heat engine. Even though it takes in
fuel and puts out work, it is not a heat engine.

As an even more familiar example, consider a plain old electrochemical battery driving an electric
motor. If it's done right, the e�ciency of such a thing vastly exceeds 1− Tcold/Thot.

It is not worth the trouble to try to understand such things in terms of heat, or in terms of classical
thermodynamics generally. I doubt it is even possible.

It is however straightforward to understand such things in terms of modern (post-1898) thermody-
namics, i.e. statistical mechanics. Rather than getting bogged down trying to de�ne �heat�, formalize
everything in terms of energy and entropy instead. Entropy is de�ned in terms of probability, as
a sum over states. In a battery, the state that stores the energy doesn't even have a temperature,
and it isn't in equilibrium with your thermometer.

Let's be clear: For a heat bath, its entropy is proportional to its energy, and the constant of
proportionality is the inverse temperature. For a battery, that's just not true. You can stick a lot
of energy into a battery without changing its temperature.
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6.5 Carnot E�ciency Formula

We can derive a famous formula that places limits on the e�ciency of any so-called heat-engine.

6.5.1 De�nition of Heat Engine

Figure 6.7 is a sketch of such an engine. The details don't matter. The key concept is that the heat
engine, by de�nition, has three connections, highlighted by magental labels in the �gure.

dS
1

T
1

dS
3

T
3

•dX
2

F
2

Figure 6.7: Heat Engine

Even though this is called a heat engine, trying to quantify the �heat� is a losing strategy. It is
simpler and in every way better to quantify the energy and the entropy.
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We could write the change in the energy content of the engine using equation 6.6, including all the
terms on the RHS. However, as part of our de�nition of what we mean by heat engine, we require
that only the terms shown in magenta are signi�cant.

dE = T3dS3 − F3 · dX3 + · · · (connection #3)
+ T2dS2−F2 · dX2 + · · · (connection #2)
+ T1dS1 − F1 · dX1 + · · · (connection #1)

(6.6)

More speci�cally, we require that connection #3 be 100% thermal, connection #2 be 100% mechan-
ical i.e. nonthermal, and connection #1 be 100% thermal. The engine is designed to segregate the
thermal energy-transfers from the mechanical energy-transfers.

We have just constructed a theoretical model of an engine. This is a remarkbly good model for
a wide range of real-world engines. However, it must be emphasized that it does not apply to all
engines. In particular, it does not apply to batteries or to electrochemical fuel cells.

We must impose one more restriction: We require that the engine be able to operate in a cycle, such
that at the end of the cycle, after doing something useful, all the internal parts of the engine return
to their initial state. In particular, we require that the engine not have a �hollow leg� where it can
hide unlimited amounts of entropy for unlimited amounts of time. This requirement makes sense,
because if entropy could be hidden, it would defeat the spirit of the second law of thermodynamics.

Without loss of generality we assume that T2 ≥ T1. There is no loss of generality, because the
engine is symmetrical. If necessary, just relabel the connections to make T2 ≥ T1. Relabeling is just
a paperwork exercise, and doesn't change the physics.

6.5.2 Analysis

The engine starts by taking in a certain amount of energy via connection #3. We might hope to
convert all of this heat-energy to useful work and ship it out via connection #2, but we can't do
that. The problem is that because connection #3 is a thermal connection, when we took in the
energy, we also took in a bunch of entropy, and we need to get rid of that somehow. We can't get
rid of it through connection #2, so the only option is to get rid of it through connection #1.

For simplicity, we assume that T3 and T1 are constant throughout the cycle. We also make the
rather mild assumption that T1 is greater than zero. Section 6.5.3 discusses ways to loosen these
requirements.

Under these conditions, pushing entropy out through connection #1 costs energy. We call this the
waste heat:

waste heat = −
∫

Γ T1dS1 (6.7)

where the path Γ represents one cycle of operating the engine.

We can now use conservation of energy to calculate the mechanical work done by the engine:
work out =

∫
Γ F2 · dX2 (6.8a)

=
∫

Γ T3dS3 +
∫

Γ T1dS1 (6.8b)
= T3∆S3 + T1∆S1 (6.8c)

where on the last line we have used that fact that the temperatures are unchanging to allow us to
do the entropy-integrals. The deltas implicitly depend on the path Γ.
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The second law tells us that over the course of a cycle, the entropy going out via connection #1
(−∆S1) must be at least as much as the entropy coming in via connection #3 (+∆S3). For a
reversible engine, the two are equal, and we can write:

∆S3 = +∆SI
∆S1 = −∆SI

(6.9)

Where ∆SI is pronounced �delta S through� and denotes the amount of entropy that �ows through
the engine, in the course of one cycle. We de�ne the e�ciency as

η := mechanical transfer out
thermal transfer in (6.10)

Still assuming the temperatures are greater than zero, the denominator in this expression is just
T3∆S3. Combining results, we obtain:

η := T3∆S3+T1∆S1
T3∆S3

(6.11)

The maximum e�ciency is obtained for a thermodynamically reversible engine, in which case
ηrev = T3∆SI−T1∆SI

T3∆SI
(6.12a)

= T3−T1
T3

(6.12b)

where equation 6.12b is the famous Carnot e�ciency formula, applicable to a reversible heat en-
gine. The meaning of the formula is perhaps easier to understand by looking at equation 6.12a or
equation 6.11, wherein the second term in the numerator is just the waste heat, in accordance with
equation 6.7.

Let us now consider an irreversible engine. Dissipation within the engine will create extra entropy,
which will have to be pushed out via connection #1. This increases the waste heat, and decreases
the e�ciency η. In other words, equation 6.12b is the exact e�ciency for a reversible heat engine,
and an upper bound on the e�ciency for any heat engine.

6.5.3 Discussion

(1) If you were wondering whether it is possible to construct even one thermodynamic cycle that
complies with all the restrictions in section 6.5.2, fear not. The job can be done using a Carnot
cycle, as described in section 8.7. On the other hand, as mentioned in that section, the Carnot
cycle often gets more attention than it deserves.

(2) Furthermore, the Carnot e�ciency formula often gets more attention than it deserves.

� For one thing, not all engines are heat engines. The Carnot e�ciency formula equa-
tion 6.12b applies only to heat engines, as de�ned by the magenta terms in equation 6.6.

As a speci�c, important counterexample, a battery or an electrochemical fuel cell can
have an e�ciency enormously greater than what you would guess based on equation 6.12b
... even in situations where the chemicals used to run the fuel cell could have been used
to run a heat engine instead.

� Consider the following scenario: Some guy buys a bunch of coal. He uses it to boil some
steam at temperature T3. He uses that to drive a steam engine. He uses river water to
cool the condenser at temperature T1. He manages to operate the engine in such a way
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that its e�ciency is close to the Carnot e�ciency. He is very pleased with himself, and
runs spots on television advertising how e�cient he is. �I'm as e�cient as the laws of
physics allow, other things being equal.�

The problem is, he's asking the wrong question. Rather than asking how well he is doing
relative to the Carnot e�ciency, he should be asking how well he is doing relative to the

best that could be done using the same amount of fuel.

Speci�cally, in this scenario, the guy next door is operating a similar engine, but at a
higher temperature T3. This allows him to get more power out of his engine. His Carnot
e�ciency is 30% higher. His actual e�ciency is only 20% higher, because there are some
unfortunate parasitic losses. So this guy is not running as close to the Carnot limit as
the previous guy. Still, this guy is doing better in every way that actually matters.

[This assumes that at least part of the goal is to minimize the amount of coal consumed
(for a given amount of useful work), which makes sense given that coal is a non-renewable
resource. Similarly part of the goal is to minimize the amount of CO2 dumped into the
atmosphere. The competing engines are assumed to have comparable capital cost.]

Suppose you are trying to improve your engine. You are looking for ine�ciencies. Let's be
clear: Carnot e�ciency tells you one place to look ... but it is absolutely not the only place
to look.

(3) Looking at the structure of the result in equation 6.12b, one can understand why we were
tempted to require that T1 and T3 have de�nite, constant values.

However, any heat engine still has a well-de�ned thermal e�ciency, as de�ned by equation 6.10,
even if the temperatures are changing in peculiar ways over the course of the cycle.

Furthermore, with some extra work, you can convince yourself that the integrals in equa-
tion 6.8b take the form of a ∆S times an average temperature. It's a peculiar type of weighted
average. This allows us to interpret the Carnot e�ciency formula (equation 6.12b) in a more
general, more �exible way.

(4) As a slightly di�erent line of reasoning that leads to the same conclusion, start with an ordinary
Carnot cycle, such as we see in �gure 8.5 or �gure 8.6. You can imagine covering the entire
space with a mosaic of tiny Carnot cycles, as shown in �gure 6.8. There is one big cycle made
up of nine tiny cycles, such that the left edge of one cycle coincides with the right edge of
another, and the top of one coincides with the bottom of another. For an ideal reversible
engine, going around each of the nine tiny cycles once is identical to going around the big
cycle once, because all of the interior edges cancel.

By selecting a suitable set of the tiny Carnot cycles, you can approximate a wide class of
reversible cycles. The e�ciency can be calculated from the de�nition, equation 6.10, by
summing the thermal and mechanical energy, summing over all the sub-cycles.

(5) A hot gas has more entropy than a cool gas. This is partly because the probability distribution
is more �spread out� in phase space, more spread out along the momentum direction. It is
also partly because the unit of measure in phase space is smaller, as discussed in section 12.3.

Because of the higher entropy, you might think the gas has less �available� energy (whatever
that means). However, the hot gas contains more energy as well as more entropy, and it is
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Figure 6.8: Carnot Cycle with Sub-Cycles

easy to �nd situations where the hot gas is more useful as an energy-source, for instance if
the gas is applied to connection #3 in a heat engine. Indeed, in order to increase e�ciency in
accordance with equation 6.12, engine designers are always looking for ways to make the hot
section of the engine run hotter, as hot as possible consistent with reliability and longevity.

Of course, when we examine the cold side of the heat engine, i.e. connection #1, then the
reverse is true: The colder the gas, the more valuable it is for producing useful work. This
should make it clear that any notion of �available energy� cannot possibly be a function of
state. You cannot look at a bottle of gas and determine how much of its energy is �available�
� not without knowing a whole lot of additional information about the way in which the gas
is to be used. This is discussed in more detail in section 1.7.3.

(6) If you take equation 6.12b and mindlessly extrapolate it to the case where T1 is negative, you
might hope to achieve an e�ciency greater than 100%. However, before doing that note that
the de�ning property of negative temperature is that when entropy goes out via connection
#1, energy comes in. Therefore we must include this energy input in the denominator in the
de�nition of e�ciency, equation 6.10. When we do that, instead of getting equation 6.11 we
get:

η := T3∆S3+T1∆S1
T3∆S3+T1∆S1

= 100% (always)
(6.13)

Both terms in the denominator here are positive; the second term involves a double negative.

We can understand this as follows: Whenever there are two thermal connections, one at
a positive temperature and one at a negative temperature, the engine takes in energy via
both thermal connections, and sends it all out via the mechanical connection. Therefore the
e�ciency is always exactly 100%, never more, never less.

Even if the engine is irreversible, such that −∆S1 is greater than −∆S3, the engine is still
100% e�cient in its use of energy, because absolutely all of the energy that is thermally
transferred in gets mechanically transferred out.

These conclusions are restricted to a model that assumes the engine has only three connections
to the rest of the world. A more realistic engine model would allow for additional connections;
see next item.
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(7) A term involving T4∆S4 could be added to our model, to represent losses due to friction, losses
due to heat leaks, et cetera.

η := T3∆S3+T1∆S1+T4∆S4
T3∆S3+T1∆S1

< 100% (since T4∆S4 < 0)
(6.14)

In the real world, the only known ways of producing a heat bath at negative temperature are
horrendously ine�cient, so the 100% e�ciency mentioned in the previous items is nowhere
near being relevant to a complete, practical system.
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Chapter 7

Functions of State

7.1 Functions of State : Basic Notions

Terminology: By de�nition, the term state function applies to any measurable quantity that is
uniquely determined by the thermodynamic state, i.e. the macrostate.

Terminology: The term thermodynamic potential is synonymous with state function. Also the term
function of state is synonymous with state function.

Example: In an ordinary chunk of metal at equilibrium, state functions include energy (E), entropy
(S), temperature (T ), molar volume (V/N), total mass, speed of sound, et cetera. Some additional
important thermodynamic potentials are discussed in chapter 15.

In thermodynamics, we usually arrange for the energy E to be a function of state. This doesn't tell
us anything about E, but it tells us something about our notion of thermodynamic state. That is,
we choose our notion of �state� so that E will be a function of state.

Similarly, we usually arrange for the entropy S to be a function of state.

When identifying functions of state, we make no distinction between dependent variables and inde-
pendent variables. For example, suppose you decide to classify V and T as independent variables.
That doesn't disqualify them from being functions of state. Calculating V as a function of V and
T is not a hard problem. Similarly, calculating T as a function of V and T is not a hard problem.
I wish all my problems were so easy.

Counterexample: The microstate is not a function of state (except in rare extreme cases). Knowing
the macrostate is not su�cient to tell you the microstate (except in rare extreme cases).

Counterexample: Suppose we have a system containing a constant amount H2O. Under �most�
conditions, specifying the pressure and temperature su�ces to specify the thermodynamic state.
However, things get ugly if the temperature is equal to the freezing temperature (at the given
pressure). Then you don't know how much of the sample is liquid and how much is solid. In such a
situation, pressure and temperature do not su�ce to specify the thermodynamic state. (In contrast,
specifying the pressure and entropy would su�ce.)
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Note that to be a state function, it has to be a function of the macrostate. This is an idomatic
usage of the word �state�.

Something that is a function of the macrostate might or might not make sense as a function of the
microstate. Here are some contrasting examples:

The energy is a function of the macrostate,
and also a well-behaved function of the mi-
crostate. The same can be said for some other
quantities including mass, volume, charge,
chemical composition, et cetera.

The entropy is a function of the macrostate,
but not a function of the microstate. It
is de�ned as an ensemble average. If the
macrostate consists of a single microstate, its
entropy is zero.

A crucial prerequisite to idea of �state function� is the idea of �thermodynamic state� i.e. macrostate.
Thermodynamics is predicated on the idea that the macrostate can be described by a few variables,
such as P, V, T et cetera. This stands in contrast to describing the microstate, which would require
something like 1023 variables.

In �uid dynamics, we might divide the �uid into a thousand parcels, each with its own state
functions Pi, Vi, Ti et cetera. That means we have thousands of variables, but that's still a small
number compared to 1023.

Functions of state can be well de�ned even if the system as a whole is not in equilibrium. For
example, the earth's troposphere is nowhere near thermal equilibrium. (In equilibrium, it would
be isothermal, for reasons discussed in section 14.4.) In such a situation, we divide the system
into parcels. As long as the parcel unto itself has a well-de�ned temperature, we can consider
temperature to be a function of state, i.e. a function of the state of that parcel.

7.2 Path Independence

When we say that something is a function of state, we are saying that it does not depend on history;
it does not depend on how we got into the given state.

We can apply this idea to changes in any function of state. For example, since E is a function of
state, we can write

∆E = E�nal − Einitial
= independent of path

(7.1)

When we say that ∆E is independent of path, that mean that ∆E is the same, no matter how many
steps it takes to get from the initial state to the �nal state. The path can be simple and direct, or
it can involve all sorts of loops and cycles.

As a corollary, if we get from state A to state D by two di�erent paths, as shown in �gure 7.1,
if we add up the changes along each step of each paths, we �nd that the sum of the changes is
independent of paths. That is,

∆AD(X) = ∆AB(X) + ∆BC(X) + ∆CD(X) (7.2)

As usual ∆(X) refers to the change in X. Here X can any thermodynamic potential.
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Figure 7.1: Sum of Changes Along Di�erent Paths

The term sigma-delta is sometimes used to refer to a sum of changes. Equation 7.2 states that the
sigma-delta is independent of path.

It must be emphasized that the principle of the path-independent sigma-delta has got nothing to
do with any conservation law. It applies to non-conserved state-functions such as temperature and
molar volume just as well as it applies to conserved state-functions such as energy. For example, if
the volume V is a function of state, then:

∆V = V�nal − Vinitial
= independent of path

(7.3)

which is true even though V is obviously not a conserved quantity.

Equation 7.3 looks trivial and usually is trivial. That's because usually you can easily determine
the volume of a system, so it's obvious that ∆V is independent of path.

The derivation of equation 7.1 is just as trivial as the derivation of equation 7.3, but the applications
of equation 7.1 are not entirely trivial. That's because you can't always determine the energy of
a system just by looking at it. It may be useful to calculate ∆E along one simple path, and then
argue that it must be the same along any other path connecting the given initial and �nal states.

Remark: It is a fairly common mistake for people to say that ∆E is a function of state.
It's not a function of state; it's a function of two states, namely the initial state and the
�nal state, as you can see from the de�nition: ∆E = E�nal − Einitial. For more on
this, see reference 4. As explained there,

� ∆E is a scalar but not a function of state.

� dE is a function of state but not a scalar.

7.3 Hess's Law, Or Not

Circa 1840, Germain Henri Hess empirically discovered a sum rule for the so-called heat of reaction.
This is called Hess's Law. Beware that it is not always true, because the heat of reaction is not a
function of state.
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A simple counterexample is presented in �gure 7.2.

Figure 7.2: Disproof of Hess's Law for Heat

We start in the upper left of the �gure. We turn the crank on the generator, which charges the
battery. That is, electrochemical reactions take place in the battery. We observe that very little
heat is involved in this process. The charged-up battery is shown in blue.

If we stop cranking and wait a while, we notice that this battery has a terrible shelf life. Chemical
reactions take place inside the battery that discharge it. This is represented conceptually by a
�leakage resistor� internal to the battery. This is represented schematically by an explicit resistor
in �gure 7.2. In any event, we observe that the battery soon becomes discharged, and becomes
warmer. If we wait a little longer, heat �ows across the boundary of the system (as shown by the
wavy red arrows). Eventually we reach the state shown in the lower right of the diagram, which is
identical to the initial state.

There is of course a simpler path for reaching this �nal state, namely starting at the same initial
state and doing nothing ... no cranking, and not even any waiting. This clearly violates Hess's law
because the heat of reaction of the discharge process is the dominant contribution along one path,
and nothing similar is observed along the other path.

Hess's law in its original form is invalid because heat content is not a state function, and heat of
reaction is not the delta of any state function.

Tangential remark: in cramped thermodynamics, a cramped version of Hess's Law is
usually valid, because �heat content� is usually a function of state in cramped thermody-
namics. This is a trap for the unwary. This is just one of the many things that are true
in cramped thermodynamics but cannot be extended to uncramped thermodynamics.
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We can extricate ourselves from this mess by talking about enthalpy instead of heat. There is a
valid sum rule for the enthalpy of reaction, because enthalpy is a function of state. That is:

∆H = H�nal −Hinitial
= independent of path

(7.4)

We emphasize that this does not express conservation of enthalpy. In fact, enthalpy is not always
conserved, but equation 7.4 remains true whenever enthalpy is a function of state.

Equation 7.4 could be considered a modernized, �repaired� version of Hess's law. It is not very
important. It does not tell us anything about the enthalpy except that it is a function of state. It is
a mistake to focus on applying the sigma-delta idea to enthalpy to the exclusion of the innumerable
other state-functions to which the sigma-delta idea applies equally well.

I see no value in learning or teaching any version of Hess's Law. It is better to simply remember
that there is a sigma-delta law for any function of state.

The sigma-delta of any function of state
is independent of path.

7.4 Partial Derivatives

Let's build up a scenario, based on some universal facts plus some scenario-speci�c assumptions.

We know that the energy of the system is well de�ned. Similarly we know the entropy of the system
is well de�ned. These aren't assumptions. Every system has energy and entropy.

Next, as mentioned in section 7.1, we assume that the system has a well-de�ned thermodynamic
state, i.e. macrostate. This macrostate can be represented as a point in some abstract state-space.
At each point in macrostate-space, the macroscopic quantities we are interested in (energy, entropy,
pressure, volume, temperature, etc.) take on well-de�ned values.

We further assume that this macrostate-space has dimensionality M , and that M is not very large.
(ThisM may be larger or smaller than the dimensionality D of the position-space we live in, namely
D = 3.)

Assuming a well-behaved thermodynamic state is a highly nontrivial assumption.
• As an example where these assumptions are valid, consider the hackneyed example of the
ideal gas in equilibrium in a table-top cylinder, where the macrostate is determined by a few
variables such as volume, temperature, and number of particles.
• As a more interesting example, consider a heat-�ow experiment. We have a metal bar that is
kept hot at one end and cold at the other end. This is obviously a non-equilibrium situation,
and the heat-�ow is obviously irreversible. Yet at each point in the bar, there is a well-de�ned
local temperature, a well-de�ned local energy density, et cetera. As far as I know, all the
assumptions we have made so far hold just �ne.
• As a challenging but not hopeless intermediate case, consider a thermal distribution with a
few exceptions, as discussed in section 11.3. In this case, our macrostate space must include
additional variables to quantify the excitation of the exceptional modes. These variables
will show up as additional dimensions in the vector V or as additional explicit terms in a
generalization of equation 7.8.
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• As a more problematic example, consider turbulent �ow. The motion is chaotic, and the closer
you look the more chaos you see. In general, this topic is beyond the scope of this discussion.
However, depending on what questions you are asking, it may be possible to average over
space and/or average over time so as to establish a well-behaved notion of local temperature
in the �uid.
• As an even more problematic example, suppose you have just set o� a �recracker inside a
cylinder of gas. This is even farther beyond the scope of this discussion. The system will
be chaotic and far from equilibrium. It is also nonuniform in space and time, so averaging is
problematic (although perhaps not impossible). A great number of modes will be excited. De-
scribing the macrostate of the system will require a tremendous number of variables, so much
so that describing the macrostate might be almost as laborious as describing the microstate.

We further assume that the quantities of interest vary smoothly from place to place in macrostate-
space.

We must be careful how we formalize this �smoothness� idea. By way of analogy, consider
a point moving along a great-circle path on a sphere. This path is nice and smooth, by
which we mean di�erentiable. We can get into trouble if we try to describe this path in
terms of latitude and longitude, because the coordinate system is singular at the poles.
This is a problem with the coordinate system, not with the path itself. To repeat: a
great-circle route that passes over the pole is di�erentiable, but its representation in
spherical polar coordinates is not di�erentiable.

Applying this idea to thermodynamics, consider an ice/water mixture at constant pres-
sure. The temperature is a smooth function of the energy content, whereas the energy-
content is not a smooth function of temperature. I recommend thinking in terms of an
abstract point moving in macrostate-space. Both T and E are well-behaved functions,
with de�nite values at each point in macrostate-space. We get into trouble if we try to
parameterize this point using T as one of the coordinates, but this is a problem with
the coordinate representation, not with the abstract space itself.

We will now choose a particular set of variables as a basis for specifying points in macrostate-space.
We will use this set for a while, but we are not wedded to it. As one of our variables, we choose
S, the entropy. The remaining variables we will collectively call V , which is a vector with D − 1
dimensions. In particular, we choose the macroscopic variable V in such a way that the microscopic
energy Êi of the ith microstate is determined by V . (For an ideal gas in a box, V is just the volume
of the box.)

Given these rather restrictive assumptions, we can write:

dE =
∂E

∂V

∣∣∣∣
S

dV +
∂E

∂S

∣∣∣∣
V

dS (7.5)

which is just the chain rule for di�erentiating a function of two variables. Important generalizations
of this equation can be found in section 7.6 and section 18.1.

It is conventional to de�ne the symbols

P := − ∂E

∂V

∣∣∣∣
S

(7.6)
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and
kβ := ∂S

∂E

∣∣
V

T := 1/kβ for nonzero β
(7.7)

You might say this is just terminology, just a de�nition of T . . . but we need to be careful because
there are also other de�nitions of T �oating around. For starters, you can compare equation 7.7
with equation 15.11. More importantly, we need to connect this de�nition of T to the real physics,
and to operational de�nitions of temperature. There are some basic qualitative properties that
temperature should have, as discussed in section 11.1, and we need to show that our de�nition
exhibits these properties. See chapter 13.

Equation 7.7 is certainly not the most general de�nition of temperature, because of several assump-
tions that we made in the lead-up to equation 7.5. By way of counterexample, in NMR or ESR, a
τ2 process changes the entropy without changing the energy. As an even simpler counterexample,
internal leakage currents within a thermally-isolated storage battery increase the entropy of the
system without changing the energy; see �gure 1.3 and section 11.5.5.

Using the symbols we have just de�ned, we can rewrite equation 7.5 in the following widely-used
form:

dE = −PdV + TdS (7.8)

Again: see equation 7.33, equation 7.34, and section 18.1 for important generalizations of this
equation.

Continuing down this road, we can rewrite equation 7.8 as

dE = w + q (7.9)

where we choose to de�ne w and q as:

w :=
∂E

∂V

∣∣∣∣
S

dV

= −PdV

(7.10)

and

q :=
∂E

∂S

∣∣∣∣
V

dS

= TdS

(7.11)

That's all �ne; it's just terminology. Note that w and q are one-forms, not scalars, as discussed in
section 8.2. They are functions of state, i.e. uniquely determined by the thermodynamic state.1

Equation 7.9 is �ne so long as we don't misinterpret it. However, beware that equation 7.9 and
its precursors are very commonly misinterpreted. In particular, it is tempting to interpret w as
�work� and q as �heat�, which is either a good idea or a bad idea, depending on which of the various

1In the expression �function of state� or in the equivalent expression �state function�, state always means macrostate.
You might think that anything that is a function at all is a function of the microstate, but that's not true. In particular,
entropy is de�ned as a sum over microstates.
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mutually-inconsistent de�nitions of �work� and �heat� you happen to use. See section 17.1 and
section 18.1 for details.

Also: Equation 7.8 is sometimes called the �thermodynamic identity� although that seems like a bit
of a misnomer. The only identity involved comes from calculus, not from thermodynamics. We are
using a calculus identity to expand the exterior derivative dE in terms of some thermodynamically-
interesting variables.

Beware that equation 7.8 has got little or nothing to do with the �rst law of thermodynamics, i.e.
with conservation of energy. It has more to do with the fact that E is a di�erentiable function
of state than the fact that it is conserved. None of the steps used to derive equation 7.8 used
the fact that E is conserved. You could perhaps connect this equation to conservation of energy,
but you would have to do a bunch of extra work and bring in a bunch of additional information,
including things like the third law of motion, et cetera. To appreciate what I'm saying, it may help
to apply the same calculus identity to some non-conserved function of state, perhaps the Helmholtz
free energy F . You can go through the same steps and get an equation that is very similar to
equation 7.8, as you can see in �gure 15.10. If you did not already know what's conserved and what
not, you could not �gure it out just by glancing at the structure of these equations.

7.5 Heat Capacities, Energy Capacity, and Enthalpy Capacity

Here's another change of variable that calls attention to some particularly interesting partial deriva-
tives. Now that we have introduced the T variable, we can write

dE =
∂E

∂V

∣∣∣∣
T

dV +
∂E

∂T

∣∣∣∣
V

dT (7.12)

assuming things are su�ciently di�erentiable.

The derivative in the second term on the RHS is conventionally called the heat capacity at constant

volume. As we shall see in connection with equation 7.19, it is safer to think of this as the energy

capacity. The de�nition is:

CV :=
∂E

∂T

∣∣∣∣
V

(7.13)

again assuming the RHS exists. (This is a nontrivial assumption. By way of counterexample, the
RHS does not exist near a �rst-order phase transition such as the ice/water transition, because
the energy is not di�erentiable with respect to temperature there. This corresponds roughly to an
in�nite energy capacity, but it takes some care and some sophistication to quantify what this means.
See reference 19.)

The energy capacity in equation 7.13 is an extensive quantity. The corresponding intensive quantities
are the speci�c energy capacity (energy capacity per unit mass) and the molar energy capacity
(energy capacity per particle).

The other derivative on the RHS of equation 7.12 doesn't have a name so far as I know. It is
identically zero for a table-top sample of ideal gas (but not in general).
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Heater

Thermometer

Figure 7.3: Energy Capacity aka Heat Capacity at Constant Volume
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The term isochoric means �at constant volume�, so CV is the isochoric heat capacity ... but more
commonly it is just called the �heat capacity at constant volume�.

Using the chain rule, we can �nd a useful expression for CV in terms of entropy:

CV =
∂E

∂S

∂S

∂T
all at constant V

= T
∂S

∂T

∣∣∣∣
V

(7.14)

This equation is particularly useful in reverse, as means for measuring changes in entropy. That is,
if you know CV as a function of temperature, you can divide it by T and integrate with respect to
T along a contour of constant volume. The relevant formula is:

dS =
1

T
CV dT at constant V (7.15)

We could have obtained the same result more directly using the often-important fact, from equa-
tion 7.8,

dS =
1

T
dE at constant V (7.16)

and combining it with the de�nition of CV from equation 7.12 and equation 7.13:

dE = CV dT at constant V (7.17)

Equation 7.17 is useful, but there are some pitfalls to beware of. For a given sample, you might think
you could ascertain the absolute entropy S at a given temperature T by integrating from absolute
zero up to T . Alas nobody has ever achieved absolute zero in practice, and using an approximation
of zero K does not necessarily produce a good approximation of the total entropy. There might be
a lot of entropy hiding in that last little interval of temperature. Even in theory this procedure is
not to be trusted. There are some contributions to the entropy � such as the entropy of mixing �
that may be hard to account for in terms of dS = dE/T . Certainly it would disastrous to try to
�de�ne� entropy in terms of dS = dE/T or anything like that.

Remark: Equation 7.12 expands the energy in terms of one set of variables, while equa-
tion 7.5 expands it in terms of another set of variables. This should su�ce to dispel the
misconception that E (or any other thermodynamic potential) is �naturally� a function
of one set of variables to the exclusion of other variables. See section 15.7 and reference 3
for more on this.

This concludes our discussion of the constant-volume situation. We now turn our attention to the
constant-pressure situation.

Operationally, it is often easier maintain constant ambient pressure than to maintain constant
volume. For a gas or liquid, we can measure some sort of �heat capacity� using an apparatus along
the lines shown in �gure 7.4. That is, we measure the temperature of the sample as a function of
the energy put in via the heater. However, this energy is emphatically not the total energy crossing
the boundary, because we have not yet accounted for the PdV work done by the piston as it moves
upward (as it must, to maintain constant pressure), doing work against gravity via the weight W .
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W

Heater

Thermometer

Figure 7.4: Heat Capacity at Constant Pressure
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Therefore the energy of the heater does not measure the change of the real energy E of the system,
but rather of the enthalpy H, as de�ned by equation 15.5.

This experiment can be modeled using the equation:

dH =
∂H

∂P

∣∣∣∣
T

dP +
∂H

∂T

∣∣∣∣
P

dT (7.18)

This is analogous to equation 7.12 ... except that we emphasize that it involves the enthalpy instead
of the energy. The second term on the right is conventionally called the heat capacity at constant

pressure. It is however safer to call it the enthalpy capacity. The de�nition is:

CP :=
∂H

∂T

∣∣∣∣
P

(7.19)

Under favorable conditions, the apparatus for measuring CV for a chunk of solid substance is
particularly simple, because don't need the container and piston shown in �gure 7.4; the substance
contains itself. We just need to supply thermal insulation. The analysis of the experiment remains
the same; in particular we still need to account for the PdV work done when the sample expands,
doing work against the ambient pressure.

The term isobaric means �at constant pressure�, so another name for CP is the isobaric heat capacity.

In analogy to equation 7.15 we can write

dS =
1

T
CPdT at constant P (7.20)

which we can obtain using the often-important fact, from equation 15.6,

dS =
1

T
dH at constant P (7.21)

and combining it with the de�nition of CP from equation 7.18 and equation 7.19:

dH = CPdT at constant P (7.22)

Collecting results for comparison, we have
dE = CV dT at constant V
dH = CP dT at constant P

dS =
1

T
CV dT at constant V

dS =
1

T
CP dT at constant P

(7.23)

Remark: We see once again that the term �heat� is ambiguous in ways that entropy is not. In the
�rst two rows, the LHS is di�erent, yet both are called �heat�, which seems unwise. In the second
two rows, the LHS is the same, and both are called entropy, which is just �ne.

Starting with either of the last two lines of equation 7.23 and solving for the heat capacity, we see
that we can de�ne a generalized heat capacity as:

CX = T ∂ S
∂ T

∣∣
X

= ∂ S
∂ ln(T )

∣∣∣
X

(7.24)

where X can be just about anything, including X ≡ V or X ≡ P .
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Remark: Heat capacity has the same dimensions as entropy.

We see from equation 7.24 that the so-called heat capacity can be thought of as the entropy capacity
... especially if you use a logarithmic temperature scale.

Equation 7.24 is useful for many theoretical and analytical purposes, but it does not directly corre-
spond to the way heat capacities are usually measured in practice. The usual procedure is to observe
the temperature as a function of energy or enthalpy, and to apply equation 7.13 or equation 7.19.

This supports the point made in section 0.3 and section 17.1, namely that the concept of �heat� is
a confusing chimera. It's part energy and part entropy. It is neither necessary nor possible to have
an unambiguous understanding of �heat�. If you understand energy and entropy, you don't need to
worry about heat.

7.6 E as a Function of Other Variables

In section 7.4 we temporarily assumed that the energy is known as a function of entropy and
volume. This is certainly not the general case. We are not wedded to using V and S as coordinates
for mapping out the thermodynamic state space (macrostate space).

The point of this section is not to make your life more complicated by presenting lots of additional
equations. Instead, the main point is to focus attention on the one thing that really matters, namely
conservation of energy. The secondary point is that equations such as equation 7.8, equation 7.27, et
cetera fall into a pattern: they express the exterior derivative of E in terms of the relevant variables,
relevant to this-or-that special situation. Once you see the pattern, you realize that the equations
are not at all fundamental.

7.6.1 V , S, and h

Here is a simple generalization that requires a bit of thought. Suppose we have a parcel of �uid
with some volume and some entropy. You might think we could write the energy as a function of
V and S, as in equation 7.25 but that is not always su�cient, as we shall soon see.

dE = TdS − PdV
= �heat� + �work�
= thermal + mechanical ×◦

(7.25)

Consider the apparatus shown in �gure 7.5. The parcel of �uid is trapped between two pistons in
the same cylinder. On the left is the initial situation.

On the right we see that the parcel has been raised by a distance ∆h. It was raised slowly, gently,
and reversibly, using a thermally-insulating pushrod. The entropy of the parcel did not change.
The volume of the parcel did not change. Overall, no work was done on the parcel.

� Zero overall work is consistent with the fact that at all times while the parcel was being hoisted,
the upward force from the pushrod was balanced by the downward force of gravity, i.e. the
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Δh

Figure 7.5: Energy Depends on V , S, and h
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weight of the parcel of �uid. (We ignore the weight of the pistons and other moving parts.)
From the point of view of the guy holding the pushrod, he is doing work ... but from the point
of view of the parcel, the pushrod and the gravitational �eld are doing equal-and-opposite
work, so the overall work on the parcel is zero.

� Zero overall work is also consistent with the work/KE theorem, since the center-of-mass ve-
locity of the parcel was negligible before, during, and after the hoisting procedure.

The interesting thing is that the gravitational potential energy of the parcel did change.

Nitpickers may argue about whether the gravitational energy is �in� the parcel
or �in� the gravitational �eld, but we don't care. In any case, the energy is
associated with the parcel, and we choose to include it in our de�nition of E,
the energy �of� the parcel. The idea of E = mgh is perhaps the �rst and most
basic energy-related formula that you ever saw.

The exterior derivative must include terms for each of the relevant variables:
dE = ∂E

∂V

∣∣
h,S

dV + ∂E
∂S

∣∣
h,V

dS + ∂E
∂h

∣∣
V,S

dh (7.26)

Under mild conditions this simpli�es to:

dE = TdS − PdV + mgdh
= �heat� + �work� + �hoist�
= thermal + \ −−mechanical−−/

(7.27)

where mg is the weight of the parcel. There are two �mechanical� terms.

Equation 7.27 tells us that we can change the energy of the parcel without doing work on it. This
should not come as a surprise; there is a work/kinetic-energy theorem, not a work/total-energy
theorem.

Nevertheless this does come as a surprise to some people. Part of the problem is that sometimes
people call equation 7.8 �the� �rst law of thermodynamics. They treat it as �the� fundamental
equation, as if it were the 11th commandment. This leads people to think that the only way of
changing the energy of the parcel is by doing mechanical work via the P dV term and/or exchanging
heat via the T dS term. Let's be clear: the mg dh term is mechanical, but it is not work (not P dV
work, and not overall work from the parcel's point of view).

Another part of the problem is that when thinking about thermodynamics, people sometimes think
in terms of an oversimpli�ed model system, perhaps a small (�table-top�) sample of ideal gas. They
make assumptions on this basis. They equate �mechanical energy transfer� with work. Then, when
they try to apply their ideas to the real world, everything goes haywire. For a table-top sample of
ideal gas, moving it vertically makes only a small contribution to the energy, negligible in comparison
to ordinary changes in pressure or temperature. However, the contribution is not small if you're
looking at a tall column of air in the earth's atmosphere, or water in the ocean, or the plasma in the
sun's atmosphere, et cetera. Vertical motions can have tremendous implications for temperature,
pressure, stability, transport, mixing, et cetera.
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A liquid is typically 1000 times denser than a gas at STP. So if you imagine the �uid in �gure 7.5
to be a liquid rather than a gas, the mg dh contribution is 1000 times larger.

In a situation where we know the volume is constant, equation 7.27 simpli�es to:

dE = TdS +mgdh (7.28)

That super�cially looks like equation 7.8 (with an uninteresting minus sign). On the RHS we can
identify a �thermal� term and a �mechanical� term. However, it is spectacularly di�erent for a non-
obvious reason. The reason is that V and h enter the equation of state in di�erent ways. Changing
V at constant h and S changes the temperature and pressure, whereas changing h at constant V
and S does not. For the next level of detail on this, see section 9.3.4.

Some folks try to simplify equation 7.27 by rewriting it in terms of the �internal energy�, but I've
never found this to be worth the trouble. See section 7.7.

7.6.2 X, Y , Z, and S

Here's a simple but useful reformulation. It doesn't involve any new or exciting physics. It's the
same idea as in section 7.4, just with slightly di�erent variables: forces instead of pressure.

Suppose we have a box-shaped parcel of �uid. As it �ows along, it might change its size in the X
direction, the Y direction, or the Z direction. The volume is V = XY Z. Instead of equation 7.5
we write:

dE =
∂E

∂X

∣∣∣∣
Y,Z,S

dX +
∂E

∂Y

∣∣∣∣
Z,X,S

dY +
∂E

∂Z

∣∣∣∣
X,Y,S

dZ +
∂E

∂S

∣∣∣∣
X,Y,Z

dS

= −Y ZPdX +−ZXPdY −XY PdZ + TdS

= −FXdX +−FY dY − FZdZ + TdS

(7.29)

where we de�ne the force FX as a directional derivative of the energy:
FX := − ∂E

∂X

∣∣
Y,Z,S (7.30)

and similarly for the forces in the Y and Z directions. Compare equation 18.5.

7.6.3 V , S, and N

Here's another widely-useful generalization. Sometimes we have a box where the number of particles
is not constant. We might be pumping in new particles and/or letting old particles escape. The
energy will depend on the number of particles (N). The exterior derivative is then:

dE =
∂E

∂N

∣∣∣∣
V,S

dN +
∂E

∂V

∣∣∣∣
N,S

dV +
∂E

∂S

∣∣∣∣
N,V

dS (7.31)

For present purposes, we assume there is only one species of particles, not a mixture.

This is a more-general expression; now equation 7.5 can be seen a corollary valid in the special case
where N is constant (so dN = 0).
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The conventional pet name for the �rst derivative on the RHS is chemical potential, denoted µ.
That is:

µ :=
∂E

∂N

∣∣∣∣
V,S

(7.32)

where N is the number of particles in the system (or subsystem) of interest.

This means we can write:

dE = µdN − PdV + TdS (7.33)

which is a generalization of equation 7.8.

It is emphatically not mandatory to express E as a function of (V, S) or (N,V, S). Almost any
variables that span the state-space will do, as mentioned in section 15.7 and reference 3.

You should not read too much into the name �chemical� potential. There is not any requirement
nor even any connotation that there be any chemical reactions going on.

The de�ning property of the chemical potential (µ) is that it is conjugate to an increase in number
(dN) . . . just as the pressure (P ) is conjugate to a decrease in volume (−dV ). Note the contrast:
in the scenario described by equation 7.33:

Stepping across a contour of −dV increases
the density (same number in a smaller vol-
ume).

Stepping across a contour of dN increases the
density (bigger number in the same volume).

This can happen if a piston is used to change
the volume.

This can happen if particles are carried across
the boundary of the system, or if particles are
produced within the interior of the system (by
splitting dimers or whatever).

So we see that dN and dV are two di�erent directions in parameter space. Conceptually and
mathematically, we have no basis for declaring them to be �wildly� di�erent directions or only
�slightly� di�erent directions; all that matters is that they be di�erent i.e. linearly independent. At
the end of the day, we need a su�cient number of linearly independent variables, su�cient to span
the parameter space.

Equation 7.33 is a generalization of equation 7.8, but it is not the absolute most-general equation.
In fact there is no such thing as the most-general equation; there's always another generalization
you can make. For example, equation 7.33 describes only one species of particle; if there is another
species, you will have to de�ne a new variable N2 to describe it, and add another term involving
dN2 to the RHS of equation 7.33. Each species will have its own chemical potential. Similarly, if
there are signi�cant magnetic interactions, you need to de�ne a variable describing the magnetic
�eld, and add the appropriate term on the RHS of equation 7.33. If you understand the meaning of
the equation, such generalizations are routine and straightforward. Again: At the end of the day,
any expansion of dE needs a su�cient number of linearly independent variables, su�cient to span
the relevant parameter space.

For a more formal discussion of using the chain rule to expand di�erentials in terms of an arbitrary

number of variables, see reference 3.
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7.6.4 Yet More Variables

In general, we need even more variables. For example, for a parcel of �uid in a �ow reactor, we
might have:

dE =
∑

µidNi − PdV +mgdh+mv · dv + TdS + · · · (7.34)

where Ni is the number of molecular entities of the ith kind, m is the mass of the parcel, g is the
acceleration of gravity, h is the height, v is the velocity, and the ellipsis (· · ·) represents all the terms
that have been left out.

Note that in many cases it is traditional to leave out the ellipsis, recognizing that no
equation is fully general, and equation 7.33 is merely a corollary of some unstated cosmic
generality, valid under the proviso that the omitted terms are unimportant.

Opinions di�er, but one common interpretation of equation 7.34 is as follows: the TdS term can
be called the �heat� term, the two terms −PdV + mgdh can be called �work� terms, the µidNi is
neither heat nor work, and I don't know what to call the mv ·dv term. Obviously the mv ·dv term
is important for �uid dynamics, and the µdN term is important for chemistry, so you would risk
getting lots of wrong answers if you rashly assumed equation 7.8 were �the� de�nition of heat and
work.

7.7 Internal Energy

As foreshadowed in section 1.8.4, a great many thermodynamics books emphasize the so-called
�internal energy�, denoted U or Ein. Mostly they restrict attention to situations where the �internal
energy� is identically equal to the plain old energy, so I have to wonder why the bothered to introduce
a fancy new concept if they're not going to use it. In situations where the two concepts are not
equivalent, things are even more mysterious. I have never found it necessary to make sense of this.
Instead I reformulate everything in terms of the plain old energy E and proceed from there.

Feel free to skip this section ... but if you're curious, the �internal energy� is de�ned as follows:

Suppose we have a smallish parcel of �uid with total mass M and total momentum Π as measured
in the lab frame.2 Its center of mass is located at position R in the lab frame. Then we can express
the �internal energy� of the parcel as:

Ein = E − Π2

2M − Φ(R) (7.35)

where Φ is some potential. If it is a gravitational potential then Φ(R) = −M g · R, where g is a
downward-pointing vector.

The �internal energy� is a function of state. As you can see from equation 7.35:

2We write the momentum as Π instead of the more conventional P , to avoid a con�ict with the pressure (P ).
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� It explicitly excludes the kinetic energy of the parcel as a whole, associated with the center-
of-mass motion of the parcel relative to the lab frame. It also explicitly excludes gravitational
potential energy and similar potentials associated with �body forces�.

� On the other hand, it includes contributions from the kinetic energy of the various particles
as they move relative to the center-of-mass frame (not the lab frame). It also includes the
potentials that depend on the particles' positions relative to each other. It also includes each
particle's own intra-particle binding energy, rotational energy, and vibrational energy.

In other words, the �internal energy� can be thought of as the energy of a parcel as observed in a
frame that is comoving with and colocated with the parcel's center of mass. This can be considered
a separation of variables. A complete description of the system can be thought of in terms of the
variables in the center-of-mass frame plus the �special� variables that describe the location and
velocity of the center-of-mass itself (relative to whatever frame we are actually using).

I've always found it easier to ignore the �internal energy� and use the plain old energy (E) instead,
for multiple reasons:

1. The de�nition of E is reasonably well known, whereas it's hard to learn and hard to remember
what's supposed to be included in Ein.

2. There is a basic conceptual issue: Just because the �special� variables (describing the CM
itself) can be separated does not mean they can be ignored, especially if the parcel is changing
its velocity, changing its acceleration, changing its altitude, et cetera.

� If you chose, you can de�ne things so as to excludeMg ·R from the de�nition of Ein, but
you cannot exclude it from the actual equation of motion, or from the thermodynamic
equation of state. The observed heat capacity of a ten-mile-high column of gas depends
on the gravitational interaction. One way or another, you have to account for it.

� The same goes for kinetic energy. It is well known that if reference frame A is moving
relative to frame B, switching from one frame to the other can give a wildly di�erent
value for the energy, even though the system itself hasn't changed.

3. The �internal energy� is not conserved (except in special cases). To see this, consider the
contrast:

One parcel expands in such a way as to
compress a neighboring parcel. Ein is con-
served in this special case. So far so good.

One parcel expands in such a way as to
hoist a neighboring parcel. It seems to me
that Ein is not conserved.

An even better argument that leads to the same conclusion is based on the situation shown
in �gure 7.6. There are two jack-in-the-box mechanisms. We focus attention on the blue one,
on the left side of the diagram.

� The top row shows the initial situation. Each box is stationary, pushing against its
mirror-image partner.

� The bottom row shows the later situation. Each box has pushed o� and is now moving
away from the centerline.
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Figure 7.6: Internal Energy of a Jack-in-the-Box

If you want to make this look more classically thermodynamical, you can replace each spring
by some gas molecules under pressure. The idea is the same either way.

It should be obvious by symmetry that no energy crossed the boundary of the blue system.
(Some momentum crossed the boundary, but that's the answer to a di�erent question.) No
work was done by (or on) the blue system. There was no F · dx. The pushrod does not move
until after contact has ceased and there is no longer any force. At the time and place where
there was a nonzero force, there was no displacement. At times and places where there was a
nonzero displacement, there was no force.

As a secondary argument leading to the same conclusion, you could equally well replace the red
box by a rigid in�nitely-massive wall. This version has fewer moving parts but less symmetry.
Once again the displacement at the point of contact is zero. Therefore the F · dx work is
zero. The pseudowork is nonzero, but the actual thermodynamic work is zero. (Pseudowork
is discussed in section 18.5 and reference 18.)

The purpose of this Gedankenexperiment is to make a point about conservation and non-
conservation:

The plain old energy E is conserved. Some
energy that was stored in the spring has
been converted to KE ... more speci�cally,
converted to KE associated with motion of
the center of mass.

The �internal energy� is not conserved.
The stored energy counts toward Ein,
whereas the center-of-mass KE does not.

It is widely believed3 that �if no matter or energy crosses the boundary of the system, then the
internal energy is constant�. First of all, this is not true, as demonstrated by �gure 7.6. We
can cook up a similar-sounding statement that is actually true, if we de�ne a notion of super-
isolated system, which cannot exchange matter, energy, momentum, or anything else. Still,
even the repaired statement is highly misleading. It is practically begging people to reason
by analogy to the plain old energy, which leads to the wrong answer about conservation of
�internal energy�, as we see from the following table:

Constant in a Conserved
super-isolated

system
Energy : yes yes

�Internal Energy� : yes no ← surprise!

Table 7.1: Constancy versus Conservation

Just because some variable is constant in a super-isolated system does not mean it is conserved.

3See e.g. Wikipedia, which is a cornucopia of things that are believed to be true without actually being true. It
says: �If the containing walls pass neither matter nor energy, the system is said to be isolated. Then its internal
energy cannot change.� Reference: https://en.wikipedia.org/w/index.php?title=Internal_energy&oldid=697674365
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There are plenty of counterexamples. In special relativity, mass is in this category, as discussed
in reference 7. See section 1.2 and reference 6 for a discussion of what we mean by conservation.

4. The de�nition of �internal energy� seems inconsistent with the usual de�nition of force, as
embodied in the principle of virtual work. Suppose we try to de�ne force as a derivative of the
�internal energy�. Then if Mg ·R is missing from the �internal energy�, then Mg is missing
from the force. That seems like a problem.

The books that glorify Ein (aka U) typically write something like

dU = heat + work (7.36)

and then assert that it expresses conservation of energy. I �nd this very odd, given that in reality
U is not conserved.

Suggestion: If you are ever tempted to formulate thermodynamics in terms of �internal energy�,
start by calculating the heat capacity of a ten-mile-high column of air in a standard gravitational
�eld. Hint: As you heat the air, its center of mass goes up, changing the gravitational potential
energy, even though the container has not moved. I predict this will make you much less enamored
of U , much less ready to enshrine it as the central focus of thermodynamics.

Here's how I think about it: Very often there are some degrees of freedom that do not equilibrate
with others on the timescale of interest. For example:

� I can measure the temperature of a �ashlight battery even though the electrical degree of
freedom is very far out of equilibrium, i.e. a bazillion kT higher than would be expected from
equipartition. This special mode is protected by conservation of charge in conjunction with
well-engineered electrical insulators.

� I can measure the temperature of a car that is moving relative to the lab frame, even though
the overall motion of the CM is very far out of equilibrium. This special mode is protected
by conservation of momentum in conjunction with well-engineered bearings.

These special modes contribute to the energy in the usual way, even though they do not equilibrate in
the usual way. It is necessary to identify them and assign them their own thermodynamic variables.
On the other hand, as far as I can tell, it is not necessary or even helpful to de�ne new �energy-like�
thermodynamic potentials (such as Ein aka U).

Special variables yes; special potentials no. Note that the �internal energy� as usually de�ned gives
special treatment to the center-of-mass kinetic energy but not to the battery electrical energy. That
is yet another indicator that it doesn't really capture the right idea.

7.8 Integration

Let's continue to assume that T and P are functions of state, and that S and V su�ce to span
the macrostate-space. (This is certainly not always a safe assumption, as you can see in e.g.
equation 7.27.)
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Then, in cases where equation 7.8 is valid, we can integrate both sides to �nd E. This gives us an
expression for E as a function of V and S alone (plus a constant of integration that has no physical
signi�cance). Naturally, this expression is more than su�cient to guarantee that E is a function of
state.

Things are much messier if we try to integrate only one of the terms on the RHS of equation 7.8.
Without loss of generality, let's consider the T dS term. We integrate T dS along some path Γ. Let
the endpoints of the path be A and B.

It is crucial to keep in mind that the value of the integral depends on the chosen path � not simply
on the endpoints. It is OK to write things like

s∆QΓ =

∫
Γ
TdS (7.37)

whereas it would be quite unacceptable to replace the path with its endpoints:

(anything) =

∫ B

A
TdS (7.38)

I recommend writing QΓ rather than Q, to keep the path-dependence completely explicit. This
QΓ exists only along the low-dimensional subspace de�ned by the path Γ, and cannot be extended
to cover the whole thermodynamic state-space. That's because T dS is an ungrady one-form. See
section 8.2 for more about this.

7.9 Advection

Equation 7.8 is predicated on the assumption that the energy is known as a function V and S
alone. However, this is not the most general case. As an important generalization, consider the
energy budget of a typical automobile. The most-common way of increasing the energy within the
system is to transfer fuel (and oxidizer) across the boundary of the system. This is an example of
advection of energy. This contributes to dE, but is not included in PdV or TdS. So we should
write something like:

dE = −PdV + TdS + advection (7.39)

It is possible to quantify the advection mathematically. Simple cases are easy. The general case
would lead us into a discussion of �uid dynamics, which is beyond the scope of this document.

7.10 Deciding What's True

Having derived results such as equation 7.8 and equation 7.39, we must �gure out how to interpret
the terms on the RHS. Please consider the following notions and decide which ones are true:

1. Heat is de�ned to be TdS (subject to the usual restrictions, discussed in section 7.4).
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2. Heat is de�ned to be �energy that is transferred from one body to another as the result of a
di�erence in temperature�.

3. The laws of thermodynamics apply even when irreversible processes are occurring.

It turns out that these three notions are mutually contradictory. You have to get rid of one of them,
for reasons detailed in section 17.1 and section 8.6.

As a rule, you are allowed to de�ne your terms however you like. However, if you want a term to
have a formal, well-de�ned meaning,
• Each term must be de�ned only once, and
• You must stick to a well-known unambiguous meaning, and/or clearly explain what de�nition
you are using.

The problem is, many textbooks don't play by the rules. On some pages they de�ne heat to be
TdS, on some pages they de�ne it to be �ow across a boundary, and on some pages they require
thermodynamics to apply to irreversible processes.

This is an example of boundary/interior inconsistency, as discussed in section 8.6.

The result is a shell game, or a whack-a-mole game: There's a serious problem, but nobody can pin
down the location of the problem.

This results in endless confusion. Indeed, sometimes it results in holy war between the Little-Endians
and the Big-Endians: Each side is 100% convinced that their de�nition is �right�, and therefore the
other side must be �wrong�. (Reference 20.) I will not take sides in this holy war. Viable alternatives
include:

1. Pick one de�nition of heat. Explicitly say which de�nition you've chosen, and use it consis-
tently. Recognize that others may choose di�erently.

2. Go ahead and use the term informally, with multiple inconsistent meanings, as many experts
do. Just don't pretend you're being consistent when you're not. Use other terms and concepts
(e.g. energy and entropy) when you need to convey a precise meaning.

3. Avoid using term �heat� any more than necessary. Focus attention on other terms and concepts
(e.g. energy and entropy).

For more on this, see the discussion near the end of section 7.11.

7.11 Deciding What's Fundamental

It is not necessarily wise to pick out certain laws and consider them �axioms� of physics. As Feynman
has eloquently argued in reference 21, real life is not like high-school geometry, where you were given
a handful of axioms and expected to deduce everything from that. In the real world, every fact is
linked to many other facts in a grand tapestry. If a hole develops in the tapestry, you can re-weave
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it starting from the top of the hole, or the bottom, or either side. That is to say, if you forget one
particular fact, you can re-derive it in many di�erent ways.

In this spirit, some folks may wish to consider equation 1.1 and equation 7.9 as being equally
axiomatic, or equally non-axiomatic. One can be used to re-derive the other, with the help of other
facts, subject to certain limitations.

On the other hand, some facts are more useful than others. Some are absolutely central to our
understanding of the world, while others are less so. Some laws are more worth discussing and
remembering, while others are less so. Saying that something is true and useful does not make
it fundamental; the expression 1 + 2 + 3 + 4 = 10 is true and sometimes useful, but it isn't very
fundamental, because it lacks generality.

Deciding which laws to emphasize is to some extent a matter of taste, but one ought to consider
such factors as simplicity and generality, favoring laws with a large number of predictions and a
small number of exceptions.

In my book, energy conservation (equation 1.1) is fundamental. From that, plus a couple of restric-
tions, we can derive equation 7.9 using calculus. Along the way, the derivation gives us important
information about how w and q should be interpreted. It's pretty clear what the appropriate re-
strictions are.

If you try to go the other direction, i.e. from w + q to conservation of energy, you must start by
divining the correct interpretation of w and q. The usual �o�cial� interpretations are questionable
to say the least, as discussed in section 11.5 and section 8.6. Then you have to posit suitable
restrictions and do a little calculus. Finally, if it all works out, you end up with an unnecessarily
restrictive version of the local energy-conservation law.

Even in the best case I have to wonder why anyone would bother with the latter approach. I would
consider such a derivation as being supporting evidence for the law of local conservation of energy,
but not even the best evidence.

I cannot imagine why anyone would want to use equation 7.9 or equation 7.39 as �the� �rst law of
thermodynamics. Instead, I recommend using the local law of conservation of energy . . . which is
simpler, clearer, more fundamental, more powerful, and more general.

It's not at all clear that thermodynamics should be formulated in quasi-axiomatic terms, but if
you insist on having a ��rst law� it ought to be a simple, direct statement of local conservation of
energy. If you insist on having a �second law� it ought to be a simple, direct statement of local
paraconservation of entropy.

Another way to judge equation 7.9 is to ask to what extent it describes this-or-that practical
device. Two devices of the utmost practical importance are the thermally-insulating pushrod and the
ordinary nonmoving heat exchanger. The pushrod transfers energy and momentum (but no entropy)
across the boundary, while the heat exchanger transfers energy and entropy (but no momentum)
across the boundary.

It is traditional to describe these devices in terms of work and heat, but it is not necessary to do
so, and I'm not convinced it's wise. As you saw in the previous paragraph, it is perfectly possible
to describe them in terms of energy, momentum, and entropy, which are the true coin of the realm,
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the truly primary and fundamental physical quantities. Heat and work are secondary at best (even
after you have resolved the nasty inconsistencies discussed in section 7.10 and section 8.6).

Even if/when you can resolve dE into a −PdV term and a TdS term, that doesn't mean you must

do so. In many cases you are better o� keeping track of E by itself, and keeping track of S by itself.
Instead of saying no heat �ows down the pushrod, it makes at least as much sense to say that no
entropy �ows down the pushrod. Keeping track of E and S is more fundamental, as you can see
from the fact that energy and entropy can be exchanged between systems that don't even have a
temperature (section 11.4).

When in doubt, rely on the fundamental laws: conservation of energy, conservation of momentum,
paraconservation of entropy, et cetera.
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Chapter 8

Thermodynamic Paths and Cycles

8.1 A Path Projected Onto State Space

8.1.1 State Functions

In this section we will illustrate the ideas using a scenario based on a heat engine. Speci�cally, it
is a mathematical model of a reversible heat engine. For simplicity, we assume the working �uid of
the engine is a nondegenerate ideal monatomic gas.

Figure 8.1 shows the thermodynamic state space for our engine. Such a plot is sometimes called
the �indicator diagram� for the engine. The vertical white lines are contours of constant pressure.
The horizontal white lines are contours of constant volume. The light-blue curves are contours of
constant temperature ... and are also contours of constant energy (since the gas is ideal). The
dashed light-green curves are contours of constant entropy. Given any arbitrary abstract point X
in this space, we can �nd the values of all the state variables at that point, including the energy
E(X), entropy S(X), pressure P (X), volume V (X), temperature T (X), et cetera. The spreadsheet
used to prepare the �gures in this section is cited in reference 22.

That's nice as far as it goes, but it's not the whole story. It is also useful to consider the path
(Γ) shown in red in the (P, V ) diagram. We will keep track of what happens as a function of arc
length (θ) along this path ... not just as a function of state. We note that the path can be broken
down into �ve approximately circular cycles. In this simple case, we choose units of arc length so
that each cycle is one unit. Each cycle begins and ends at the point X0, which has coordinates
(P, V ) = (2.5, 3) in �gure 8.1.

Let's use X to represent an arbitrary, abstract point in state space, and use XΓ(θ) to represent a
point along the speci�ed path. For simplicity, we write X0 := XΓ(0).

In �gure 8.2, we plot several interesting thermodynamic quantities as a function of arc length.
Whenever θ is an integer, the path crosses through the point X0. As a consequence, each of the
variables returns exactly to its original value each time θ completes a cycle, as you can see in
�gure 8.2. There have to be de�nite, reproducible values at the point X0, since we are talking
about functions of state.
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Figure 8.1: A Path Projected Onto State Space

Figure 8.2: State Functions versus Arc Length
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In the spreadsheet used to create this �gure, the path is chosen to be more-or-less arbitrary function
of θ, chosen to give us a nice-looking shape in �gure 8.1. The path tells us P and V as functions of
θ. Temperature then is calculated as a function of P and V using the ideal gas law, equation 26.40.
Entropy is calculated as a function of V and T using the Sackur-Tetrode law, equation 26.17. The
order in which things are calculated is a purely tactical decision. Please do not get the idea that
any of these state variables are �natural� variables or �independent� variables.

As discussed in section 7.4, as a corollary of the way we de�ned temperature and pressure, we obtain
equation 7.8, which is reproduced here:

dE = −PdV + TdS (8.1)

Each of the �ve variables occuring in equation 8.1 is naturally and quite correctly interpreted as a
property of the interior of the engine. For example, S is the entropy in the interior of the engine,
i.e. the entropy of the working �uid. However, in the scenario we are considering, the two terms on
the RHS can be re-interpreted as boundary terms, as follows:

� Because the engine is (by hypothesis) in mechanical equilibrium with its surroundings, when-
ever it changes its volume it exchanges energy with its surroundings.

� Because the engine is (by hypothesis) in thermal equilibrium with its surroundings, and be-
cause it is reversible, the only way it can change its entropy is by exchanging entropy with
the surroundings.

This re-interpretation is not valid in general, especially if there is any dissipation involved, as
discussed in section 8.6. However, if/when we do accept this re-interpretation, equation 8.1 becomes
a statement of conservation of energy. The LHS is the change in energy within the engine, and the
RHS expresses the mechanical and thermal transfer of energy across the boundary.

Whether or not we re-interpret anything, equation 8.1 is a vector equation, valid point-by-point in
state space, independent of path. We can integrate it along any path we like, including our chosen
path Γ. ∫

Γ dE =
∫

Γ TdS −
∫

Γ PdV + const (8.2)

As always, �check your work� is good advice. It is an essential part of critical thinking. In this spirit,
the spreadsheet carries out the integrals indicated in equation 8.2. The LHS is trivial; it's just E,
independent of path, and can be calculated exactly. The spreadsheet cannot evaluate integrals on the
RHS exactly, but instead approximates each integral by a sum, using a �nite stepsize. Rearranging,
we get

E +
∫

Γ PdV −
∫

Γ TdS = const (8.3)

This quantity on the LHS shown by the black dashed line in �gure 8.2. It is constant to better than
one part per thousand. This is a nice sensitive check on the accuracy of our numerical integration.
It also tells us that our derivation of the ideal gas law and the Sackur-Tetrode law are consistent
with our de�nitions of temperature and pressure.

If we accept the aforementioned re-interpretation, equation 8.3 tells us that our model system
conserves energy. It accounts for the energy within the engine plus the energy transferred across
the boundary.
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8.1.2 Out-of-State Functions

Let's give names to the two integrals on the RHS of equation 8.2. We de�ne the work done by the
engine to be:

WΓ(θ) :=
∫

Γ PdV (8.4)

where the integral runs over all θ′ on the path Γ, starting at θ′ = 0 and ending at θ′ = θ. We call
WΓ the work done by the engine along the path Γ. This terminology is consistent with ordinary,
customary notions of work.

We also de�ne the heat absorbed by the engine to be:

QΓ(θ) :=
∫

Γ TdS (8.5)

For present purposes, we call this the heat absorbed by the engine along the speci�ed path. This is
consistent with �some� commonly-encountered de�ntions of heat.1

Figure 8.3 includes all the curves from �gure 8.2 plus heat (as shown by the brown curve) and work
(as shown by the black curve).

Figure 8.3: State and Out-of-State Functions versus Arc Length

It should be clear in �gure 8.3 that the black and brown curves are quite unlike the other curves.
Speci�cally, they are not functions of state. They are functions of the arc length θ along the path
γ, but they are not functions of the thermodynamic state X. Every time the path returns to the
point X0 in state space, WΓ(θ) takes on a di�erent value, di�erent from what it was on the previous
cycle. Similarly QΓ(θ) takes on a di�erent value. You can see this in the �gure, especially at places
where θ takes on integer values. The state of the engine is the same at each of these places, but the
heat and work are di�erent.

Heat and work are plotted in �gure 8.3, but there is no hope of plotting them on a (P, V ) diagram
such as �gure 8.1.

1... but not all, especially if there is any dissipation involved.
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Suppose we continue the operation of this heat engine for more cycles, keeping the cycles always in
the vicinity of X0.

The state variables such as P , V , T , et cetera
will remain bounded, returning to their initial
values every time the path Γ crosses the initial
point X0.

The WΓ(θ) and QΓ(θ) curves will continue
marching o� to the northeast, without bound.

At any point X in state space, if you know
X you know the associated values of the state
functions, and the state functions don't care
how you got to X.

At any point X in state space, even if X is
somewhere on the path Γ, knowing X is not
su�cient to determine out-of-state functions
such as QΓ(θ), WΓ(θ), or θ itself. The out-of-
state functions very much depend on how you
got to X.

8.1.3 Converting Out-of-State Functions to State Functions

Suppose you start with TdS and you want to integrate it. There are at least three possibilities:

� You can add something, namely −PdV , and then integrate. This gives you the energy E,
which is a function of state. The value of the integral depends on the endpoints of the path,
but not on other details of the path.

� You can multiply by something , namely 1/T , and then integrate. This gives you the entropy
S, which is a function of state. The value of the integral depends on the endpoints of the
path, but not on other details of the path.

� You can integrate TdS along some chosen path, and accept the fact that the result is not a
function of state. The value of the integral depends on every detail of the chosen path.

Please keep in mind that in modern thermodynamics, we de�ne entropy in terms of the probability
of the microstates, as discussed in connection with equation 2.2. However, back in pre-modern
times, before 1898, people had no understanding of microstates. Quite remarkably, they were able
to calculate the entropy anyway, in simple situations, using the following recipe:

� Build a reversible heat engine.

� Measure QΓ(θ). That is, measure the heat absorbed by the engine as a function of arc length,
as the engine goes through its cycles along the path Γ.

� Di�erentiate with respect to θ.

� Multiply by 1/T .

� Integrate with respect to θ.
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The interesting thing is that even though this recipe depends explicitly on a particular path Γ,
the result is path-independent. The result gives you S as a function of state (plus or minus some
constant of integration) � independent of path.

Back in pre-modern times, people not only used this recipe to calculate the entropy, they used it
to de�ne entropy. It is not a very convenient de�nition. It is especially inconvenient in situations
where dissipation must be taken into account. That's partly because it becomes less than obvious
how to de�ne and/or measure QΓ.

8.1.4 Reversibility and/or Uniqueness

In our scenario, we choose to operate the heat engine such a way that it moves reversibly along the
path Γ in �gure 8.1. Every step along the path is done reversibly. There is no law of physics that
requires this, but we can make it so (to a good approximation) by suitable engineering.

We can also treat each of the �ve cycles as a separate path. If we do that, it becomes clear that
there are in�nitely many paths going through the point X0. More generally, the same can be said
of any other point in state space: there are in�nitely many paths going through that point. As a
corollary, given any two points on an indicator diagram, there are in�ntely many paths from one to
the other. Even if we restrict attention to reversible operations, there are still in�nitely many paths
from one point to the other.

As a separate matter, we assert that any path through the state-space of the engine can be followed
reversibly (to a good approximation) or irreversibly. There is no way of looking at a diagram such
as �gure 8.1 and deciding whether a path is reversible or not. Reversibility depends on variables
that are not shown in the diagram. Speci�cally, when some step along the path is associated with
a change in system entropy, the step is either reversible or not, depending on what happens outside
the system. If there is an equal-and-opposite change in the entropy of the surroundings, the step is
reversible, and not otherwise.

I mention this because sometimes people who ought to know better speak of �the� reversible path
between two points on a (P, V ) diagram. This is wrong at least twice over.

� There is no such thing as a �reversible� path in a (P, V ) diagram. (You could imagine talking
about reversible paths if you constructed a higher-dimensional diagram, including the variable
describing not just the heat engine but its surroundings as well, but that's a di�erent story.
That would be a complicated and rather unusual diagram.)

� Even if we restrict attention to reversible operations, there is no such thing as �the� unique
path in uncramped thermodynamics. To say the same thing the other way, if the system
is so cramped that there is only one path from one (P, V ) point to another, it is obviously
impossible to build a heat engine.

8.1.5 The Importance of Out-of-State Functions

As we shall see, state functions are more elegant than out-of-state functions. They are vastly easier
to work with. Usually, anything that can be expressed in terms of state functions should be.
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However, out-of-state functions remain importance. The entire raison d'être of a heat engine is to
convert heat into work, so it's nice to have a good way to quantify what we mean by �heat� and
�work�.

An electric power company provides each customer with a watt-hour meter, which measures the
electrical work done. The customer's bill largely depends on the amount of work done, so this is an
example of an out-of-state function with tremendous economic signi�cance.

Also note that in pre-modern thermodynamics, �heat� was super-important, because it was part of
the recipe for de�ning entropy, as discussed in section 8.1.3.

8.1.6 Heat Content, or Not

In cramped thermodynamics, heat content is a state function. You can heat up a bottle of milk and
let it cool down, in such a way that the energy depends on the temperature and the heat capacity,
and that's all there is to it.

However, in uncramped thermodynamics, there is no such thing as heat content. You can de�ne
QΓ as a function of arc length along a speci�ed path, but it is not a state function and it cannot be
made into a state function.

More-or-less everybody who studies thermodynamics gets to the point where they try to invent
a heat-like quantity that is a function of state, but they never succeed. For more on this, see
section 8.2 and chapter 17.

8.1.7 Some Mathematical Remarks

If you ever have something that looks like �heat� and you want to di�erentiate it, refer back to the
de�nition in equation 8.5 and write the derivative as TdS. That is elegant, because as discussed in
section 8.2 and elsewhere, T is a state function S is a state function, dS is a state function, and the
product TdS is a state function. This stands in contrast to QΓ which is not a state function, and
dQ which does not even exist.

It is possible to di�erentiate QΓ if you are very very careful. It is almost never worth the trouble
� because you are better o� with TdS � but it can be done. As a corollary of equation 8.1,
equation 8.4, and equation 8.5, we can write:

d
dθE(XΓ) = d

dθQΓ − d
dθWΓ (8.6)

which is of course shorthand for
d
dθE(XΓ(θ)) = d

dθQΓ(θ)− d
dθWΓ(θ) (8.7)

Whereas equation 8.1 is a vector equation involving gradient vectors, equation 8.6 is a scalar equation
involving total derivatives with respect to θ. It can be understood as a projection of equation 8.1,
obtained by projecting the gradient vectors onto the direction speci�ed by the path Γ.

On the LHS of equation 8.6, we might be able to consider the energy E to be a function of state,
especially if we we can write as E(X), which does not depend on the path Γ. However, if we write
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it as E(XΓ), the energy depends indirectly on the path. In particular, the derivative on the LHS
of equation 8.6 very much depends on the path. Considered as a derivative in state space, it is a
directional derivative, in the direction speci�ed by the path.

Here is where non-experts go o� the rails: In equation 8.6, it is tempting (but wrong) to �simplify�
the equation by dropping the �dθ� that appears in every term. Similarly it is tempting (but wrong)
to �simplify� the equation by dropping the Γ that appears in every term. The fact of the matter is
that these are directional derivatives, and the direction matters a great deal. If you leave out the
direction-speci�ers, the derivatives simply do not exist.

8.2 Grady and Ungrady One-Forms

Sometimes people who are trying to write equation 8.6 instead write something like:

×◦ dE = dQ− dW ×◦ (allegedly) (8.8)

which is deplorable.

Using the language of di�erential forms, the situation can be understood as follows:
• E is a scalar state-function.
• V is a scalar state-function.
• S is a scalar state-function.
• P is a scalar state-function.
• T is a scalar state-function.
• ∆E := E2 − E1 is a scalar function of two states.
• ∆S := S2 − S1 is a scalar function of two states.
• ∆V := V2 − V1 is a scalar function of two states.
• dE is a grady one-form state-function.
• dS is a grady one-form state-function.
• dV is a grady one-form state-function.
• w := PdV is in general an ungrady one-form state-function.
• q := TdS is in general an ungrady one-form state-function.
• There is in general no state-function W such that w = dW .
• There is in general no state-function Q such that q = dQ.

where in the last four items, we have to say �in general� because exceptions can occur in peculiar
situations, mainly cramped situations where it is not possible to construct a heat engine. Such
situations are very unlike the general case, and not worth much discussion beyond what was said in
conjunction with equation 7.37. When we say something is a state-function we mean it is a function
of the thermodynamic state. The last two items follow immediately from the de�nition of grady
versus ungrady.

Beware that in one dimension, ∆S is rather similar to dS. However, that's not true in higher
dimensions ... and uncramped thermodynamics is intrinsically multi-dimensional. If you have
experience in one dimension, do not let it mislead you. Recognize the fact that ∆S is a scalar,
whereas dS is a vector.

Figure 8.4 shows the di�erence between a grady one-form and an ungrady one-form.



Thermodynamic Paths and Cycles 8�9

As you can see in on the left side of the �g-
ure, the quantity dS is grady. If you integrate
clockwise around the loop as shown, the net
number of upward steps is zero. This is related
to the fact that we can assign an unambiguous
height (S) to each point in (T, S) space.

In contrast, as you can see on the right side of
the diagram, the quantity TdS is not grady.
If you integrate clockwise around the loop as
shown, there are considerably more upward
steps than downward steps. There is no hope
of assigning a height �Q� to points in (T, S)
space.

Figure 8.4: dS is Grady, TdS is Not

Some additional diagrams showing the relationship between certain grady and ungrady one-forms,
see section 15.1.2. For details on the properties of one-forms in general, see reference 4 and perhaps
reference 23.

Be warned that in the mathematical literature, what we are calling ungrady
one-forms are called �inexact� one-forms. The two terms are entirely syn-
onymous. A one-form is called �exact� if and only if it is the gradient of
something. We avoid the terms �exact� and �inexact� because they are too
easily misunderstood. In particular, in this context,
• exact is not even remotely the same as accurate.
• inexact is not even remotely the same as inaccurate.
• inexact does not mean �plus or minus something�.
• exact just means grady. An exact one-form is the gradient of some po-
tential.
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The di�erence between grady and ungrady has important consequences for practical situations such
as heat engines. Even if we restrict attention to reversible situations, we still cannot think of Q as
a function of state, for the following reasons: You can de�ne any number of functions Q1, Q2, · · · by
integrating TdS along some paths Γ1,Γ2, · · · of your choosing. Each such Qi can be interpreted as
the total heat that has �owed into the system along the speci�ed path. As an example, let's choose
Γ6 to be the path that a heat engine follows as it goes around a complete cycle � a reversible cycle,
perhaps something like a Carnot cycle, as discussed in section 8.7. Let Q6(N) be the value of Q6 at
the end of the Nth cycle. We see that even after specifying the path, Q6 is still not a state function,
because at the end of each cycle, all the state functions return to their initial values, whereas Q6(N)
grows linearly with N . This proves that in any situation where you can build a heat engine, q is
not equal to d(anything).

8.3 Abuse of the Notation

Suppose there are two people, namelywayne and dwayne. There is no special relationship between
them. In particular, we interpret dwayne as a simple six-letter name, not as d(wayne) i.e. not as
the derivative of wayne.

Some people try to use the same approach to supposedly de�ne dQ to be a �two-letter name� that
represents T dS � supposedly without implying that dQ is the derivative of anything. That is
emphatically not acceptable. That would be a terrible abuse of the notation.

In accordance with almost-universally accepted convention, d is an operator, and dQ denotes the
operator d applied to the variable Q. If you give it any other interpretation, you are going to confuse
yourself and everybody else.

The point remains that in thermodynamics, there does not exist any Q such that dQ = T dS
(except perhaps in trivial cases). Wishing for such a Q does not make it so. See chapter 19 for
more on this.

8.4 Procedure for Extirpating dW and dQ

Constructive suggestion: If you are reading a book that uses dW and dQ, you can repair it using
the following simple procedure:

� For reversible processes, it's easy: Every time you see dQ, cross it out and write T dS instead.
Every time you see dW , cross it out and write P dV or −P dV instead. The choice of sign
depends on convention. It should be easy to determine which convention the book is using.

� For irreversible processes, much more e�ort is required. Classical thermodynamics books like
to say that for an irreversible process �T dS is greater than dQ�. In this case, you can't simply
replace dQ by T dS because dQ (to the extent that it means anything at all) sometimes does
not account for the entire T dS. In this context, it probably involves only the entropy that
�owed in across the boundary � not the entropy that was created from scratch. So the rule in
this context is to cross out dQ and replace it by T dStransferred.
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As for the idea that T dS > T dStransferred for an irreversible process, we cannot accept that
at face value. For one thing, we would have problems at negative temperatures. We can �x
that by getting rid of the T on both sides of the equation. Another problem is that according
to the modern interpretation of the symbols, dS is a vector, and it is not possible to de�ne a
�greater-than� relation involving vectors. That is to say, vectors are not well ordered. We can
�x this by integrating. The relevant equation is:∫

Γ dS =
∫

Γ(dStransferred + dScreated)
>

∫
Γ dStransferred

(8.9)

for some de�nite path Γ. We need Γ to specify the �forward� direction of the transformation;
otherwise the inequality wouldn't mean anything. We have an inequality, not an equality,
because we are considering an irreversible process.

At the end of the day, we �nd that the assertion that �T dS is greater than dQ� is just a
complicated and defective way of saying that the irreversible process created some entropy
from scratch.

Note: The underlying idea is that for an irreversible process, entropy is not conserved, so we
don't have continuity of �ow. Therefore the classical approach was a bad idea to begin with,
because it tried to de�ne entropy in terms of heat divided by temperature, and tried to de�ne
heat in terms of �ow. That was a bad idea on practical grounds and pedagogical grounds, in
the case where entropy is being created from scratch rather than �owing. It was a bad idea on
conceptual grounds, even before it was expressed using symbols such as dQ that don't make
sense on mathematical grounds.

Beware: The classical thermo books are inconsistent. Even within a single book, even within
a single chapter, sometimes they use dQ to mean the entire T dS and sometimes only the
T dStransferred.

8.5 Some Reasons Why dW and dQ Might Be Tempting

It is remarkable that people are fond of writing things like dQ . . . even in cases where it does not
exist. (The remarks in this section apply equally well to dW and similar monstrosities.)

Even people who know it is wrong do it anyway. They call dQ an �inexact di�erential� and sometimes
put a slash through the d to call attention to this. The problem is, neither dQ nor �Q is a di�erential
at all. Yes, TdS is an ungrady one-form or (equivalently) an inexact one-form, but no, it is not
properly called an inexact di�erential, since it is generally not a di�erential at all. It is not the
derivative of anything.

One wonders how such a bizarre tangle of contradictions could arise, and how it could persist.
I hypothesize part of the problem is a too-narrow interpretation of the traditional notation for
integrals. Most mathematics books say that every integral should be written in the form∫

(integrand)d(something) (8.10)

where the d is alleged to be merely part of the notation � an obligatory and purely mechanical part
of the notation � and the integrand is considered to be separate from the d(something).
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However, it doesn't have to be that way. If you think about a simple scalar integral from the
Lebesgue point of view (as opposed to the Riemann point of view), you realize that what is in-
dispensable is a weighting function. Speci�cally: d(something) is a perfectly �ne, normal type of
weighting function, but not the only possible type of weighting function.

In an ordinary one-dimensional integral, we are integrating along a path, which in the simplest case
is just an interval on the number line. Each element of the path is a little pointy vector, and the
weighing function needs to map that pointy vector to a number. Any one-form will do, grady or
otherwise. The grady one-forms can be written as d(something), while the ungrady ones cannot.

For purposes of discussion, in the rest of this section we will put square brackets around the weighting
function, to make it easy to recognize even if it takes a somewhat unfamiliar form. As a simple
example, a typical integral can be written as:∫

Γ
(integrand)[(weight)] (8.11)

where Γ is the domain to be integrated over, and the weight is typically something like dx.

As a more intricate example, in two dimensions the moment of inertia of an object Ω is:

I :=

∫
Ω
r2[dm] (8.12)

where the weight is dm. As usual, r denotes distance and m denotes mass. The integral runs over
all elements of the object, and we can think of dm as an operator that tells us the mass of each such
element. To my way of thinking, this is the de�nition of moment of inertia: a sum of r2, summed
over all elements of mass in the object.

The previous expression can be expanded as:

I =

∫
Ω
r2[ρ(x, y)dxdy] (8.13)

where the weighting function is same as before, just rewritten in terms of the density, ρ.

Things begin to get interesting if we rewrite that as:

I =

∫
Ω
r2ρ(x, y)[dxdy] (8.14)

where ρ is no longer part of the weight but has become part of the integrand. We see that the
distinction between the integrand and the weight is becoming a bit vague. Exploiting this vagueness
in the other direction, we can write:

I =
∫

Ω[r2 dm]

=
∫

Ω[r2 ρ(x, y)dxdy]
(8.15)

which tells us that the distinction between integrand and weighting function is completely mean-
ingless. Henceforth I will treat everything inside the integral on the same footing. The integrand
and weight together will be called the argument2 of the integral.

2This corresponds to saying that θ is the argument of the cosine in the expression cos(θ).
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Using an example from thermodynamics, we can write
QΓ =

∫
Γ T [dS]

=
∫

Γ[T dS]

=
∫

Γ[q]

(8.16)

where Γ is some path through thermodynamic state-space, and where q is an ungrady one-form,
de�ned as q := TdS.

It must be emphasized that these integrals must not be written as
∫

[dQ] nor as
∫

[dq]. This is
because the argument in equation 8.16 is an ungrady one-form, and therefore cannot be equal to
d(anything).

There is no problem with using TdS as the weighting function in an integral. The only problem
comes when you try to write TdS as d(something) or �(something):
• Yes, TdS is a weighting function.
• Yes, it is a one-form.
• No, it is not a grady one-form.
• No, it is not d(anything).

I realize an expression like
∫

[q] will come as a shock to some people, but I think it expresses
the correct ideas. It's a whole lot more expressive and more correct than trying to write TdS as
d(something) or �(something).

Once you understand the ideas, the square brackets used in this section no longer serve any important
purpose. Feel free to omit them if you wish.

There is a proverb that says if the only tool you have is a hammer, everything begins to look like a
nail. The point is that even though a hammer is the ideal tool for pounding nails, it is suboptimal
for many other purposes. Analogously, the traditional notation

∫
· · ·dx is ideal for some purposes,

but not for all. Speci�cally: sometimes it is OK to have no explicit d inside the integral.

There are only two things that are required: the integral must have a domain to be integrated over,
and it must have some sort of argument. The argument must be an operator, which operates on an
element of the domain to produce something (usually a number or a vector) that can be summed
by the integral.

A one-form certainly su�ces to serve as an argument (when elements of the domain are pointy
vectors). Indeed, some math books introduce the notion of one-forms by de�ning them to be
operators of the sort we need. That is, the space of one-forms is de�ned as an operator space,
consisting of the operators that map column vectors to scalars. (So once again we see that one-
forms correspond to row vectors, assuming pointy vectors correspond to column vectors). Using
these operators does not require taking a dot product. (You don't need a dot product unless you
want to multiply two column vectors.) The operation of applying a row vector to a column vector
to produce a scalar is called a contraction, not a dot product.

It is interesting to note that an ordinary summation of the form
∑

i Fi corresponds exactly to a
Lebesgue integral using a measure that assigns unit weight to each integer (i) in the domain. No
explicit d is needed when doing this �integral�. The idea of �weighting function� is closely analogous
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to the idea of �measure� in Lebesgue integrals, but not exactly the same. We must resist the
temptation to use the two terms interchangeably. In particular, a measure is by de�nition a scalar,
but sometimes (such as when integrating along a curve) it is important to use a weighting function
that is a vector.

People heretofore have interpreted d in sev-
eral ways: as a di�erential operator (with the
power, among other things, to produce one-
forms from scalars), as an in�nitesimal step
in some direction, and as the marker for the
weighting function in an integral. The more I
think about it, the more convinced I am that
the di�erential operator interpretation is far
and away the most advantageous. The other
interpretations of d can be seen as mere ap-
proximations of the operator interpretation.
The approximations work OK in elementary
situations, but produce profound misconcep-
tions and contradictions when applied to more
general situations . . . such as thermodynam-
ics.

In contrast, note that in section 17.1, I do not
take such a hard line about the multiple in-
compatible de�nitions of heat. I don't label
any of them as right or wrong. Rather, I rec-
ognize that each of them in isolation has some
merit, and it is only when you put them to-
gether that con�icts arise.

Bottom line: There are two really simple ideas here: (1) d always means exterior derivative. The
exterior derivative of any scalar-valued function is a vector. It is a one-form, not a pointy vector. In
particular it is always a grady one-form. (2) An integral needs to have a weighting function, which
is not necessarily of the form d(something).

8.6 Boundary versus Interior

We now discuss two related notions:
• The �ow of something across the boundary of the region.
• The change in the amount of something inside the region.

When we consider a conserved quantity such as energy, momentum, or charge, these two notions
stand in a one-to-one relationship. In general, though, these two notions are not equivalent.

In particular, consider equation 7.39, which is restated here:

dE = −PdV + TdS + advection (8.17)

Although o�cially dE represents the change in energy in the interior of the region, we are free to
interpret it as the �ow of energy across the boundary. This works because E is a conserved quantity.

The advection term is explicitly a boundary-�ow term.

It is extremely tempting to interpret the two remaining terms as boundary-�ow terms also . . . but
this is not correct!
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O�cially PdV describes a property of the interior of the region. Ditto for TdS. Neither of these can
be converted to a boundary-�ow notion, because neither of them represents a conserved quantity. In
particular, PdV energy can turn into TdS energy entirely within the interior of the region, without
any boundary being involved.

Let's be clear: boundary-�ow ideas are elegant, powerful, and widely useful. Please don't think I
am saying anything bad about boundary-�ow ideas. I am just saying that the PdV and TdS terms
do not represent �ows across a boundary.

Misinterpreting TdS as a boundary term is a ghastly mistake. It is more-or-less tantamount to
assuming that heat is a conserved quantity unto itself. It would set science back over 200 years,
back to the �caloric� theory.

Once these mistakes have been pointed out, they seem obvious, easy to spot, and easy to avoid. But
beware: mistakes of this type are extremely prevalent in introductory-level thermodynamics books.

8.7 The Carnot Cycle

A Carnot cycle is not the only possible thermodynamic cycle, or even the only reversible cycle, but
it does have special historical and pedagogical signi�cance. Because it is easy to analyze, it gets
more attention than it really deserves, which falls into the catetory of �looking under the lamp-
post�. The Carnot cycle involves only relatively simple operations, namely isothermal expansion and
contraction and thermally isolated expansion and contraction. It is fairly easy to imagine carrying
out such operations without introducing too much dissipation.

The topic of �Carnot cycle� is only tangentially related to the topic of �Carnot e�ciency�.
The topics are related insofar as the e�ciency of the Carnot cycle is particularly easy
to calculate. However, the de�nition of e�ciency applies to a far broader class of cycles,
as discussed in section 6.5.

In this section, we do a preliminary analysis of the Carnot cycle. We carry out the analysis using
two slightly di�erent viewpoints, running both analyses in parallel. In �gure 8.5 and �gure 8.6 the
physics is the same; only the presentation is di�erent. The primary di�erence is the choice of axes:
(V, T ) versus (P, T ). Every other di�erence can be seen as a consequence of this choice.

In �gure 8.5: In �gure 8.6:

When the engine is doing work we go clockwise
around the cycle.

When the engine is doing work we go counter-
clockwise around the cycle.

In other words, the sequence for positive work being done by the engine is this: red, black, magenta,
blue.
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Figure 8.5: Carnot Cycle : T versus V
Figure 8.6: Carnot Cycle : T versus P

In all of these �gures, the contours of constant pressure are shown in white. The pressure values
form a geometric sequence: {1/8, 1/4, 1/2, 1, 2}. In �gure 8.6 this is obvious, but in the other
�gures you will just have to remember it. The P = 1/8 contour is shown as a dotted line, to make
it easy to recognize. The P = 1 contour goes through the corner where red meets black.

There are at least a dozen di�erent ways of plotting this sort of data. Another version is shown
in �gure 8.7. It is somewhat remarkable that multiple �gures portraying the same physics would
look so di�erent at �rst glance. I diagrammed the situation in multiple ways partly to show the
di�erence, and partly to make � again � the point that any of the thermodynamic state-functions
can be drawn as a function of any reasonable set of variables.
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Figure 8.7: Carnot Cycle : S versus V

The spreadsheet used to compute these diagrams is cited in reference 24.

It's interesting that we can replot the data in such a way as to change the apparent shape of the
diagram ... without changing the meaning. This clari�es something that was mentioned in goal
5 in section 0.3: In thermodynamic state-space, there is a topology but not a geometry. We can
measure the distance (in units of S) between contours of constant S, but we cannot compare that
to any distance in any other direction.

In thermodynamics, there are often more variables than one can easily keep track of. Here we focus
attention on T , V , P , and S. There are plenty of other variables (such as E) that we will barely
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even mention. Note that the number of variables far exceeds the number of dimensions. We say
this is a two-dimensional situation, because it can be projected onto a two-dimensional diagram
without losing any information.

It takes some practice to get the hang of interpreting these diagrams.

� In �gure 8.5:

� Contours of constant temperature are horizontal lines. Examples include the red and
magenta path-segments.

� Contours of constant volume are vertical lines. These are not explicitly shown, but you
can easily �gure out what they would look like.

� Contours of constant pressure are sloping lines, shown in white.

� Contours of constant entropy are curves. Examples include the blue and black path-
segments.

� In �gure 8.6:

� Contours of constant temperature are horizontal lines. Examples include the red and
magenta path-segments.

� Contours of constant volume are not shown. (They would be sloping lines, forming a
starburst pattern similar to the white lines in �gure 8.5.)

� Contours of constant pressure are vertical lines, shown in white.

� Contours of constant entropy are curves. Examples include the blue and black path-
segments.

� In �gure 8.7:

� Contours of constant temperature are curves. Examples include the red and magenta
path-segments.

� Contours of constant volume are vertical lines. These are not explicitly shown, but you
can easily �gure out what they would look like.

� Contours of constant pressure are curves, shown in white.

� Contours of constant entropy are horizontal lines. Examples include the blue and black
path-segments.

The Carnot cycle has four phases.

1. Isothermal expansion: We connect the cylinder to the high-temperature heat bath. We gently
expand the gas at constant high temperature. This is shown in red in the �gures.

The amount of expansion is a design choice. In the example I arbitrarily chose a volume ratio
of 3.5:1 for this phase of the expansion. (This is not the so-called �compression ratio� of the
overall engine, since we have so far considered only one of the two compression phases.)
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2. Isentropic expansion: We disconnect the cylinder. We expand the gas some more, gently, at
constant entropy. This is shown in black in the �gures.

We continue the expansion until the temperature of the gas reaches the temperature of the
low-temperature heat bath.

The amount of expansion required to achieve this depends on the gamma of the gas and
(obviously) on the ratio of temperatures. For the example I assumed a 2:1 temperature ratio,
which calls for a 5.7:1 expansion ratio during this phase. In general, for an adiabatic expansion,
if you know the temperature ratio you can calculate the expansion ratio for this phase via

V1
V2

=
(
T1
T2

)−1/(γ−1)
(8.18)

For the �gures I used the gamma value appropriate for air and similar diatomic gases, namely
γ = 7/5 = 1.4. A monatomic gas would need a signi�cantly lower compression ratio for any
given temperature ratio.

3. Isothermal compression: We connect the cylinder to the low-temperature heat bath. We
gently compress the gas at constant low temperature. This is shown in magenta in the �gures.

4. Isentropic compression: We disconnect the cylinder from both heat baths. We compress the
gas some more, gently, along a contour of constant entropy. This is shown in blue in the
�gures.

During the two expansion phases, the gas does work on the �ywheel. During the two compression
phases, the �ywheel needs to do work on the gas. However, the compression-work is strictly less in
magnitude than the expansion-work, so during the cycle net energy is deposited in the �ywheel.

To understand this at the next level of detail, recall that mechanical work is −P dV . Now the
integral of dV around the cycle is just ∆V which is zero. But what about the integral of P dV ?
Consider for example the step in V that goes from V = 3 to V = 4 along the black curve, and the
corresponding step that goes from V = 4 to V = 3 along the magenta curve. The work done during
the expansion phase (black) will be strictly greater than the work done during the recompression
phase (magenta) because the pressure is higher. You can make the same argument for every piece of
V in the whole V -space: For every ∆V in one of the expansion phases there will be a corresponding
∆V directly below it in one of the compression phases. For each of these pairs, expansion-work will
be strictly greater than the compression-work because the pressure will be higher.

You can infer the higher pressure from the white contours of constant pressure, or you can just
observe that the pressure must be higher because the temperature is higher.



Chapter 9

Connecting Entropy with Energy

9.1 The Boltzmann Distribution

For reasons discussed in chapter 23, whenever a system is in thermal equilibrium, the energy is
distributed among the microstates according to a very special probability distribution, namely the
Boltzmann distribution. That is, the probability of �nding the system in microstate i is given by:

Pi = e−Êi/kT . . . for a thermal distribution (9.1)

where Êi is the energy of the ith microstate, and kT is the temperature measured in energy units.
That is, plain T is the temperature, and k is Boltzmann's constant, which is just the conversion
factor from temperature units to energy units.

Figure 9.1 shows this distribution graphically.

Figure 9.1: An Equilibrium Distribution

Evidence in favor of equation 9.1 is discussed in section 11.2.

9.2 Systems with Subsystems

When thinking about equation 9.1 and �gure 9.1 it is important to realize that things don't have to
be that way. There are other possibilities. Indeed, a theory of thermodynamics that assumed that
everything in sight was always in equilibrium at temperature T would be not worth the trouble.
For starters, it is impossible to build a heat engine unless the hot reservoir is not in equilibrium
with the cold reservoir.
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Hot Potato Cold Potato

Figure 9.2: A System Consisting of Two Potatoes



Connecting Entropy with Energy 9�3

We start by considering the system shown in �gure 9.2, namely a styrofoam box containing a hot
potato and a cold potato. (This is a simpli�ed version of �gure 1.2.)

In situations like this, we can make good progress if we divide the system into subsystems. Here
subsystem A is the red potato, and subsystem B is the blue potato. Each subsystem has a well
de�ned temperature, but initially the system as a whole does not.
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Figure 9.3: Probability versus Energy, Non-Equilibrium

0 50 100 150 200 250

System Microstate Energy

−3

−2

−1

0

lo
g
 P

ro
b

a
b
ili

ty

before equilibration
after equilibration

Figure 9.4: Probability versus Energy, System as a Whole

If we wait long enough, the two potatoes will come into equilibrium with each other, and at this
point the system as a whole will have a well de�ned temperature. However, we are not required to
wait for this to happen.

9.3 Remarks

9.3.1 Predictable Energy is Freely Convertible

The di�erence between random energy and predictable energy has many consequences. The most
important consequence is that the predictable energy can be freely converted to and from other
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forms, such as gravitational potential energy, chemical energy, electrical energy, et cetera. In many
cases, these conversions can be carried out with very high e�ciency. In some other cases, though,
the laws of thermodynamics place severe restrictions on the e�ciency with which conversions can
be carried out, depending on to what extent the energy distribution deviates from the Boltzmann
distribution.

9.3.2 Thermodynamic Laws without Temperature

Ironically, the �rst law of thermodynamics (equation 1.1) does not depend on temperature. Energy
is well-de�ned and is conserved, no matter what. It doesn't matter whether the system is hot or
cold or whether it even has a temperature at all.

Even more ironically, the second law of thermodynamics (equation 2.1) doesn't depend on tem-
perature, either. Entropy is well-de�ned and is paraconserved no matter what. It doesn't matter
whether the system is hot or cold or whether it even has a temperature at all.

(This state of a�airs is ironic because thermodynamics is commonly de�ned to be the science of
heat and temperature, as you might have expected from the name: thermodynamics. Yet in our
modernized and rationalized thermodynamics, the two most central, fundamental ideas � energy
and entropy � are de�ned without reference to heat or temperature.)

Of course there are many important situations that do involve temperature. Most of the common,
every-day applications of thermodynamics involve temperature � but you should not think of tem-
perature as the essence of thermodynamics. Rather, it is a secondary concept which is de�ned (if
and when it even exists) in terms of energy and entropy.

9.3.3 Kinetic and Potential Microscopic Energy

You may have heard the term �kinetic theory�. In particular, the thermodynamics of ideal gases
is commonly called the kinetic theory of gases. However, you should be careful, because �kinetic
theory� is restricted to ideal gases (indeed to a subset of ideal gases) ... while thermodynamics
applies to innumerable other things. Don't fall into the trap of thinking that there is such a thing
as �thermal energy� and that this so-called �thermal energy� is necessarily kinetic energy. In almost
all systems, including solids, liquids, non-ideal gases, and even some ideal gases, the energy is a
mixture of kinetic and potential energy. (Furthermore, in any non-cramped situation, i.e. in any
situation where it is possible to build a heat engine, it is impossible in principle to de�ne any such
thing as �thermal energy�. ) In any case, it is safer and in all ways better to say thermodynamics or
statistical mechanics instead of �kinetic theory�.

In typical systems, potential energy and kinetic energy play parallel roles:
• To visualize microscopic potential energy, imagine that the atoms in a crystal lattice are held
in place by springs. Roughly speaking, half of these springs have positive potential energy
because they are extended relative to their resting-length, while the other half have positive
potential energy because they are compressed relative to their resting-length. They've all got
energy, but you can't easily harness it because you don't know which ones are compressed and
which ones are extended.
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• To visualize microscopic kinetic energy, imagine that half the atoms have a leftward velocity
and half have a rightward velocity. They all have kinetic energy, but you can't easily harness
it because you don't know which ones are moving leftward and which are moving rightward.

In fact, for an ordinary crystal such as quartz or sodium chloride, almost exactly half of the heat
capacity is due to potential energy, and half to kinetic energy. It's easy to see why that must be:
The heat capacity is well described in terms of thermal phonons in the crystal. Each phonon mode
is a harmonic1 oscillator. In each cycle of any harmonic oscillator, the energy changes from kinetic
to potential and back again. The kinetic energy goes like sin2(phase) and the potential energy goes
like cos2(phase), so on average each of those is half of the total energy.

Not all kinetic energy contributes to the heat capacity.
Not all of the heat capacitly comes from kinetic energy.

A table-top sample of ideal gas is a special case, where all the energy is kinetic energy. This is
very atypical of thermodynamics in general. Table-top ideal gases are very commonly used as an
illustration of thermodynamic ideas, which becomes a problem when the example is overused so
heavily as to create the misimpression that thermodynamics deals only with kinetic energy.

You could argue that in many familiar systems, the temperature is closely related to random kinetic
energy ... but temperature is not the same thing as so-called �heat' or �thermal energy�. Furthermore,
there are other systems, such as spin systems, where the temperature is not related to the random
kinetic energy.

All in all, it seems quite unwise to de�ne heat or even temperature in terms of kinetic energy.

This discussion continues in section 9.3.4.

9.3.4 Ideal Gas : Potential Energy as well as Kinetic Energy

We have seen that for an ideal gas, there is a one-to-one correspondence between the temperature
and the kinetic energy of the gas particles. However, that does not mean that there is a one-to-one
correspondence between kinetic energy and heat energy. (In this context, heat energy refers to
whatever is measured by a heat capacity experiment.)

To illustrate this point, let's consider a sample of pure monatomic nonrelativistic nondegenerate
ideal gas in a tall cylinder of horizontal radius r and vertical height h at temperature T . The
pressure measured at the bottom of the cylinder is P . Each particle in the gas has mass m. We
wish to know the heat capacity per particle at constant volume, i.e. CV /N .

At this point you may already have in mind an answer, a simple answer, a well-known answer,
independent of r, h, m, P , T , and N . But wait, there's more to the story: The point of this exercise
is that h is not small. In particular, m|g|h is not small compared to kT , where g is the acceleration
of gravity. For simplicity, you are encouraged to start by considering the limit where h goes to
in�nity, in which case the exact value of h no longer matters. Gravity holds virtually all the gas
near the bottom of the cylinder, whenever h� kT/m|g|.

1Anharmonicity can cause the average KE to be not exactly equal to the average PE, but for a crystal well below
its melting point, the thermal phonon modes are not signi�cantly anharmonic.
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� Later, if you want to come back and work the problem a second time, with no restrictions on
h, that's interesting and not very di�cult.

� Also if you want to generalize to a polyatomic gas, that's also worth doing. Section 26.4 con-
tinues the discussion of the energy of an ideal gas, including equation 26.46 and equation 26.47
which related energy to pressure, volume, and temperature.

You will discover that a distinctly nontrivial contribution to the heat capacity comes from the
potential energy of the ideal gas. When you heat it up, the gas column expands, lifting its center
of mass, doing work against gravity. (Of course, as always, there will be a contribution from the
kinetic energy.)

For particles the size of atoms, the length-scale kT/m|g| is on the order of several kilometers, so
the cylinder we are considering is much too big to �t on a table top. I often use the restrictive term
�table-top� as a shorthand way of asserting that m|g|h is small compared to kT .

So, this reinforces the points made in section 9.3.3. We conclude that in general, heat energy is not
just kinetic energy.

Beware that this tall cylinder is not a good model for the earth's atmosphere. For one
thing, the atmosphere is not isothermal. For another thing, if you are going to take the
limit as h goes to in�nity, you can't use a cylinder; you need something more like a cone,
spreading out as it goes up, to account for the spherical geometry.

9.3.5 Relative Motion versus �Thermal� Energy

Over the years, lots of people have noticed that you can always split the kinetic energy of a complex
object into the KE of the center-of-mass motion plus the KE of the relative motion (i.e. the motion
of the components relative to the center of mass).

Also a lot of people have tried (with mixed success) to split the energy of an object into a �thermal�
piece and a �non-thermal� piece.

It is an all-too-common mistake to think that the overall/relative split is the same as the non-
thermal/thermal split. Beware: they're not the same. De�nitely not. See section 7.7 for more on
this.

First of all, the microscopic energy is not restricted to being kinetic energy, as discussed in sec-
tion 9.3.3. So trying to understand the thermal/non-thermal split in terms of kinetic energy is
guaranteed to fail. Using the work/KE theorem (reference 18) to connect work (via KE) to the
thermal/nonthermal split is guaranteed to fail for the same reason.

Secondly, a standard counterexample uses �ywheels, as discussed in section 18.4. You can impart
macroscopic, non-Locrian KE to the �ywheels without imparting center-of-mass KE or any kind of
potential energy . . . and without imparting any kind of Locrian energy (either kinetic or potential).

The whole idea of �thermal energy� is problematic, and in many cases impossible to de�ne, as
discussed in chapter 19. If you �nd yourself worrying about the exact de�nition of �thermal energy�,
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it means you're trying to solve the wrong problem. Find a way to reformulate the problem in terms
of energy and entropy.

Center-of-mass motion is an example but not the only example of low-entropy energy. The motion
of the �ywheels is one perfectly good example of low-entropy energy. Several other examples are
listed in section 11.3.

A macroscopic object has something like 1023 modes. The center-of-mass motion is just one of
these modes. The motion of counter-rotating �ywheels is another mode. These are slightly special,
but not very special. A mode to which we can apply a conservation law, such as conservation of
momentum, or conservation of angular momentum, might require a little bit of special treatment,
but usually not much . . . and there aren't very many such modes.

Sometimes on account of conservation laws, and sometimes for other reasons as discussed in sec-
tion 11.11 it may be possible for a few modes of the system to be strongly coupled to the outside
(and weakly coupled to the rest of the system), while the remaining 1023 modes are more strongly
coupled to each other than they are to the outside. It is these issues of coupling-strength that
determine which modes are in equilibrium and which (if any) are far from equilibrium. This is
consistent with our de�nition of equilibrium (section 10.1).

Thermodynamics treats all the equilibrated modes on an equal footing. One manifestation of this
can be seen in equation 9.1, where each state contributes one term to the sum . . . and addition is
commutative.

There will never be an axiom that says such-and-such mode is always in equilibrium or always not;
the answer is sensitive to how you engineer the couplings.

9.4 Entropy Without Constant Re-Shu�ing

It is a common mistake to visualize entropy as a highly dynamic process, whereby the system
is constantly �ipping from one microstate to another. This may be a consequence of the fallacy
discussed in section 9.3.5 (mistaking the thermal/nonthermal distinction for the kinetic/potential
distinction) . . . or it may have other roots; I'm not sure.

In any case, the fact is that re-shu�ing is not an essential part of the entropy picture.

An understanding of this point proceeds directly from fundamental notions of probability and statis-
tics.

By way of illustration, consider one hand in a game of draw poker.

A) The deck is shu�ed and hands are dealt in the usual way.

B) In preparation for the �rst round of betting, you look at your hand and discover that you've
got the infamous �inside straight�. Other players raise the stakes, and when it's your turn to
bet you drop out, saying to yourself �if this had been an outside straight the probability would
have been twice as favorable�.
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C) The other players, curiously enough, stand pat, and after the hand is over you get a chance
to �ip through the deck and see the card you would have drawn.

Let's more closely examine step (B). At this point you have to make a decision based on probability.
The deck, as it sits there, is not constantly re-arranging itself, yet you are somehow able to think
about the probability that the card you draw will complete your inside straight.

The deck, as it sits there during step (B), is not �ipping from one microstate to another. It is in
some microstate, and staying in that microstate. At this stage you don't know what microstate
that happens to be. Later, at step (C), long after the hand is over, you might get a chance to �nd
out the exact microstate, but right now at step (B) you are forced to make a decision based only
on the probability.

The same ideas apply to the entropy of a roomful of air, or any other thermodynamic system. At
any given instant, the air is in some microstate with 100% probability; you just don't know what
microstate that happens to be. If you did know, the entropy would be zero . . . but you don't know.
You don't need to take any sort of time-average to realize that you don't know the microstate.

The bottom line is that the essence of entropy is the same as the essence of probability in general:
The essential idea is that you don't know the microstate. Constant re-arrangement is not essential.

This leaves us with the question of whether re-arrangement is ever important. Of course the deck
needs to be shu�ed at step (A). Not constantly re-shu�ed, just shu�ed the once.

Again, the same ideas apply to the entropy of a roomful of air. If you did somehow obtain knowledge
of the microstate, you might be interested in the timescale over which the system re-arranges itself,
making your erstwhile knowledge obsolete and thereby returning the system to a high-entropy
condition.

The crucial point remains: the process whereby knowledge is lost and entropy is created is not part
of the de�nition of entropy, and need not be considered when you evaluate the entropy. If you walk
into a room for the �rst time, the re-arrangement rate is not your concern. You don't know the
microstate of this room, and that's all there is to the story. You don't care how quickly (if at all)
one unknown microstate turns into another.

If you don't like the poker analogy, we can use a cryptology analogy instead. Yes, physics, poker,
and cryptology are all the same when it comes to this. Statistics is statistics.

If I've intercepted just one cryptotext from the opposition and I'm trying to crack it, on some level
what matters is whether or not I know their session key. It doesn't matter whether that session key
is 10 microseconds old, or 10 minutes old, or 10 days old. If I don't have any information about it,
I don't have any information about it, and that's all that need be said.

On the other hand, if I've intercepted a stream of messages and extracted partial information from
them (via a partial break of the cryptosystem), the opposition would be well advised to �re-shu�e the
deck� i.e. choose new session keys on a timescale fast compared to my ability to extract information
about them.

Applying these ideas to a roomful of air: Typical sorts of measurements give us only a pathetically
small amount of partial information about the microstate. So it really doesn't matter whether the
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air re-arranges itself super-frequently or super-infrequently. We don't have any signi�cant amount
of information about the microstate, and that's all there is to the story.

Reference 25 presents a simulation that demonstrates the points discussed in this subsection.

9.5 Units of Entropy

Before we go any farther, convince yourself that

log10(x) =
ln(x)

ln(10)

≈ 0.434294 ln(x)

(9.2)

and in general, multiplying a logarithm by some positive number corresponds to changing the base
of the logarithm.

In the formula for entropy, equation 2.2, the base of the logarithm has intentionally been left
unspeci�ed. You get to choose a convenient base. This is the same thing as choosing what units
will be used for measuring the entropy.

Some people prefer to express the units by choosing the base of the logarithm, while others prefer to
stick with natural logarithms and express the units more directly, using an expression of the form:

S[P ] := k
∑
i

Pi ln(1/Pi) (9.3)

In this expression we stipulated e as the base of the logarithm. Whereas equation 2.2 we could
choose the base of the logarithm, in equation 9.3 we get to choose the numerical value and units for
k. This is a super�cially di�erent solution to the same problem. Reasonable choices include:

k = 1.380649×10−23 J/K
= 1/ ln(3) trit
= 1 nat
= 1/ ln(2) bit

(9.4)

It must be emphasized that all these expressions are mathematically equivalent. In each case, the
numerical part of k balances the units of k, so that the meaning remains unchanged. In some cases
it is convenient to absorb the numerical part of k into the base of the logarithm:

S[P ] = k
∑

i Pi ln(1/Pi) (in general)
k = 1.380649×10−23

∑
i Pi ln(1/Pi) J/K (SI)

=
∑

i Pi logΩ(1/Pi) J/K (SI)
=

∑
i Pi log3(1/Pi) trit

=
∑

i Pi loge(1/Pi) nat
=

∑
i Pi log2(1/Pi) bit

(9.5)

where the third line uses the remarkably huge base Ω = exp(1.24×1022). When dealing with smallish
amounts of entropy, units of bits are conventional and often convenient. When dealing with large
amounts of entropy, units of J/K are conventional and often convenient. These are related as follows:

1J/K = 1.04×1023bits
1bit = 9.57×10−24J/K

(9.6)
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A convenient unit for molar entropy is Joules per Kelvin per mole:
1J/K/mol = 0.17bit/particle
1bit/particle = 5.76J/K/mol = R ln(2)

(9.7)

Values in this range (on the order of one bit per particle) are very commonly encountered.

If you are wondering whether equation 9.7 is OK from a dimensional-analysis point of
view, fear not. Temperature units are closely related to energy units. Speci�cally, energy
is extensive and can be measured in joules, while temperature is intensive and can be
measured in kelvins. Therefore combinations such as (J/K/mol) are dimensionless units.
A glance at the dimensions of the ideal gas law should su�ce to remind you of this if
you ever forget.

See reference 26 for more about dimensionless units.

9.6 Probability versus Multiplicity

Let us spend a few paragraphs discussing a strict notion of multiplicity, and then move on to a
more nuanced notion. (We also discuss the relationship between an equiprobable distribution and
a microcanonical ensemble.)

9.6.1 Exactly Equiprobable

Suppose we have a system where a certain set of states2 (called the �accessible� states) are equiprob-
able, i.e. Pi = 1/W for some constantW . Furthermore, all remaining states are �inaccessible� which
means they all have Pi = 0. The constant W is called the multiplicity.

Note: Terminology: The W denoting multiplicity in this section is unrelated to the
W denoting work elsewhere in this document. Both usages of W are common in the
literature. It is almost always obvious from context which meaning is intended, so there
isn't a serious problem. Some of the literature uses Ω to denote multiplicity.

The probability per state is necessarily the reciprocal of the number of accessible states, since (in
accordance with the usual de�nition of �probability�) we want our probabilities to be normalized:∑
Pi = 1.

In this less-than-general case, the entropy (as given by equation 2.2) reduces to

S = logW (provided the microstates are equiprobable) (9.8)

As usual, you can choose the base of the logarithm according to what units you prefer for measuring
entropy: bits, nats, trits, J/K, or whatever. Equivalently, you can �x the base of the logarithm and
express the units by means of a factor of k out front, as discussed in section 9.5:

S = k lnW (provided the microstates are equiprobable) (9.9)
2Here �states� means �microstates�.



Connecting Entropy with Energy 9�11

This equation is prominently featured on Boltzmann's tombstone. However, I'm pretty
sure (a) he didn't put it there, (b) Boltzmann was not the one who originated or em-
phasized this formula (Planck was), and (c) Boltzmann was well aware that this is not
the most general expression for the entropy. I mention this because a lot of people who
ought to know better take equation 9.9 as the unassailable de�nition of entropy, and
sometimes they cite Boltzmann's tombstone as if it were the ultimate authority on the
subject.

In any case, (d) even if Boltzmann had endorsed equation 9.9, appeal to authority is
not an acceptable substitute for scienti�c evidence and logical reasoning. We know more
now than we knew in 1898, and we are allowed to change our minds about things ...
although in this case it is not necessary. Equation 2.2 has been the faithful workhorse
formula for a very long time.

There are various ways a system could wind up with equiprobable states:
• Consider a well-shu�ed deck of cards. This is an example of a non-thermal system where the
states are equiprobable.
• Consider a thermal system that is thermally isolated so that all accessible microstates have
the same energy. This is called a microcanonical system. It will have equiprobable states in
accordance with the equipartition law, equation 9.1.

Consider two blocks of copper that are identical except that one of them has more energy than the
other. They are thermally isolated from each other and from everything else. The higher-energy
block will have a greater number of accessible states, i.e. a higher multiplicity. In this way you can,
if you wish, de�ne a notion of multiplicity as a function of energy level.

On the other hand, you must not get the idea that multiplicity is a monotone function of energy or
vice versa. Such an idea would be quite incorrect when applied to a spin system.

Terminology: By de�nition, a level is a group of microstates. An energy level is a
group of microstates all with the same energy (or nearly the same energy, relative to
other energy-scales in the problem). By connotation, usually when people speak of a
level they mean energy level.

9.6.2 Approximately Equiprobable

We now introduce a notion of �approximate� equiprobability and �approximate� multiplicity by
reference to the example in the following table:

Level # microstates Probability Probability Entropy
in level of microstate of level (in bits)

1 2 0.01 0.020 0.133
2 979 0.001 0.989 9.757
3 1,000,000 1E-09 0.001 0.030

Total: 1,000,981 1.000 9.919
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The system in this example 1,000,981 microstates, which we have grouped into three levels. There
are a million states in level 3, each of which occurs with probability one in a billion, so the probability
of observing some state from this level is one in a thousand. There are only two microstates in level
1, each of which is observed with a vastly larger probability, namely one in a hundred. Level 2
is baby-bear just right. It has a moderate number of states, each with a moderate probability ...
with the remarkable property that on a level-by-level basis, this level dominates the probability
distribution. The probability of observing some microstate from level 2 is nearly 100%.

The bottom line is that the entropy of this distribution is 9.919 bits, which is 99.53% of the entropy
you would have if all the probability were tied up in 1000 microstates with probability 0.001 each.

Beware of some overloaded terminology:

In the table, the column we have labeled �#
microstates in level� is conventionally called
the multiplicity of the level.

If we apply the S = log(W ) formula in reverse,
we �nd that our example distribution has a
multiplicity of W = 2S = 29.919 = 968; this is
the e�ective multiplicity of the distribution as
a whole.

So we see that the e�ective multiplicity of the distribution is dominated by the multiplicity of level
2. The other levels contribute very little to the entropy.

You have to be careful how you describe the microstates in level 2. Level 2 is the most probable
level (on a level-by-level basis), but its microstates are not the most probable microstates (on a
microstate-by-microstate basis).

In the strict notion of multiplicity, all the states that were not part of the dominant level were
declared �inaccessible�, but alas this terminology becomes hopelessly tangled when we progress to
the nuanced notion of multiplicity. In the table, the states in level 3 are high-energy states, and it
might be OK to say that they are energetically inaccessible, or �almost� inaccessible. It might be
super�cially tempting to label level 1 as also inaccessible, but that would not be correct. The states
in level 1 are perfectly accessible; their only problem is that they are few in number.

I don't know how to handle �accessibility� except to avoid the term, and to speak instead of �dom-
inant� levels and �negligible� levels.

A system that is thermally isolated so that
all microstates have the same energy is called
microcanonical.

In contrast, an object in contact with a
constant-temperature heat bath is called
canonical (not microcanonical). Furthermore,
a system that can exchange particles with a
reservoir, as described by a chemical potential,
is called grand canonical (not microcanonical
or canonical).

The strict de�nition of multiplicity applies di-
rectly to microcanonical ensembles and other
strictly equiprobable distributions. Equa-
tion 9.8 applies exactly to such systems.

Equation 9.8 does not apply exactly to canon-
ical or grand-canonical systems, and may not
apply even approximately. The correct ther-
mal probability distribution is shown in �g-
ure 9.1.
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There exist intermediate cases, which are com-
mon and often important. In a canonical or
grand-canonical thermal system, we can get
into a situation where the notion of multi-
plicity is a good approximation � not exact,
but good enough. This can happen if the en-
ergy distribution is so strongly peaked near
the most-probable energy that the entropy is
very nearly what you would get in the strictly-
equiprobable case. This can be roughly under-
stood in terms of the behavior of Gaussians.
If we combine N small Gaussians to make one
big Gaussian, the absolute width scales like√
N and the relative width scales like

√
N/N .

The latter is small when N is large.

One should not attach too much importance to the tradeo� in the table above, namely the tradeo�
between multiplicity (increasing as we move down the table) and per-microstate probability (de-
creasing as we move down the table). It is tempting to assume all thermal systems must involve
a similar tradeo�, but they do not. In particular, at negative temperatures (as discussed in ref-
erence 27), it is quite possible for the lower-energy microstates to outnumber the higher-energy
microstates, so that both multiplicity and per-microstate probability are decreasing as we move
down the table toward higher energy.

You may reasonably ask whether such a system might be unstable, i.e. whether the entire system
might spontaneously move toward the high-energy high-probability high-multiplicity state. The
answer is that such a move cannot happen because it would not conserve energy. In a thermally-
isolated system, if half of the system moved to higher energy, you would have to �borrow� that
energy from the other half, which would then move to lower energy, lower multiplicity, and lower
probability per microstate. The overall probability of the system depends on the probability of
the two halves taken jointly, and this joint probability would be unfavorable. If you want to get
technical about it, stability does not depend on the increase or decrease of multiplicity as a function
of energy, but rather on the convexity which measures what happens if you borrow energy from one
subsystem and lend it to another.

9.6.3 Not At All Equiprobable

Consider the probability distribution shown in �gure 9.5. There is one microstate with probability
1/2, another with probability 1/4, another with probability 1/8, et cetera. Each microstate is
represented by a sector in the diagram, and the area of the sector is proportional to the microstate's
probability.

Some information about these microstates can be found in the following table.
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Figure 9.5: Exponential Distribution

State# Probability Suprise Value
/ bits

1 0.5 1
2 0.25 2
3 0.125 3
4 0.0625 4
5 0.03125 5
6 0.015625 6
7 0.0078125 7
8 0.00390625 8
9 0.001953125 9
10 0.0009765625 10
... et cetera ...

The total probability adds up to 1, as you can verify by summing the numbers in the middle column.
The total entropy is 2, as you can verify by summing the surprisals weighted by the corresponding

probabilities. The total number of states is in�nite, and the multiplicity W is in�nite. Note that

S = 2
k lnW = ∞
S 6= k lnW

(9.10)

which means that equation 9.9 de�nitely fails to work for this distribution. It fails by quite a large
margin.
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9.7 Discussion

Some people are inordinately fond of equation 9.8 or equivalently equation 9.9. They are tempted
to take it as the de�nition of entropy, and sometimes o�er outrageously unscienti�c arguments in
its support. But the fact remains that Equation 2.2 is an incomparably more general, more reliable
expression, while equation 9.9 is a special case, a less-than-general corollary, a sometimes-acceptable
approximation.

Speci�c reasons why you should not consider equation 9.8 to be axiomatic include:

1. Theory says that you cannot exactly reconcile a Boltzmann probability distribution with an
equiprobable distribution.

2. In practice, equation 9.8 is usually not an acceptable approximation for small systems. Ther-
modynamics applies to small systems, but equation 9.8 usually does not.

3. For large systems, even though equation 9.8 commonly leads to valid approximations for
�rst-order quantities (e.g. energy, entropy, temperature, and pressure) ... it does not lead to
valid results for second-order quantities such as �uctuations (energy �uctuations, temperature
�uctuations, et cetera).

For a thermal distribution, the probability of a microstate is given by equation 9.1. So, even within
the restricted realm of thermal distributions, equation 9.9 does not cover all the bases; it applies if
and only if all the accessible microstates have the same energy. It is possible to arrange for this to
be true, by constraining all accessible microstates to have the same energy. That is, it is possible to
create a microcanonical system by isolating or insulating and sealing the system so that no energy
can enter or leave. This can be done, but it places drastic restrictions on the sort of systems we can
analyze.
• Two of the four phases of the Carnot cycle are carried out at constant temperature, not
constant energy. The system is in contact with a heat bath, not isolated or insulated. A
theory of �thermodynamics� without heat engines would be pretty lame.
• A great many chemistry-lab recipes call for the system to be held at constant temperature while
the reaction proceeds. Vastly fewer call for the system to be held in a thermally-insulated �ask
while the reaction proceeds. A theory of �thermodynamics� incapable of describing typical
laboratory procedures would be pretty lame.
• Even if the overall system is insulated, we often arrange it so that various subsystems within
the system are mutually in equilibrium. For example, if there is liquid in a �ask, we expect
the left half of the liquid to be in thermal equilibrium with the right half, especially if we
stir things. But remember, equilibrium involves having a shared temperature. The left half is
not thermally insulated from the right half; energy is exchanged between the two halves. The
microstates of the left half are not equiprobable. A theory of �thermodynamics� incapable of
describing thermal equilibrium would be pretty lame.

9.8 Misconceptions about Spreading

This section exists mainly to dispel a misconception. If you do not su�er from this particular misconception, you should probably skip this section, especially on �rst reading.
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Non-experts sometimes get the idea that whenever something is more dispersed � more spread out
in position � its entropy must be higher. This is a mistake.

There is a fundamental conceptual problem, which should be obvious from the fact that the degree
of dispersal, insofar as it can be de�ned at all, is a property of the microstate + whereas entropy
is a property of the macrostate as a whole, i.e. a property of the ensemble, i.e. a property of the
probability distribution as a whole, as discussed in section 2.4 and especially section 2.7.1. A similar
microstate versus macrostate argument applies to the �disorder� model of entropy, as discussed in
section 2.5.5. In any case, whatever �dispersal� is measuring, it's not entropy.

Yes, you can �nd selected scenarios where a gas expands and does gain entropy (such as isothermal
expansion, or di�usive mixing as discussed in section 11.6) . . . but there are also scenarios where a
gas expands but does not gain entropy (reversible thermally-isolated expansion). Indeed there are
scenarios where a gas gains entropy by becoming less spread out, as we now discuss:

Consider a closed system consisting of a tall column of gas in a gravitational �eld, at a uniform
not-too-high temperature such that kT < m|g|H. Start from a situation where the density3 is
uniform, independent of height, as in �gure 9.6a. This is not the equilibrium distribution.

As the system evolves toward equilibrium, irreversibly, its entropy will increase. At equilibrium,
the density will be greater toward the bottom and lesser toward the top, as shown in �gure 9.6b.
Furthermore, the equilibrium situation does not exhibit even dispersal of energy. The kinetic energy
per particle is evenly dispersed, but the potential energy per particle and the total energy per particle
are markedly dependent on height.

There are theorems about what does get uniformly distributed, as discussed in chapter 25. Neither
density nor energy is the right answer.

As another example, consider two counter-rotating �ywheels. In particular, imagine that these
�ywheels are annular in shape, i.e. hoops, as shown in �gure 9.7, so that to a good approximation,
all the mass is at the rim, and every bit of mass is moving at the same speed. Also imagine that
they are stacked on the same axis. Now let the two wheels rub together, so that friction causes
them to slow down and heat up. Entropy has been produced, but the energy has not become
more spread-out in space. To a �rst approximation, the energy was everywhere to begin with and
everywhere afterward, so there is no change.

If we look more closely, we �nd that as the entropy increased, the energy dispersal actually decreased
slightly. That is, the energy became slightly less evenly distributed in space. Under the initial con-
ditions, the macroscopic rotational mechanical energy was evenly distributed, and the microscopic
forms of energy were evenly distributed on a macroscopic scale, plus or minus small local thermal
�uctuations. Afterward, the all the energy is in the microscopic forms. It is still evenly distributed
on a macroscopic scale, plus or minus thermal �uctuations, but the thermal �uctuations are now
larger because the temperature is higher. Let's be clear: If we ignore thermal �uctuations, the
increase in entropy was accompanied by no change in the spatial distribution of energy, while if
we include the �uctuations, the increase in entropy was accompanied by less even dispersal of the
energy.

3If you want to be quantitative about the density, consider a smallish parcel of gas at a particular height.
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Figure 9.7: Grinding Wheels
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Here's yet another nail in the co�n of the �dispersal� model of entropy. Consider a thermally
isolated system consisting of gas in a piston pushing up on a mass, subject to gravity, as shown in
�gure 9.8. Engineer it to make dissipation negligible. Let the mass oscillate up and down, reversibly.
The matter and energy become repeatedly more and less �disperse�, with no change in entropy.

Figure 9.8: Matter and Energy Dispersing and Un-Dispersing

Here's another reason why any attempt to de�ne entropy in terms of �energy dispersal� or the like
is Dead on Arrival: Entropy is de�ned in terms of probability, and applies to systems where the
energy is zero, irrelevant, and/or unde�nable.

As previously observed, states are states; they are not necessarily energy states.
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9.9 Spreading in Probability Space

You can salvage the idea of spreading if you apply it to the spreading of probability in an abstract
probability-space (not the spreading of energy of any kind, and not spreading in ordinary position-
space).

This is not the recommended way to introduce the idea of entropy, or to de�ne entropy. It is better to introduce entropy by means of guessing games, counting the number of questions, estimating the missing information, as discussed in chapter 2. At the next level of detail, the workhorse formula for quantifying the entropy is equation 2.2 This section exists mainly to dispel some spreading-related misconceptions. If you do not su�er from these particular misconceptions, you should probably skip this section, especially on �rst reading.

If you insist on using the idea of spreading, here's an example that illustrates the idea and can be
analyzed in detail. Figure 9.9 shows two blocks under three transparent cups. In the �rst scenario,
the blocks are �concentrated� in the 00 state. In the probability histogram below the cups, there
is unit probability (shown in magenta) in the 00 slot, and zero probability in the other slots, so
p log(1/p) is zero everywhere. That means the entropy is zero.

In the next scenario, the blocks are spread out in position, but since we know exactly what state
they are in, all the probability is in the 02 slot. That means p log(1/p) is zero everywhere, and the
entropy is still zero.

In the third scenario, the system is in some randomly chosen state, namely the 21 state, which is
as disordered and as random as any state can be, yet since we know what state it is, p log(1/p) is
zero everywhere, and the entropy is zero.

The fourth scenario is derived from the third scenario, except that the cups are behind a screen.
We can't see the blocks right now, but we remember where they are. The entropy remains zero.

Finally, in the �fth scenario, we simply don't know what state the blocks are in. The blocks are
behind a screen, and have been shu�ed since the last time we looked. We have some vague notion
that on average, there is 2/3rds of a block under each cup, but that is only an average over many
states. The probability histogram shows there is a 1-out-of-9 chance for the system to be in any of
the 9 possible states, so

∑
p log(1/p) = log(9) .

One point to be made here is that entropy is not de�ned in terms of particles that are spread out
(�dispersed�) in position-space, but rather in terms of probability that is spread out in state-space.
This is quite an important distinction. For more details on this, including an interactive simulation,
see reference 25.

Entropy involves probability spread out in state-space,
• not necessarily anything spread out in position-space,
• not necessarily particles spread out in any space,
• not necessarily energy spread out in any space.

To use NMR language, entropy is produced on a timescale τ2, while energy-changes take place on
a timescale τ1. There are systems where τ1 is huuugely longer than τ2. See also section 11.5.5 and
�gure 1.3. (If this paragraph doesn't mean anything to you, don't worry about it.)

As a way of reinforcing this point, consider a system of spins such as discussed in section 11.10.
The spins change orientation, but they don't change position at all. Their positions are locked to
the crystal lattice. The notion of entropy doesn't require any notion of position; as long as we have
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Figure 9.9: Spreading vs. Randomness vs. Uncertainty
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states, and a probability of occupying each state, then we have a well-de�ned notion of entropy.
High entropy means the probability is spread out over many states in state-space.

State-space can sometimes be rather hard to visualize. As mentioned in section 2.3, a well-shu�ed
card deck has nearly 2226 bits of entropy . . . which is a stupendous number. If you consider the
states of gas molecules in a liter of air, the number of states is even larger � far, far beyond what
most people can visualize. If you try to histogram these states, you have an unmanageable number
of slots (in contrast to the 9 slots in �gure 9.9) with usually a very small probability in each slot.

Another point to be made in connection with �gure 9.9 concerns the relationship between observing
and stirring (aka mixing, aka shu�ing). Here's the rule:

not looking looking
not stirring entropy constant entropy decreasing (aa)

stirring entropy increasing (aa) indeterminate change in entropy

where (aa) means almost always; we have to say (aa) because entropy can't be increased by stirring
if it is already at its maximum possible value, and it can't be decreased by looking if it is already
zero. Note that if you're not looking, lack of stirring does not cause an increase in entropy. By the
same token, if you're not stirring, lack of looking does not cause a decrease in entropy. If you are
stirring and looking simultaneously, there is a contest between the two processes; the entropy might
decrease or might increase, depending on which process is more e�ective.

The simulation in reference 25 serves to underline these points.

Last but not least, it must be emphasized that spreading of probability in probability-space is
dramatically di�erent from spreading energy (or anything else) in ordinary position-space. For one
thing, these two spaces don't even have the same size. Suppose you have a crystal with a million
evenly-spaced copper atoms. We consider the magnetic energy of the nuclear spins. Each nucleus
can have anywhere from zero to four units of energy. Suppose the total energy is two million units,
which is what we would expect for such a system at high temperature.

� If you are just dispersing the energy in position-space, there are a million di�erent locations
in this space. That's just barely a seven-digit number. You just assign one one-millionth of
the energy to each one. That is, you give the atoms two units of energy apiece. It's all very
simple ... but wrong.

� In probability space, the total number of states is 4 to the millionth power. That's a number
with 600,000 digits. At high temperature, the probability is spread evenly over all of these
states.

Let's be clear: a number with 600,000 digits is very much larger than a number with six or seven
digits. If you imagine spreading the energy in position-space, it gives entirely the wrong picture.
The physics cares about spreading the probability in a completely di�erent space, a very much
larger space. The probability is spread very much more thinly.
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Chapter 10

Additional Fundamental Notions

10.1 Equilibrium

Feynman de�ned equilibrium to be �when all the fast things have happened but the slow things have
not� (reference 28). That statement pokes fun at the arbitrariness of the split between �fast� and
�slow� � but at the same time it is 100% correct and insightful. There is an element of arbitrariness
in our notion of equilibrium. Note the following contrast:

Over an ultra-long timescale, a diamond will
turn into graphite.

Over an ultra-short timescale, you can have
non-equilibrium distributions of phonons rat-
tling around inside a diamond crystal, such
that it doesn't make sense to talk about the
temperature thereof.

Usually thermodynamics deals with the in-
termediate timescale, long after the phonons
have become thermalized but long before the
diamond turns into graphite. During this in-
termediate timescale it makes sense to talk
about the temperature, as well as other ther-
modynamic properties such as volume, den-
sity, entropy, et cetera.

One should neither assume that equilibrium exists, nor that it doesn't.

� Diamond has a vast, clear-cut separation between the slow timescale and the fast timescale.
Most intro-level textbook thermodynamics deal only with systems that have a clean separation.

� In the real world, one often encounters cases where the separation of timescales is not so clean,
and an element of arbitrariness is involved. The laws of thermodynamics can still be applied,
but more e�ort and more care is required. See section 11.3 for a discussion.
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The word equilibrium is quite ancient. The word has the same stem as the name of the constellation
�Libra� � the scale. The type of scale in question is the two-pan balance shown in �gure 10.1,
which has been in use for at least 7000 years.

Figure 10.1: Equilibrium � Forces in Balance

The notion of equilibrium originated in mechanics, long before thermodynamics came along. The
compound word �equilibrium� translates literally as �equal balance� and means just that: everything
in balance. In the context of mechanics, it means there are no unbalanced forces, as illustrated in
the top half of �gure 10.2.

Our de�nition of equilibrium applies to in�nitely large systems, to microscopic systems, and to
everything in between. This is important because in �nite systems, there will be �uctuations even
at equilibrium. See section 10.8 for a discussion of �uctuations and other �nite-size e�ects.

10.2 Non-Equilibrium; Timescales

The idea of equilibrium is one of the foundation-stones of thermodynamics ... but any worthwhile
theory of thermodynamics must also be able to deal with non-equilibrium situations.

Consider for example the familiar Carnot heat engine: It depends on having two heat reservoirs at
two di�erent temperatures. There is a well-known and easily-proved theorem (section 14.4) that
says at equilibrium, everything must be at the same temperature. Heat bath #1 may be internally
in equilibrium with itself at temperature T1, and heat bath may be internally in equilibrium with
itself at temperature T2, but the two baths cannot be in equilibrium with each other.

So we must modify Feynman's idea. We need to identify a timescale of interest such that all the
fast things have happened and the slow things have not. This timescale must be long enough so
that certain things we want to be in equilibrium have come into equilibrium, yet short enough so
that things we want to be in non-equilibrium remain in non-equilibrium.

Here's another everyday example where non-equilibrium is important: sound. As you know, in a
sound wave there will be some points where the air is compressed an other points, a half-wavelength
away, where the air is expanded. For ordinary audible sound, this expansion occurs isentropically
not isothermally. It you analyze the physics of sound using the isothermal compressibility instead of
the isentropic compressibility, you will get the wrong answer. Among other things, your prediction
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for the speed of sound will be incorrect. This is an easy mistake to make; Isaac Newton made this
mistake the �rst time he analyzed the physics of sound.

Again we invoke the theorem that says in equilibrium, the whole system must be at the same
temperature. Since the sound wave is not isothermal, and cannot even be satisfactorily approx-
imated as isothermal, we conclude that any worthwhile theory of thermodynamics must include
non-equilibrium thermodynamics.

For a propagating wave, the time (i.e. period) scales like the distance (i.e. wavelength). In contrast,
for di�usion and thermal conductivity, the time scales like distance squared. That means that
for ultrasound, at high frequencies, a major contribution to the attenuation of the sound wave is
thermal conduction between the high-temperature regions (wave crests) and the low-temperature
regions (wave troughs). If you go even farther down this road, toward high thermal conductivity
and short wavelength, you can get into a regime where sound is well approximated as isothermal.
Both the isothermal limit and the isentropic limit have relatively low attenuation; the intermediate
case has relatively high attenuation.

10.3 E�ciency; Timescales

Questions of e�ciency are central to thermodynamics, and have been since Day One (reference 29).

For example in �gure 1.3, if we try to extract energy from the battery very quickly, using a very low
impedance motor, there will be a huge amount of power dissipated inside the battery, due to the
voltage drop across the internal series resistor R1. On the other hand, if we try to extract energy
from the battery very slowly, most of the energy will be dissipated inside the battery via the shunt
resistor R2 before we have a chance to extract it. So e�ciency requires a timescale that is not too
fast and not too slow.

Another example is the familiar internal combustion engine. It has a certain tach at which it works
most e�ciently. The engine is always nonideal because some of the heat of combustion leaks across
the boundary into the cylinder block. Any energy that goes into heating up the cylinder block is
unavailable for doing P DV work. This nonideality becomes more serious when the engine is turning
over slowly. On the other edge of the same sword, when the engine is turning over all quickly, there
are all sorts of losses due to friction in the gas, friction between the mechanical parts, et cetera.
These losses increase faster than linearly as the tach goes up.

If you have gas in a cylinder with a piston and compress it slowly, you can (probably) treat the
process as reversible. On the other hand, if you move the piston suddenly, it will stir the gas. This
can be understood macroscopically in terms of sound radiated into the gas, followed by frictional
dissipation of the sound wave (section 11.5.1). It can also be understood microscopically in terms of
time-dependent perturbation theory; a sudden movement of the piston causes microstate transitions
that would otherwise not have occurred (section 11.5.2).

Timescales matter.
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10.4 Spontaneity, Irreversibility, Stability, and Equilibrium

Another of the great achievements of thermodynamics is the ability to understand what processes
occur spontaneously (and therefore irreversibly) and what processes are reversible (and therefore
non-spontaneous). The topic of spontaneity, reversibility, stability, and thermodynamic equilibrium
is discussed in depth in chapter 14.

Any theory of thermodynamics that considers only reversible processes � or which formulates its
basic laws and concepts in terms of reversible processes � is severely crippled.

If you want to derive the rules that govern spontaneity and irreversibility, as is done in chapter 14,
you need to consider perturbations away from equilibrium. If you assume that the perturbed states
are in equilibrium, the derivation is guaranteed to give the wrong answer.

In any reversible process, entropy is a conserved quantity. In the real world, entropy is not a
conserved quantity.

If you start with a reversible-only equilibrium-only (ROEO) theory of thermodynamics and try
to extend it to cover real-world situations, it causes serious conceptual di�culties. For example,
consider an irreversible process that creates entropy from scratch in the interior of a thermally-
isolated region. Then imagine trying to model it using ROEO ideas. You could try to replace the
created entropy by entropy the �owed in from some fake entropy reservoir, but that would just
muddy up the already-muddy de�nition of heat. Does the entropy from the fake entropy reservoir
count as �heat�? The question is unanswerable. The �yes� answer is unphysical since it violates the
requirement that the system is thermally isolated. The �no� answer violates the basic conservation
laws.

Additional examples of irreversible processes that deserve our attention are discussed in sections
10.3, 11.5.1, 11.5.3, 11.5.5, and 11.6.

Any theory of reversible-only equilibrium-only thermodynamics is dead on arrival.

ROEO = DoA

10.5 Stability

The basic ideas of stability and equilibrium are illustrated in �gure 10.2. (A more quantitative
discussion of stability, equilibrium, spontaneity, reversibility, etc. can be found in chapter 14.)

We can understand stability as follows: Suppose we have two copies (two instances) of the same
system. Suppose the initial condition of instance A is slightly di�erent from the initial condition of
instance B. If the subsequent behavior of the two copies remains closely similar, we say the system
is stable.

More speci�cally, we de�ne stability as follows: If the di�erence in the behavior is proportionate to
the di�erence in initial conditions, we say the system is stable. Otherwise it is unstable. This notion
of stability was formalized by Lyapunov in the 1880s, although it was understood in less-formal ways
long before then.
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Figure 10.2: Equilibrium and Stability

For a mechanical system, such as in �gure 10.2, we can look into the workings of how equilibrium
is achieved. In particular,

� Consider the wheel with the weight at the bottom, as shown at the lower left in �gure 10.2.
Suppose instance A starts out in equilibrium and remains in equilibrium. Instance B starts
out at the same position, but is not in equilibrium because of an additional, external, applied
force. The applied force gives rise to a displacement, and the displacement gives rise to an
internal force that opposes the applied force, eventually canceling the applied force altogether.
Such a system has positive static stability.

Note that the equilibrium position in system B is shifted relative to the equilibrium position
in system A. Stability does not require the system to return to its original position. It only
requires that the response be proportionate to the disturbance.

� Now consider the perfectly balanced wheel. An applied force gives rise to a displacement, and
the displacement gives rise to no force whatsoever. Such a system has zero static stability.

If rather than applying a force, we simply move this system to a new position, it will be at
equilibrium at the new position. There will be in�nitely many equilibrium positions.

� Now consider the wheel with the weight at the top. An applied force gives rise to a displace-
ment. The displacement gives rise to an internal force in the same direction, amplifying the
e�ect of the applied force. We say such a system has negative static stability.

For a non-mechanical system, such as a chemical reaction system, corresponding ideas apply, al-
though you have to work harder to de�ne the notions that correspond to displacement, applied
force, restoring force, et cetera.

A system with positive static stability will be stable in the overall sense, unless there is a lot of
negative damping or something peculiar like that.



10�6 Modern Thermodynamics

Note that a system can be stable with respect to one kind of disturbance but unstable with respect
to another. As a simple example, consider the perfectly balanced wheel, with no damping.

� If system �A� is in equilibrium at rest at position zero, and system �B� is the same except at
a di�erent initial position, then the long- term di�erence in position is proportionate to the
disturbance. The system is stable.

� If system �A� is in equilibrium at rest at position zero, and system �B� is the same except with
a di�erent initial velocity, then the long-term di�erence in position is unbounded, completely
disproportionate to the disturbance. The system is unstable.

To determine stability, normally you need to consider all the dynamical variables. In the previous
example, the long-term velocity di�erence is bounded, but that doesn't mean the system is stable,
because the long-term position is unbounded.

Properly speaking, a system with zero stability can be called �neutrally unstable�. More loosely
speaking, sometimes a system with zero stability is called �neutrally stable�, although that is a
misnomer. A so-called �neutrally stable� system is not stable, just as �zero money� is not the same
as �money�.

Tangential remark: In chemistry class you may have heard of �Le Châtelier's principle�. Ever since
Le Châtelier's day there have been two versions of the �principle�, neither of which can be taken
seriously, for reasons discussed in section 14.9.

10.6 Relationship between Static Stability and Damping

To reiterate: Stability means that two systems that start out with similar initial conditions will
follow similar trajectories. Sometimes to avoid confusion, we call this the �overall� stability or the
�plain old� stability ... but mostly we just call it the stability.

Meanwhile, static stability arises from a force that depends on position of the system. In contrast,
damping refers to a force that depends on the velocity.

The term �dynamic stability� is confusing. Sometimes it refers to damping, and sometimes it
refers to the plain old stability, i.e. the overall stability. The ambiguity is semi-understandable and
usually harmless, because the only way a system can have positive static stability and negative
overall stability is by having negative damping.

Static stability can be positive, zero, or negative; damping can also be positive, zero, or negative.
A dynamical system can display any combination of these two properties � nine possibilities in all,
as shown in �gure 10.3. In the top row, the bicycle wheel is dipped in molasses, which provides
damping. In the middle row, there is no damping. In the bottom row, you can imagine there is
some hypothetical �anti-molasses� that provides negative damping.

The �ve possibilities in the bottom row and the rightmost column have negative overall stability, as
indicated by the pale-red shaded region. The three possibilities nearest the upper-left corner have
positive overall stability, as indicated by the pale-blue shaded region. The middle possibility (no
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static stability and no damping) is stable with respect to some disturbances (such as a change in
initial position) but unstable with respect to others (such as a change in initial velocity).

By the way: Damping should be called �damping� not �dampening� � if you start talking about a
�dampener� people will think you want to moisten the system.

10.7 Scaling; Extensive versus Intensive

10.7.1 Fundamental Notions

In �gure 10.4, we initially have three separate systems � A, B, and C � separated by thin
partitions. They are meant to be copies of each other, all in the same thermodynamic state. Then
we pull out the partitions. We are left with a single system � ABC � with three times the energy,
three times the entropy, three times the volume, and three times the number of particles.

copyright © 2021 jsd

A B C

Figure 10.4: Scaling a System

� We say that the quantities E, S, V , and N are extensive. That means they grow in proportion
to the size of the system when we perform such an experiment (to a good approximation).

� In contrast, we say that T , P , and µ are intensive. That means they are unchanged when we
pull out the partitions (to a good approximation).

Suppose we have a system where the energy can be expressed as a function of certain other extensive
variables:

E = E(V, S,N)
= E(X)

(10.1)

Note: If there are multiple chemical components, then N is a vector, with components Nν .

In any case, it is convenient and elegant to lump the variables on the RHS into a vector X with
components Xi for all i. (This X does not contain all possible extensive variables; just some selected
set of them, big enough to span the thermodynamic state space. In particular, E is extensive, but
not included in X.)

We introduce the general mathematical notion of homogeneous function as follows. Let α be a
scalar. If we have a function with the property:

E(αX) = αkE(X) (for all α) (10.2)

then we say the function E is homogeneous of degree k.

Applying this to thermo, we say the energy is a homogeneous function of the selected extensive
variables, of degree k = 1.
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10.7.2 Euler's Thermodynamic Equation

It is amusing to di�erentiate equation 10.2 with respect to α, and then set α equal to 1.∑
i

∂E(X)
∂Xi|Xj 6=iXi = kαk−1E

= kE (specializing to α = 1)
= E (since k = 1 for thermo)

(10.3)

There are conventional names for the partial derivatives on the LHS: temperature, −pressure,
and chemical potential, as discussed in section 7.4. Note that these derivaties are intensive (not
extensive) quantities. Using these names, we get:

TS − PV + µN = E (10.4)

which is called Euler's thermodynamic equation. It is a consequence of the fact that the extensive
variables are extensive. It imposes a constraint, which means that not all of the variables are
independent.

If there are multiple chemical components, this generalizes to:

TS − PV +
∑

ν µνNν = E (10.5)

10.7.3 Gibbs-Duhem Equation

If we take the exterior derivative of equation 10.4 we obtain:

TdS + SdT−PdV − V dP+µdN +Ndµ = dE (10.6)

The red terms on the LHS are just the expanded form of the gradient of E, expanded according to
the chain rule, as discussed in connection with equation 7.5 in section 7.4. Subtracting this from
both sides gives us:

S dT − V dP +N dµ = 0 (10.7)

which is called the Gibbs-Duhem equation. It is a vector equation (in contrast to equation 10.4,
which is a scalar equation). It is another way of expressing the contraint that comes from the fact
that the extensive variables are extensive.

This has several theoretical rami�cations as well as practical applications.

For starters: It may be tempting to visualize the system in terms of a thermodynamic state space
where dT , dP , and dµ are orthogonal, or at least linearly independent. However, this is impossible.
In fact dµ must lie within the two-dimensional state space spanned by dT and dP . We know this
because a certain weighted sum has to add up to zero, as shown in �gure 10.5.

Figure 10.5: Gibbs-Duhem: Linearly Dependent

Technical note: For most purposes it is better to think of the ectors dT , dP , and dµ as one-forms
(row vectors) rather than pointy vectors (column vectors), for reasons discussed in reference 4.
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However, equation 10.7 is a simple linear-algebra proposition, and it can be visualized in terms of
pointy vectors. There's no harm in temporarily using the pointy-vector representation, and it makes
the vector-addition rule easier to visualize.

10.7.4 Remarks and Caveats

� Nothing is ever perfectly extensive. There are always boundary terms that don't scale the
same way as the bulk terms, as discussed in section 10.8. However, for big-enough systems,
the boundary terms can be neglected, and the scaling analysis presented here is an excellent
approximation.

� One can �nd derivations of the Gibbs-Duhem equation that start by assuming the system is
(a) at equilibrium, (b) at constant temperature, and (c) at constant volume. However, none
of that is necessary. We require E to be a di�erentiable extensive function of the selected
variables; then the rest is just calculus.

� Requiring E to be extensive rules out many but not all non-equilibrium situations. For exam-
ple, imagine a system where the spin degrees of freedom are in equilibrium with each other,
and the lattice is in equilibrium with itself, but the two subsystems are not (yet) in equilibrium
with each other. The system as a whole has a spin-entropy as well as a lattice-entropy, both
of which are extensive. The conjugate intensive variables are the spin-temperature and the
lattice-temperature. The Gibbs-Duhem approach should work just �ne for such a system.

10.8 Finite Size E�ects

As we shall discuss, �nite size e�ects can be categorized as follows (although there is considerable
overlap among the categories):

� Boundary e�ects;

� Quantization e�ects;

� Mean free path e�ects;

� Transport and dissipation e�ects; and

� Fluctuations.

We shall see that:

1. In microscopic systems, �nite-size e�ects dominate.

2. In moderately-large systems, �nite-size e�ects lead to smallish correction terms.

3. In in�nite systems, �nite-size e�ects are negligible.
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Let's start with an example: The usual elementary analysis of sound in air considers only adiabatic

changes in pressure and density. Such an analysis leads to a wave equation that is non-dissipative.
In reality, we know that there is some dissipation. Physically the dissipation is related to transport
of energy from place to place by thermal conduction. The amount of transport depends on wave-
length, and is negligible in the hydrodynamic limit, which in this case means the limit of very long
wavelengths.

We can come to the same conclusion by looking at things another way. The usual elementary analysis
treats the air in the continuum limit, imagining that the gas consists of an in�nite number density
of particles each having in�nitesimal size and in�nitesimal mean free path. That's tantamount to
having no particles at all; the air is approximated as a continuous �uid. In such a �uid, sound would
travel without dissipation.

So we have a macroscopic view of the situation (in terms of nonzero conductivity) and a microscopic
view of the situation (in terms of quantized atoms with a nonzero mean free path). These two views
of the situation are equivalent, because thermal conductivity is proportional to mean free path (for
any given heat capacity and given temperature).

In any case, we can quantify the situation by considering the ratio of the wavelength Λ to the mean
free path λ. Indeed we can think in terms of a Taylor series in powers of λ/Λ.

� The zeroth-order term is all that survives in the hydrodynamic limit (or the continuum limit).
This is the only term that is considered in the usual elementary analysis.

� The �rst-order terms allow us to understand additional details of the situation, such as the
fact that the sound wave undergoes some damping.

Let us now discuss �uctuations.

As an example, in a system at equilibrium, the pressure as measured by a very large piston will
be essentially constant. Meanwhile, the pressure as measured by a very small piston will �uctuate.
These pressure �uctuations are closely related to the celebrated Brownian motion.

Fluctuations are the rule, whenever you look closely enough and/or look at a small enough subsys-
tem. There will be temperature �uctuations, density �uctuations, entropy �uctuations, et cetera.

We remark in passing that the dissipation of sound waves is intimately connected to the �uctuations
in pressure. They are connected by the �uctuation / dissipation theorem, which is a corollary
of the second law of thermodynamics.

There is magni�cent discussion of �uctuations in Feynman volume I chapter 46 (�Ratchet and
Pawl�). See reference 8.

As another example, consider shot noise. That is: in a small-sized electronic circuit, there will be
�uctuations in the current, because the current is not carried by a continuous �uid but rather by
electrons which have a quantized charge.

Let us now discuss boundary terms.

If you change the volume of a sample of compressible liquid, there is a well-known P dV contribution
to the energy, where P is the pressure and V is the volume. There is also a τ dA contribution, where
τ is the surface tension and A is the area.
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A simple scaling argument proves that for very large systems, the P dV term dominates, whereas
for very small systems the τ dA term dominates. For moderately large systems, we can start with
the P dV term and then consider the τ dA term as a smallish correction term.

10.9 Words to Live By

1. Temperature is not energy.

2. Rate is not equilibrium.

3. Entropy is not energy.

4. �Heat� is not the same as �heat�.

In more detail:

1. Temperature and energy follow completely di�erent scaling laws: one them is intensive, while
the other is extensive. As a familiar example, the sparks that �y from a grinding wheel have
a very high temperature, but very little energy.

Just because a reaction proceeds faster at high temperature does not mean it is exothermic.
As a familiar example, the combustion of coal is famously exothermic, yet it proceeds much
faster at elevated temperature.

2. As a familiar example, catalysis can change the rate of reaction by many orders of magnitude,
but it never changes the equilibrium point.

Temperature is not the same as catalysis, insofar as sometimes it changes the equilibrium
point. However, you can't infer the equilibrium point or the energy balance just by casual
obseration of the temperature.

3. Equilibrium is determined more directly by entropy than by energy. Therefore the fact that
you can dehydrate something at temperatures above 100 C in a dessicator and rehydrate it by
adding a huge excess of water below 100 C tells you practically nothing about the enthalpies
of formation.

4. The nice thing about de�ning �heat� is that there are so many de�nitions to choose from.
When people say let's �heat� the sample, they might be talking about temperature. When
they say the sample gives o� �heat�, they might be talking about energy.



Chapter 11

Experimental Basis

In science, questions are not decided by taking votes, or by seeing who argues the loudest or the
longest. Scienti�c questions are decided by a careful combination of experiments and reasoning. So
here are some epochal experiments that form the starting point for the reasoning presented here,
and illustrate why certain other approaches are unsatisfactory.

11.1 Basic Notions of Temperature and Equilibrium

Make a bunch of thermometers. Calibrate them, to make sure they agree with one another. Use
thermometers to measure each of the objects mentioned below.

� Temperature is an intensive quantity. That means that if you have a large parcel of �uid with
a de�nite temperature, and you divide it into two equal sub-parcels, each sub-parcel has (to
an excellent approximation) the same temperature you started with.

In contrast, energy and entropy are extensive quantities, to an excellent approximation, for
macroscopic systems. Each sub-parcel has half as much energy and half as much entropy as
the original large parcel.

The terms intensive and extensive are a shorthand way of expressing simple scaling proper-
ties. Any extensive property scales like the �rst power of any other extensive property, so if
you know any extensive property you can recognize all the others by their scaling behavior.
Meanwhile, an intensive property scales like the zeroth power of any extensive property.

� At thermal equilibrium, things have the same temperature, no matter what they are made of.
To demonstrate this, take two objects that start out at di�erent temperatures. Put them in
a box together. Observe that they end up at the same temperature.

(This can be seen to be related to the previous point, if we consider two bodies that are simply
parts of a larger body.)

� Take two objects that start out at the same temperature. Put them in a box together. Observe
that they never (if left alone) end up at di�erent temperatures. You can build a machine,
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called a refrigerator or a heat pump, that will cool o� one object while heating up the other,
but all such machines require an energy input, so they are irrelevant to any discussion of
equilibrium.

� The molar volume of an ideal gas is proportional to absolute temperature.

� The e�ciency of an ideal heat engine depends on absolute temperature.

� Temperature can be connected to a derivative of energy with respect to entropy, as in equa-
tion 7.7, as further discussed in chapter 13. Another equation that involves temperature is
the Boltzmann distribution, i.e. the equipartition law, equation 24.7.

11.2 Exponential Dependence on Energy

Here is a collection of observed phenomena that tend to support equation 9.1.

� There is a wide (but not in�nitely wide) class of chemical reactions where the rate of reaction
depends exponentially on inverse temperature according to the Arrhenius rate equation:

rate = Ae−Ea / kT (11.1)

where Ea is called the activation energy and the prefactor A is called the attempt frequency .
The idea here is that the reaction pathway has a potential barrier of height Ea and the rate
depends on thermal activation over the barrier. In the independent-particle approximation,
we expect that thermal agitation will randomly give an exponentially small fraction of the
particles an energy greater than Ea in accordance with equation 9.1.

Of course there are many examples where equation 11.1 would not be expected to apply. For
instance, the �ow of gas through a pipe (under the in�uence of speci�ed upstream and down-
stream pressures) is not a thermally activated process, and does not exhibit an exponential
dependence on inverse temperature.

� In a wide class of materials, the strength of the NMR signal closely follows the Curie law
over a range of many orders of magnitude. That is, the strength is proportional to 1/T .
This is exactly what we would expect from treating each individual nucleus as an system
unto itself (while treating everything else as the �environment� aka �heat bath�) and assigning
probabilities to its individual microstates in accordance with equation 9.1.

� The density of saturated water vapor (i.e. the density of gaseous H2O in equilibrium with liquid
H2O) is rather accurately an exponential function of inverse temperature. This is what we
would expect from equation 9.1, if we once again make the independent-particle approximation
and say that particles in the liquid are in a low-energy state while particles in the vapor are
in a high-energy state.
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11.3 Metastable Systems with a Temperature

Consider an ordinary electrical battery. This is an example of a system where most of the modes
are characterized by well-de�ned temperature, but there are also a few exceptional modes. Often
such systems have an energy that is higher than you might have guessed based on the temperature
and entropy, which makes them useful repositories of �available� energy.

Figure 11.1 shows the probability of the various microstates of the battery, when it is discharged
(on the left) or charged (on the right). Rather that labeling the states by the subscript i as we have
done in the past, we label them using a pair of subscripts i, j, where i takes on the values 0 and 1
meaning discharged and charged respectively, and j runs over the thermal phonon modes that we
normally think of as embodying the heat capacity of an object.
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Figure 11.1: Probability of Microstates for a Battery

Keep in mind that probabilities such as Pi,j are de�ned with respect to some ensemble. For the
discharged battery at temperature T , all members of the ensemble are in contact with a heat bath
at temperature T . That means the thermal phonon modes can exchange energy with the heat
bath, and di�erent members of the ensemble will have di�erent amounts of energy, leading to the
probabilistic distribution of energies shown on the left side of �gure 11.1. The members of the
ensemble are not able to exchange electrical charge with the heat bath (or with anything else), so
that the eight microstates corresponding to the charged macrostate have zero probability. It doesn't
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matter what energy they would have, because they are not accessible. They are not in equilibrium
with the other states.

Meanwhile, on the right side of the �gure, the battery is in the charged state. The eight microstates
corresponding to the discharged macrostate have zero probability, while the eight microstates cor-
responding to the charged macrostate have a probability distribution of the expected Boltzmann
form.

Comparing the left side with the right side of �gure 11.1, we see that the two batteries have the
same temperature. That is, the slope of log(Pi,j) versus Ei,j � for the modes that are actually able
to contribute to the heat capacity � is the same for the two batteries.

You may be wondering how we can reconcile the following four facts: (a) The two batteries have
the same temperature T , (b) the accessible states of the two batteries have di�erent energies,
indeed every accessible state of the charged battery has a higher energy than any accessible state
of the discharged battery, (c) corresponding accessible states of the two batteries have the same
probabilities, and (d) both batteries obey the Boltzmann law, Pi,j proportional to exp(−Ei,j/kT ).
The answer is that there is a bit of a swindle regarding the meaning of �proportional�. The discharged
battery has one proportionality constant, while the charged battery has another. For details on this,
see section 24.1.

Here is a list of systems that display this sort of separation between thermal modes and nonthermal
modes:
• an electrochemical storage battery that may have a shelf life of ten months or ten years.
• a �ywheel that may keep spinning for one second or one hour or one day.
• a large piece of metal that rings like a bell, i.e. with a high excitation in one of its mechanical
resonance modes.
• a capacitor that may hold its charge for hours or days.
• a �uid-dynamic excitation such as the wingtip vortices trailing behind an airplane.
• a weight-driven cuckoo clock that may go a day or a week between windings.
• a spring-driven clock that may go a day or a week or a year between windings.
• a microwave oven that puts potato-molecules into an excited state.
• a metastable chemical species such as H2O2 or TNT. If left to themselves, they will decompose
quickly or slowly, depending on temperature, catalysis, and other details.
• a classical Carnot-cycle heat engine. If you operate it too quickly, there will be nonidealities
because the parts of the cycle that are supposed to be isothermal won't be (i.e. the working
�uid won't be in good thermal contact with the heat bath). On the other hand, if you operate
it too slowly, there will be nonidealities due to parasitic thermal conduction through structures
such as the pushrod that connects the piston to the load. You cannot assume or postulate
that there is a nice big separation between the too-slow timescale and the too-fast timescale;
if you need a big separation you must arrange for it by careful engineering.

(Section 11.4 takes another look at metastable systems.)

There are good reasons why we might want to apply thermodynamics to systems such as these. For
instance, the Clausius-Clapeyron equation can tell us interesting things about a voltaic cell.

Also, just analyzing such a system as a Gedankenexperiment helps us understand a thing or two
about what we ought to mean by �equilibrium�, �temperature�, �heat�, and �work�.
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In equilibrium, the �accessible� states are supposed to be occupied in accordance with the Boltzmann
distribution law (equation 9.1).

An example is depicted in �gure 11.1, which is a scatter plot of Pi,j versus Ei,j .

As mentioned in section 10.1, Feynman de�ned equilibrium to be �when all the fast things have
happened but the slow things have not� (reference 28). The examples listed at the beginning of this
section all share the property of having two timescales and therefore two notions of equilibrium. If
you �charge up� such a system you create a Boltzmann distribution with exceptions. There are not
just a few exceptions as in �gure 11.3, but huge classes of exceptions, i.e. huge classes of microstates
that are (in the short run, at least) inaccessible. If you revisit the system on longer and longer
timescales, eventually the energy may become dissipated into the previously-inaccessible states. For
example, the battery may self-discharge via some parasitic internal conduction path.

Figure 11.2: An Equilibrium Distribution
Figure 11.3: An Equilibrium Distribution
with Exceptions

The idea of temperature is valid even on the shorter timescale. In practice, I can measure the
temperature of a battery or a �ywheel without waiting for it to run down. I can measure the
temperature of a bottle of H2O2 without waiting for it to decompose.

This proves that in some cases of interest, we cannot write the system energy E as a function of
the macroscopic thermodynamic variables V and S. Remember, V determines the spacing between
energy levels (which is the same in both �gures) and S tells us something about the occupation of
those levels, but alas S does not tell us everything we need to know. An elementary example of this
can be seen by comparing �gure 9.1 with �gure 11.3, where we have the same V , the same S, and
di�erent E. So we must not assume E = E(V, S). A more spectacular example of this can be seen
by comparing the two halves of �gure 11.1.

Occasionally somebody tries to argue that the laws of thermodynamics do not apply to �gure 11.3
or �gure 11.1, on the grounds that thermodynamics requires strict adherence to the Boltzmann
exponential law. This is a bogus argument for several reasons. First of all, strict adherence to
the Boltzmann exponential law would imply that everything in sight was at the same temperature.
That means we can't have a heat engine, which depends on having two heat reservoirs at di�erent
temperatures. A theory of pseudo-thermodynamics that cannot handle exceptions to the Boltzmann
exponential law is useless.

So we must allow some exceptions to the Boltzmann exponential law . . . maybe not every imaginable
exception, but some exceptions. A good criterion for deciding what sort of exceptions to allow is
to ask whether it is operationally possible to measure the temperature. For example, in the case
of a storage battery, it is operationally straightforward to design a thermometer that is electrically
insulated from the exceptional mode, but thermally well connected to the thermal modes.

Perhaps the most important point is that equation 1.1 and equation 2.1 apply directly, without
modi�cation, to the situations listed at the beginning of this section. So from this point of view,
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these situations are not �exceptional� at all.

The examples listed at the beginning of this section raise some other basic questions. Suppose I stir
a large tub of water. Have I done work on it (w) or have I heated it (q)? If the question is answerable
at all, the answer must depend on timescales and other details. A big vortex can be considered a
single mode with a huge amount of energy, i.e. a huge exception to the Boltzmann distribution. But
if you wait long enough the vortex dies out and you're left with just an equilibrium distribution.
Whether you consider this sort of dissipation to be q and/or heat is yet another question. (See
section 7.10 and especially section 17.1 for a discussion of what is meant by �heat�. )

In cases where the system's internal �spin-down� time is short to all other timescales of interest, we
get plain old dissipative systems. Additional examples include:
• The Rumford experiment (section 11.5.3).
• Shear in a viscous �uid (section 11.5.5).
• A block sliding down an inclined plane, under the in�uence of sliding friction.
• The brake shoes on a car.
• et cetera.

11.4 Metastable Systems without a Temperature

An interesting example is:
• a three-state laser, in which there is a population inversion.

In this case, it's not clear how to measure the temperature or even de�ne the temperature of the
spin system. Remember that in equilibrium, states are supposed to be occupied with probability
proportional to the Boltzmann factor, Pi ∝ exp(−Êi/kT ). However, the middle microstate is more
highly occupied than the microstates on either side, as depicted in �gure 11.4. This situation is
clearly not describable by any exponential, since exponentials are monotone.

Figure 11.4: Three-State System without a Temperature

We cannot use the ideas discussed in section 11.3 to assign a temperature to such a system, because
it has so few states that we can't �gure out which ones are the thermal �background� and which
ones are the �exceptions�.

Such a system does have an entropy � even though it doesn't have a temperature, even though it
is metastable, and even though it is grossly out of equilibrium. It is absolutely crucial that the
system system have a well-de�ned entropy, for reasons suggested by �gure 11.5. That is, suppose
the system starts out in equilibrium, with a well-de�ned entropy S(1). It then passes through in
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intermediate state that is out of equilibrium, and ends up in an equilibrium state with entropy S(3).
The law of paraconservation of entropy is meaningless unless we can somehow relate S(3) to S(1).
The only reasonable way that can happen is if the intermediate state has a well-de�ned entropy. The
intermediate state typically does not have a temperature, but it does have a well-de�ned entropy.

Figure 11.5: Non-Equilibrium: Well-De�ned Entropy

11.5 Dissipative Systems

11.5.1 Sudden Piston : Sound

Consider the apparatus shown in �gure 11.6. You can consider it a two-sided piston.

Equivalently you can consider it a loudspeaker in an unusual full enclosure. (Loudspeakers are
normally only half-enclosed.) It is roughly like two unported speaker enclosures face to face, com-
pletely enclosing the speaker driver that sits near the top center, shown in red. The interior of the
apparatus is divided into two regions, 1 and 2, with time-averaged properties (E1, S1, T1, P1, V1) and
(E2, S2, T2, P2, V2) et cetera. When the driver (aka piston) moves to the right, it increase volume V1

and decreases volume V2. The box as a whole is thermally isolated / insulated / whatever. That is
to say, no entropy crosses the boundary. No energy crosses the boundary except for the electricity
feeding the speaker.

You could build a simpli�ed rectangular version of this apparatus for a few dollars. It is considerably
easier to build and operate than Rumford's cannon-boring apparatus (section 11.5.3).

We will be primarily interested in a burst of oscillatory motion. That is, the piston is initially at
rest, then oscillates for a while, and then returns to rest at the original position.

When the piston moves, it does F · dx work against the gas. There are two contributions. Firstly,
the piston does work against the gas in each compartment. If P1 = P2 this contribution vanishes
to �rst order in dV . Secondly, the piston does work against the pressure in the sound �eld.

The work done against the average pressure averages to zero over the course of one cycle of the
oscillatory motion ... but the work against the radiation �eld does not average to zero. The dV is
oscillatory but the �eld pressure is oscillatory too, and the product is positive on average.

The acoustic energy radiated into the gas is in the short term not in thermal equilibrium with the
gas. In the longer term, the sound waves are damped i.e. dissipated by internal friction and also by
thermal conductivity, at a rate that depends on the frequency and wavelength.



11�8 Modern Thermodynamics

1 2

b

Figure 11.6: Two-Sided Piston



Experimental Basis 11�9

What we put in is F · dx (call it �work� if you wish) and what we get out in the long run is an
increase in the energy and entropy of the gas (call it �heat� if you wish).

It must be emphasized that whenever there is appreciable energy in the sound �eld, it is not
possible to write E1 as a function of V1 and S1 alone, or indeed to write E1 as a function of any
two variables whatsoever. In general, the sound creates a pressure P (r) that varies from place to
place as a function of the position-vector r. That's why we call it a sound �eld; it's a scalar �eld,
not a simple scalar.

As a consequence, when there is appreciable energy in the sound �eld, it is seriously incorrect to
expand dE = T dS − P dV . The correct expansion necessarily has additional terms on the RHS.
Sometimes you can analyze the sound �eld in terms of its normal modes, and in some simple cases
most of the sound energy resides in only a few of the modes, in which case you need only a few
additional variables. In general, though, the pressure can vary from place to place in an arbitrarily
complicated way, and you would need an arbitrarily large number of additional variables. This
takes us temporarily outside the scope of ordinary thermodynamics, which requires us to describe
the macrostate as a function of some reasonably small number of macroscopic variables. The total
energy, total entropy, and total volume are still perfectly well de�ned, but they do not su�ce to
give a complete description of what is going on. After we stop driving the piston, the sound waves
will eventually dissipate, whereupon we will once again be able to describe the system in terms of
a few macroscopic variables.

If the piston moves slowly, very little sound will be radiated and the process will be essentially
isentropic and reversible. On the other hand, if the piston moves quickly, there will be lots of
sound, lots of dissipation, and lots of newly created entropy. This supports the point made in
section 10.2: timescales matter.

At no time is any entropy transferred across the boundary of the region. The increase in entropy
of the region is due to new entropy, created from scratch in the interior of the region.

If you want to ensure the gas exerts zero average force on the piston, you can cut a small hole in
the ba�e near point b. Then the only work the piston can do on the gas is work against the sound
pressure �eld. There is no longer any important distinction between region 1 and region 2.

You can even remove the ba�e entirely, resulting in the �racetrack� apparatus shown in �gure 11.7.

The kinetic energy of the piston is hardly worth worrying about. When we say it takes more work to
move the piston rapidly than slowly, the interesting part is the work done on the gas, not the work
done to accelerate the piston. Consider a very low-mass piston if that helps. Besides, whatever KE
goes into the piston is recovered at the end of each cycle. Furthermore, it is trivial to calculate the
F ·dx of the piston excluding whatever force is necessary to accelerate the piston. Let's assume the
experimenter is clever enough to apply this trivial correction, so that we know, moment by moment,
how much F · dx �work� is being done on the gas. This is entirely conventional; the conventional
pressures P1 and P2 are associated with the forces F1 and F2 on the faces of the piston facing the

gas, not the force Fd that is driving the piston. To relate Fd to F1 and F2 you would need to
consider the mass of the piston, but if you formulate the problem in terms of F1 · dx and F2 · dx,
as you should, questions of piston mass and piston KE should hardly even arise.
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Figure 11.7: Racetrack with Piston
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11.5.2 Sudden Piston : State Transitions

Let's forget about all the complexities of the sound �eld discussed in section 11.5.1. Instead let's
take the quantum mechanical approach. Let's simplify the gas down to a single particle, the familiar
particle in a box, and see what happens.

As usual, we assume the box is rigid and thermally isolated / insulated / whatever. No entropy
�ows across the boundary of the box. Also, no energy �ows across the boundary except for the
work done by the piston.

Since we are interested in entropy, it will not su�ce to talk about �the� quantum state of the particle.
The entropy of any particular quantum state (microstate) is zero. We can however represent the
thermodynamic state (macrostate) using a density matrix ρ. For some background on density
matrices in the context of thermodynamics, see chapter 27.

The entropy is given by equation 27.6. which is the gold-standard most-general de�nition of entropy;
in the classical limit it reduces to the familiar workhorse expression equation 2.2

For simplicity we consider the case where the initial state is a pure state, i.e. a single microstate.
That means the initial entropy is zero, as you can easily verify. Hint: equation 27.6 is particularly
easy to evaluate in a basis where ρ is diagonal.

Next we perturb our particle-in-a-box by moving one wall of the box inward. We temporarily assume
this is done in such a way that the particle ends up in the �same� microstate. That is, the �nal
state is identical to the original quantum state except for the shorter wavelength as required to �t
into the smaller box. It is a straightforward yet useful exercise to show that this does P dV �work�
on the particle. The KE of the new state is higher than the KE of the old state.

Now the fun begins. We retract the previous assumption about the �nal state; instead we calculate
the �nal macrostate using perturbation theory. In accordance with Fermi's golden rule we calculate
the overlap integral between the original quantum state (original wavelength) and each of the possible
�nal quantum states (slightly shorter wavelength).

Each member of the original set of basis wavefunctions is orthogonal to the other members. The
same goes for the �nal set of basis wavefunctions. However, each �nal basis wavefunction is only
approximately orthogonal to the various original basis wavefunctions. So the previous assumption
that the particle would wind up in the corresponding state is provably not quite true; when we do
the overlap integrals there is always some probability of transition to nearby states.

It is straightforward to show that if the perturbation is slow and gradual, the corresponding state
gets the lion's share of the probability. Conversely, if the perturbation is large and sudden, there
will be lots of state transitions. The �nal state will not be a pure quantum state. It will be a
mixture. The entropy will be nonzero, i.e. greater than the initial entropy.

To summarize:
slow and gradual =⇒ isentropic, non dissipative
sudden =⇒ dissipative

So we are on solid grounds when we say that in a thermally isolated cylinder, a gradual movement
of the piston is isentropic, while a sudden movement of the piston is dissipative. Saying that the
system is adiabatic in the sense of thermally insulated does not su�ce to make it adiabatic in the
sense of isentropic.
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Note that in the quantum mechanics literature the slow and gradual case is conventionally called the
�adiabatic� approximation in contrast to the �sudden� approximation. These terms are quite �rmly
established ... even though it con�icts with the also well-established convention in other branches
of physics where �adiabatic� means thermally insulated; see next message.

There is a nice introduction to the idea of �radiation resistance� in reference 8 chapter 32.

11.5.3 Rumford's Experiment

Benjamin Thompson (Count Rumford) did some experiments that were published in 1798. Before
that time, people had more-or-less assumed that �heat� by itself was conserved. Rumford totally
demolished this notion, by demonstrating that unlimited amounts of �heat� could be produced by
nonthermal mechanical means. Note that in this context, the terms �thermal energy�, �heat content�,
and �caloric� are all more-or-less synonymous ... and I write each of them in scare quotes.

From the pedagogical point of view Rumford's paper is an optimal starting point; the examples in
section 11.5.1 and section 11.5.2 are probably better. For one thing, a microscopic understanding of
sound and state-transitions in a gas is easier than a microscopic understanding of metal-on-metal
friction.

Once you have a decent understanding of the modern ideas, you would do well to read Rumford's
original paper, reference 30. The paper is of great historical importance. It is easy to read, infor-
mative, and entertaining. On the other hand, beware that it contains at least one major error, plus
one trap for the unwary:

� The title is wrong and the bottom-line conclusion is wrong, for reasons discussed in sec-
tion 9.3.3.

� The analysis depends on a cramped notion of �heat content� that is more-or-less OK in this
particular context, but is not clearly de�ned, and but would cause serious problems if you
tried to extend it to uncramped thermodynamics.

The main point of the paper is that �heat� is not conserved. This point remains true and important.
The fact that the paper has a couple of bugs does not detract from this point.

You should re�ect on how something can provide valuable (indeed epochal)
information and still not be 100% correct.

All too often, the history of science is presented as monotonic �progress� build-
ing one pure �success� upon another, but this is not how things really work.
In fact there is a lot of back-tracking out of dead ends. Real science and real
life are like football, in the sense that any play that advances the ball 50 or
60 yards it is a major accomplishment, even if you get knocked out of bounds
before reaching the ultimate goal. Winning is important, but you don't need
to win the entire game, single handedly, the �rst time you get your hands on
the ball.
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Rumford guessed that all the heat capacity was associated with �motion� � because he couldn't imag-
ine anything else. It was a process-of-elimination argument, and he blew it. This is understandable,
given what he had to work with.

A hundred years later, guys like Einstein and Debye were able to cobble up a theory of heat capacity
based on the atomic model. We know from this model that the heat capacity of solids is half kinetic
and half potential. Rumford didn't stand much of a chance of �guring this out.

It is possible to analyze Rumford's experiment without introducing the notion of �heat content�
. It su�ces to keep track of the energy and the entropy. The energy can be quanti�ed by using
the �rst law of thermodynamics, i.e. the conservation of energy. We designate the cannon plus the
water bath as the �system� of interest. We know how much energy was pushed into the system,
pushed across the boundary of the system, in the form of macroscopic mechanical work. We can
quantify the entropy by means of equation 7.21, i.e. dS = (1/T )dE at constant pressure. Energy
and entropy are functions of state, even in situations where �heat content� is not.

Heat is a concept rooted in cramped thermodynamics, and causes serious trouble if you try to extend
it to uncramped thermodynamics. Rumford got away with it, in this particular context, because he
stayed within the bounds of cramped thermodynamics. Speci�cally, he did everything at constant
pressure. He used the heat capacity of water at constant pressure as his operational de�nition of
heat content.

To say the same thing the other way, if he had strayed o� the contour of constant P ,
perhaps by making little cycles in the PV plane, using the water as the working �uid in a
heat engine, any notion of �heat content� would have gone out the window. There would
have been an unholy mixture of CP and CV , and the �heat content� would have not
been a function of state, and everybody would have been sucked down the rabbit-hole
into crazy-nonsense land.

We note in passing that it would be impossible to reconcile Rumford's notion of �heat� with the
various other notions listed in section 17.1 and section 18.1. For example: work is being done in
terms of energy �owing across the boundary, but no work is being done in terms of the work/KE
theorem, since the cannon is not accelerating.

For more about the di�culties in applying the work/KE theorem to thermodynamic questions, see
reference 18.

We can begin to understand the microscopics of sliding friction using many of the same ideas as
in section 11.5.1. Let's model friction in terms of asperities on each metal surface. Each of the
asperities sticks and lets go, sticks and lets go. When it lets go it wiggles and radiates ultrasound
into the bulk of the metal. This produces in the short term a nonequilibrium state due to the sound
waves, but before long the sound �eld dissipates, depositing energy and creating entropy in the
metal.

Again, if you think in terms only of the (average force) dot (average dx) you will never understand
friction or dissipation. You need to model many little contributions of the form (short term force)
dot (short term dx) and then add up all the contributions. This is where you see the work being
done against the radiation �eld.
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At ordinary temperatures (not too hot and not too cold) most of the heat capacity in a solid is
associated with the phonons. Other phenomena associated with friction, including deformation and
abrasion of the materials, are only very indirectly connected to heating. Simply breaking a bunch
of bonds, as in cleaving a crystal, does not produce much in the way of entropy or heat. At some
point, if you want to understand heat, you need to couple to the phonons.

11.5.4 Simple Example: Decaying Current

Suppose we have some current I �owing in a wire loop, as shown in �gure 11.8. The current will
gradually decay, on a timescale given by L/R, i.e. the inductance divided by the resistance.

copyright © 2015 jsd
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Figure 11.8: Current in a Wire Loop
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The temperature of the wire will increase, and the entropy of the wire will increase, even though
no energy is being transferred (thermally or otherwise) across the boundary of the system.

(Even if you consider an imaginary boundary between the conduction electrons and the rest of the
metal, you cannot possibly use any notion of energy �owing across the boundary to explain the fact
that both subsystems heat up.)

A decaying current of water in an annular trough can be used to make the same point.

11.5.5 Simple Example: Oil Bearing

Here is a modi�ed version of Rumford's experiment, more suitable for quantitative analysis. Note
that reference 31 carries out a similar analysis and reaches many of the same conclusions. Also note
that this can be considered a macroscopic mechanical analog of the NMR τ2 process, where there
is a change in entropy with no change in energy. See also �gure 1.3.

Suppose we have an oil bearing as shown in �gure 11.9. It consists of an upper plate and a lower
plate, with a thin layer of oil between them. Each plate is a narrow annulus of radius R. The lower
plate is held stationary. The upper plate rotates under the in�uence of a force F , applied via a
handle as shown. The upper plate is kept coaxial with the lower plate by a force of constraint, not
shown. The two forces combine to create a pure torque, τ = F/R. The applied torque τ is balanced
in the long run by a frictional torque τ ′; speci�cally

〈τ〉 = 〈τ ′〉 (11.2)

where 〈. . .〉 denotes a time-average. As another way of saying the same thing, in the long run the
upper plate settles down to a more-or-less steady velocity.

RF

Figure 11.9: Oil Bearing

We arrange that the system as a whole is thermally insulated from the environment, to a su�cient
approximation. This includes arranging that the handle is thermally insulating. In practice this
isn't di�cult.

We also arrange that the plates are somewhat thermally insulating, so that heat in the oil doesn't
immediately leak into the plates.
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Viscous dissipation in the oil causes the oil to heat up. To a good approximation this is the only
form of dissipation we must consider.

In an in�nitesimal period of time, the handle moves through a distance dx or equivalently through
an angle dθ = dx/R. We consider the driving force F to be a controlled variable. We consider θ
to be an observable dependent variable. The relative motion of the plates sets up a steady shearing
motion within the oil. We assume the oil forms a su�ciently thin layer and has su�ciently high
viscosity that the �ow is laminar (i.e. non-turbulent) everywhere. We say the �uid has a very low
Reynolds number (but if you don't know what that means, don't worry about it). The point is that
the velocity of the oil follows the simple pattern shown by the red arrows in �gure 11.10.

Lower plate

Upper plate

Oil

Figure 11.10: Shear: Velocity Field in the Oil

The local work done on the handle by the driving force is w = Fdx or equivalently w = τdθ. This
tells us how much energy is �owing across the boundary of the system. From now on we stop talking
about work, and instead talk about energy, con�dent that energy is conserved.

We can keep track of the energy-content of the system by integrating the energy inputs. Similarly,
given the initial entropy and the heat capacity of the materials, we can predict the entropy at
all times1 by integrating equation 7.14. Also given the initial temperature and heat capacity, we
can predict the temperature at all times by integrating equation 7.13. We can then measure the
temperature and compare it with the prediction.

We can understand the situation in terms of equation 1.1. Energy τdθ comes in via the handle. This
energy cannot be stored as potential energy within the system. This energy also cannot be stored
as macroscopic or mesoscopic kinetic energy within the system, since at each point the velocity is
essentially constant. By a process of elimination we conclude that this energy accumulates inside
the system in microscopic form.

This gives us a reasonably complete description of the thermodynamics of the oil bearing.

This example is simple, but helps make a very important point. If you base your thermodynam-
ics on wrong foundations, it will get wrong answers, including the misconceptions discussed in
section 11.5.6 and section 11.5.7.

1If the �ow pattern were turbulent, calculating the entropy would entail practical as well as conceptual di�culties.
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Some people who use wrong foundations try to hide from the resulting problems narrowing their
de�nition of �thermodynamics� so severely that it has nothing to say � right or wrong � about
dissipative systems. Making no predictions is a big improvement over making wrong predictions . . .
but still it is a terrible price to pay. Real thermodynamics has tremendous power and generality.
Real thermodynamics applies just �ne to dissipative systems. See chapter 21 for more on this.

11.5.6 Misconceptions : Heat

There are several correct ways of analyzing the oil-bearing system, one of which was presented in
section 11.5.5. In addition, there are innumerably many incorrect ways of analyzing things. We
cannot list all possible misconceptions, let alone discuss them all. However, it seems worthwhile to
point out some of the most prevalent pitfalls.

You may have been taught to think of heating in terms of the �thermal� transfer of energy across a
boundary. If you're going to use that de�nition, you must keep in mind that it is not equivalent to
the TdS de�nition. In other words, in section 17.1, de�nition #5 is sometimes very di�erent from
de�nition #2. The decaying current in section 11.5.4 and the oil-bearing example in section 11.5.5
clearly demonstrates this di�erence.

Among other things, this di�erence can be seen as another instance of boundary/interior inconsis-
tency, as discussed in section 8.6. Speci�cally:

No heat is �owing into the oil. The oil is hotter
than its surroundings, so if there is any heat-
�ow at all, it �ows outward from the oil.

The TdS/dt is strongly positive. The entropy
of the oil is steadily increasing.

Another point that can be made using this example is that the laws of thermodynamics apply just
�ne to dissipative systems. Viscous damping has a number of pedagogical advantages relative to
(say) the sliding friction in Rumford's cannon-boring experiment. It's clear where the dissipation
is occurring, and it's clear that the dissipation does not prevent us from assigning a well-behaved
temperature to each part of the apparatus. Viscous dissipation is more-or-less ideal in the sense
that it does not depend on submicroscopic nonidealities such as the asperities that are commonly
used to explain solid-on-solid sliding friction.

11.5.7 Misconceptions : Work

We now discuss some common misconceptions about work.

Work is susceptible to boundary/interior inconsistencies for some of the same reasons that heat is.

You may have been taught to think of work as an energy transfer across a boundary. That's one
of the de�nitions of work discussed in section 18.1. It's often useful, and is harmless provided you
don't confuse it with the other de�nition, namely PdV .

Work-�ow is the �work� that shows up in the
principle of virtual work (reference 32), e.g.
when we want to calculate the force on the
handle of the oil bearing.

Work-PdV is the �work� that shows up in the
work/KE theorem.
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11.5.8 Remarks

This discussion has shed some light on how equation 7.5 can and cannot be interpreted.
• Sometimes the terms on the RHS are well-de�ned and can be interpreted as �work� and �heat�.
• Sometimes the terms on the RHS are well-de�ned but do not correspond to conventional
notions of �work� and �heat�.
• Sometimes the terms on the RHS are not even well-de�ned, i.e. the derivatives do not exist.

In all cases, the equation should not be considered the �rst law of thermodynamics, because it is
inelegant and in every way inferior to a simple, direct statement of local conservation of energy.

11.6 The Gibbs Gedankenexperiment

As shown in �gure 11.11, suppose we have two moderate-sized containers connected by a valve.
Initially the valve is closed. We �ll one container with an ideal gas, and �ll the other container
with a di�erent ideal gas, at the same temperature and pressure. When we open the valve, the
gases will begin to mix. The temperature and pressure will remain unchanged, but there will be an
irreversible increase in entropy. After mixing is complete, the molar entropy will have increased by
R ln 2.

Figure 11.11: The Gibbs Gedankenexperiment

As Gibbs observed,2 the R ln 2 result is independent of the choice of gases, �. . . except that the gases
which are mixed must be of di�erent kinds. If we should bring into contact two masses of the same
kind of gas, they would also mix, but there would be no increase of entropy�.

There is no way to explain this in terms of 19th-century physics. The explanation depends on
quantum mechanics. It has to do with the fact that one helium atom is identical (absolutely totally
identical) with another helium atom.

Also consider the following contrast:

In �gure 11.11, the pressure on both sides of
the valve is the same. There is no net driving
force. The process proceeds by di�usion, not
by macroscopic �ow.

This contrasts with the scenario where we
have gas on one side of the partition, but
vacuum on the other side. This is dramati-
cally di�erent, because in this scenario there
is a perfectly good 17th-century dynamic (not
thermodynamic) explanation for why the gas
expands: there is a pressure di�erence, which
drives a �ow of �uid.

2Quoted in reference 33.
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Entropy drives the process. There is no hope
of extracting energy from the di�usive mixing
process.

Energy drives the process. We could extract
some of this energy by replacing the valve by
a turbine.

The timescale for free expansion is roughly L/c, where L is the size of the apparatus, and c is the
speed of sound. The timescale for di�usion is slower by a huge factor, namely by a factor of L/λ,
where λ is the mean free path in the gas.

Pedagogical note: The experiment in �gure 11.11 is not very exciting to watch. Here's
an alternative: Put a drop or two of food coloring in a beaker of still water. The color
will spread throughout the container, but only rather slowly. This allows students to
visualize a process driven by entropy, not energy.

Actually, it is likely that most of the color-spreading that you see is due to convection,
not di�usion. To minimize convection, try putting the water in a tall, narrow glass
cylinder, and putting it under a Bell jar to protect it from drafts. Then the spreading
will take a very long time indeed.

Beware: Di�usion experiments of this sort are tremendously valuable if explained properly . . . but
they are horribly vulnerable to misinterpretation if not explained properly, for reasons discussed in
section 9.9.

For a discussion of the microscopic theory behind the Gibbs mixing experiments, see section 26.2.

11.7 Spin Echo Experiment

It is possible to set up an experimental situation where there are a bunch of nuclei whose spins
appear to be oriented completely at random, like a well-shu�ed set of cards. However, if I let you
in on the secret of how the system was prepared, you can, by using a certain sequence of Nuclear
Magnetic Resonance (NMR) pulses, get all the spins to line up � evidently a very low-entropy
con�guration.

The trick is that there is a lot of information in the lattice surrounding the nuclei, something like
1023 bits of information. I don't need to communicate all this information to you explicitly; I just
need to let you in on the secret of how to use this information to untangle the spins.

The rami�cations and implications of this are discussed in section 12.8.

11.8 Melting

Take a pot of ice water. Add energy to it via friction, à la Rumford, as described in section 11.5.3.
The added energy will cause the ice to melt. The temperature of the ice water will not increase,
not until all the ice is gone.
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This illustrates the fact that temperature is not the same as thermal energy. It focuses our attention
on the entropy. A gram of liquid water has more entropy than a gram of ice. So at any given
temperature, a gram of water has more energy than a gram of ice.

The following experiment makes an interesting contrast.

11.9 Isentropic Expansion and Compression

Take an ideal gas acted upon by a piston. For simplicity, assume a nonrelativistic nondegenerate
ideal gas, and assume the sample is small on the scale of kT/mg. Assume everything is thermally
insulated, so that no energy enters or leaves the system via thermal conduction. Gently retract the
piston, allowing the gas to expand. The gas cools as it expands. In the expanded state,

• The gas has essentially the same entropy, if the expansion was done gently enough.

• The gas has a lower temperature.

• The gas has less energy, by some amount ∆E.

Before the expansion, the energy in question
(∆E) was in microscopic Locrian form, within
the gas.

After the expansion, this energy is in macro-
scopic non-Locrian form, within the mecha-
nism that moves the piston.

This scenario illustrates some of the di�erences between temperature and entropy, and some of the
di�erences between energy and entropy.

Remember, the second law of thermodynamics says that the entropy obeys a local law of paracon-
servation. Be careful not to misquote this law.

It doesn't say that the temperature can't de-
crease. It doesn't say that the so-called �ther-
mal energy� can't decrease.

It says the entropy can't decrease in any given
region of space, except by �owing into adja-
cent regions.

Energy is conserved. That is, it cannot increase or decrease except by �owing into adjacent regions.
(You should not imagine that there is any law that says �thermal energy� by itself is conserved.)

If you gently push the piston back in, compressing the gas, the temperature will go back up.

Isentropic compression is an increase in temperature at constant entropy. Melting (section 11.8) is
an increase in entropy at constant temperature. These are two radically di�erent ways of increasing
the energy.

11.10 Demagnetization Refrigerator

Obtain (or construct) a simple magnetic compass. It is essentially a bar magnet that is free to
pivot. Attach it to the middle of a board. By placing some small magnets elsewhere on the board,
you should (with a little experimentation) be able to null out the earth's �eld and any other stray
�elds, so that the needle rotates freely. If you don't have convenient physical access to the needle,
you can set it spinning using another magnet.
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Note: The earth's �eld is small, so it doesn't take much to null it out. You can make your own
not-very-strong magnets by starting with a piece of steel (perhaps a sewing pin) and magnetizing
it.

Once you have a freely-moving needle, you can imagine that if it were smaller and more �nely
balanced, thermal agitation would cause it to rotate randomly back and forth forever.

Now hold another bar magnet close enough to ruin the free rotation, forcing the spinner to align
with the imposed �eld.

This is a passable pedagogical model of the guts of a demagnetization refrigerator. Such devices are
routinely used to produce exceedingly low temperatures, within a millionth of a degree of absolute
zero. Copper nuclei can be used as the spinners.

� At low temperatures in a high magnetic �eld, the copper nuclei have only one accessible state.
This corresponds to zero molar entropy.

� At high temperatures in a low magnetic �eld, the nuclei are free and have 4 equiprobable
states. The 4 arises because both kinds of naturally-occurring copper nuclei have total spin
I = 3/2, so there are four possible mI values, namely +3/2, +1/2, −1/2, and −3/2. This
corresponds to a molar entropy of s = R ln(4). All the other quantum numbers are irrelevant;
the four mI states are the only accessible states.

The compass is not a perfect model of the copper nucleus, insofar as it has more than four states
when it is spinning freely. However, if you use your imagination, you can pretend there are only
four states. When a strong �eld is applied, only one of these states remains accessible.

It is worthwhile to compare theory to experiment:

These values for the molar entropy s have a
�rm theoretical basis. They require little more
than counting. We count microstates and ap-
ply the de�nition of entropy. Then we obtain
∆s by simple subtraction.

Meanwhile, ∆s can also obtained experimen-
tally, by observing the classical macroscopic
thermodynamic behavior of the refrigerator.

Both ways of obtaining ∆s give the same answer. What a coincidence! This answers the question
about how to connect microscopic state-counting to macroscopic thermal behavior. The Shannon
entropy is not merely analogous to the thermodynamic entropy; it is the thermodynamic entropy.

Spin entropy is discussed further in section 12.4.

Tangential remark: There are some e�orts devoted to using demagnetization to produce refrigeration
under conditions that are not quite so extreme; see e.g. reference 34.

11.11 Thermal Insulation

As a practical technical matter, it is often possible to have a high degree of thermal insulation
between some objects, while other objects are in vastly better thermal contact.
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For example, if we push on an object using a thermally-insulating stick, we can transfer energy
to the object, without transferring much entropy. In contrast, if we push on a hot object using a
non-insulating stick, even though we impart energy to one or two of the object's modes by pushing,
the object could be losing energy overall, via thermal conduction through the stick.

Similarly, if you try to build a piece of thermodynamic apparatus, such as an automobile engine, it
is essential that some parts reach thermal equilibrium reasonably quickly, and it is equally essential
that other parts do not reach equilibrium on the same timescale.



Chapter 12

More About Entropy

12.1 Terminology: Microstate versus Macrostate

Beware: In the thermodynamics literature, the word �state� is used with two inconsistent meanings.
It could mean either microstate or macrostate.

In a system such as the deck of cards discussed
in section 2.3, the microstate is speci�ed by
saying exactly which card is on top, exactly
which card is in the second position, et cetera.

In that system, the macrostate is the ensemble
of all card decks consistent with what we know
about the situation.

In a system such as a cylinder of gas, a mi-
crostate is a single fully-speci�ed quantum
state of the gas.

For such a gas, the macrostate is speci�ed
by macroscopic variables such as the temper-
ature, density, and pressure.

In general, a macrostate is an equivalence
class, i.e. a set containing some number of mi-
crostates (usually many, many microstates).

In the context of quantum mechanics, state
always means microstate.

In the context of classical thermodynamics,
state always means macrostate, for instance
in the expression �function of state�.

The idea of microstate and the idea of macrostate are both quite useful. The problem arises when
people use the word �state� as shorthand for one or both. You can get away with state=microstate
in introductory quantum mechanics (no thermo), and you can get away with state=macrostate in
introductory classical thermo (no quantum mechanics) . . . but there is a nasty collision as soon as
you start doing statistical mechanics, which sits astride the interface between QM and thermo.

In this document, the rule is that state means
microstate, unless the context requires other-
wise.

When we mean macrostate, we explicitly say
macrostate or thermodynamic state. The id-
iomatic expression �function of state� neces-
sarily refers to macrostate.
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The relationship between microstate and macrostate, and their relationship to entropy, is discussed
in section 2.7 and section 12.1.

Also, chapter 20 is a tangentially-related discussion of other inconsistent terminology.

12.2 What the Second Law Doesn't Tell You

Remember that the entropy is a property of the macrostate, not of any particular microstate. The
macrostate is an ensemble of identically-prepared systems.

Therefore, if you are studying a single system, the second law doesn't necessarily tell you what
that system is going to do. It tells you what an ensemble of such systems would do, but that's not
necessarily the same thing. At this point there are several options. The ensemble average is the
strongly recommended option.

1. For a large system, you may be able to use your imagination to divide the system into many
pieces, so that you have an ensemble of pieces. Each of the N pieces is in equilibrium with
a heat bath consisting of the other N − 1 pieces. You can take the average over pieces and
(maybe) substitute it for the ensemble average.

� You must assume the system is homogeneous, or do a lot of extra work to account for
any inhomogeneity.

� This throws the baby out with the bathwater if you are interested in small systems.

2. Similarly, you can take the time-average and (maybe) substitute it for the ensemble average.
The Poincaré recurrence theorem states that under some conditions, the time-average will give
you the same answer as the ensemble average. Obviously this doesn't apply to time-dependent
systems.

� You must assume the system is ergodic and time-invariant.

� This throws the baby out with the bathwater if you are interested in the time dependence.

3. We want the foundations of thermodynamics to apply to all systems, including small, time-
dependent systems. Therefore have de�ned entropy in terms of an ensemble average. We do
not depend on any time-averaging, we do not depend on ergodicity, we do not depend on any
large-N limit, and we do not depend on averaging over subsystems.

Note that energy is well de�ned for a single microstate but entropy is not. Entropy is a property
of the macrostate. You may wish for more information about the microstate, but you won't get it,
not from the second law anyway.

Given a probability distribution:

You can �nd the mean of the distribution. However, the mean does not tell you every-
thing there is to know.
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You can �nd the standard deviation of the dis-
tribution.

However, the standard deviation does not tell
you everything there is to know.

You can �nd the entropy of the distribution. However, the entropy does not tell you every-
thing there is to know.

Even those three things together do not tell
you everything there is to know.

Note that distribution = ensemble = macrostate. The literature uses three words that refer to the
same concept. That's annoying, but it's better than the other way around. (Using one word for
three di�erent concepts is a recipe for disaster.)

Suppose we have some source distribution, namely a distribution over some N -dimensional vector
X. This could represent the positions and momenta of N/6 atoms, or it could represent something
else. Now suppose we draw one point from this distribution � i.e. we select one vector from the
ensemble. We call that the sample. We can easily evaluate the sample-mean, which is just equal to
the X-value of this point. We do not expect the sample-mean to be equal to the mean of the source
distribution. It's probably close, but it's not the same.

Similarly we do not expect the sample-entropy to be the same as the source-distribution-entropy.
Forsooth, the entropy of the sample is zero!

Given a larger sample with many, many points, we expect the sample-entropy to converge to the
source-distribution-entropy, but the convergence is rather slow.

The discrepancy between the sample-mean and the source-dist-mean is not what people conven-
tionally think of as a thermodynamic �uctuation. It's just sampling error. Ditto for the sample-
entropy versus the source-dist-entropy. Fluctuations are dynamic, whereas you get sampling error
even when sampling a distribution that has no dynamics at all. For example, given an urn contain-
ing colored marbles, the marbles are not �uctuating ... but di�erent samples will contain di�erent
colors, in general.

For more about the crucial distinction between a distribution and a point drawn from that distri-
bution, see reference 1, especially the section on sampling.

12.3 Phase Space

As mentioned in section 2.5.2, our notion of entropy is completely dependent on having a notion of
microstate, and on having a procedure for assigning probability to microstates.

For systems where the relevant variables are naturally discrete, this is no problem. See section 2.2
and section 2.3 for examples involving symbols, and section 11.10 for an example involving real
thermal physics.

We now discuss the procedure for dealing with continuous variables. In particular, we focus attention
on the position and momentum variables.
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It turns out that we must account for position and momentum jointly, not separately. That makes
a lot of sense, as you can see by considering a harmonic oscillator with period τ : If you know the
oscillator's position at time t, you know know its momentum at time t+ τ/4 and vice versa.

Figure 12.1 shows how this works, in the semi-classical approximation. There is an abstract space
called phase space. For each position variable q there is a momentum variable p. (In the language
of classical mechanics, we say p and q are dynamically conjugate, but if you don't know what that
means, don't worry about it.)

Figure 12.1: Phase Space

Area in phase space is called action. We divide phase space into cells of size h, where h is Planck's
constant, also known as the quantum of action. A system has zero entropy if it can be described
as sitting in a single cell in phase space. If we don't know exactly where the system sits, so that
it must be described as a probability distribution in phase space, it will have some correspondingly
greater entropy.

If you are wondering why each state has area h, as opposed to some other amount of area, see
section 26.10.

If there are M independent position variables, there will be M momentum variables, and each
microstate will be associated with a 2M -dimensional cell of size hM .

Using the phase-space idea, we can already understand, qualitatively, the entropy of an ideal gas in
simple situations:
• If we keep the volume constant and increase the temperature, the entropy goes up. The spread
in position stays the same, but the spread in momentum increases.
• If we keep the temperature constant and increase the volume, the entropy goes up. The spread
in momentum stays the same, but the spread in position increases.

For a non-classical variable such as spin angular momentum, we don't need to worry about conjugate
variables. The spin is already discrete i.e. quantized, so we know how to count states . . . and it
already has the right dimensions, since angular momentum has the same dimensions as action.

In chapter 2, we introduced entropy by discussing systems with only discrete states, namely re-
arrangements of a deck of cards. We now consider a continuous system, such as a collection of free
particles. The same ideas apply.
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For each continuous variable, you can divide the phase space into cells of size h and then see which
cells are occupied. In classical thermodynamics, there is no way to know the value of h; it is just an
arbitrary constant. Changing the value of h changes the amount of entropy by an additive constant.
But really there is no such arbitrariness, because �classical thermodynamics� is a contradiction in
terms. There is no fully self-consistent classical thermodynamics. In modern physics, we de�nitely
know the value of h, Planck's constant. Therefore we have an absolute scale for measuring entropy.

As derived in section 26.2, there exists an explicit, easy-to-remember formula for the molar entropy
of a monatomic three-dimensional ideal gas, namely the Sackur-Tetrode formula:

S/N

k
= ln(

V/N

Λ3
) +

5

2
(12.1)

where S/N is the molar entropy, V/N is the molar volume, and Λ is the thermal de Broglie length,
i.e.

Λ :=
√

(
2π~2

mkT
) (12.2)

and if you plug this Λ into the Sackur-Tetrode formula you �nd the previously-advertised dependence
on h3.

You can see directly from equation 26.17 that the more spread out the gas is, the greater its molar
entropy. Divide space into cells of size Λ3, count how many cells there are per particle, and then
take the logarithm.

The thermal de Broglie length Λ is very commonly called the thermal de Broglie wave-
length, but this is something of a misnomer, because Λ shows up in a wide variety of
fundamental expressions, usually having nothing to do with wavelength. This is dis-
cussed in more detail in reference 35.

12.4 Entropy in a Crystal; Phonons, Electrons, and Spins

Imagine a crystal of pure copper, containing only the 63Cu isotope. Under ordinary desktop condi-
tions, most of the microscopic energy in the crystal takes the form of random potential and kinetic
energy associated with vibrations of the atoms relative to their nominal positions in the lattice. We
can �nd �normal modes� for these vibrations. This is the same idea as �nding the normal modes
for two coupled oscillators, except that this time we've got something like 1023 coupled oscillators.
There will be three normal modes per atom in the crystal. Each mode will be occupied by some
number of phonons.

At ordinary temperatures, almost all modes will be in their ground state. Some of the low-lying
modes will have a fair number of phonons in them, but this contributes only modestly to the entropy.
When you add it all up, the crystal has about 6 bits per atom of entropy in the thermal phonons
at room temperature. This depends strongly on the temperature, so if you cool the system, you
quickly get into the regime where thermal phonon system contains much less than one bit of entropy
per atom.
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There is, however, more to the story. The copper crystal also contains conduction electrons. They
are mostly in a low-entropy state, because of the exclusion principle, but still they manage to
contribute a little bit to the entropy, about 1% as much as the thermal phonons at room temperature.

A third contribution comes from the fact that each 63Cu nucleus can be be in one of four di�erent
spin states: +3/2, +1/2, -1/2, or -3/2. Mathematically, it's just like �ipping two coins, or rolling a
four-sided die. The spin system contains two bits of entropy per atom under ordinary conditions.

You can easily make a model system that has four states per particle. The most elegant way
might be to carve some tetrahedral dice . . . but it's easier and just as e�ective to use four-sided
�bones�, that is, parallelepipeds that are roughly 1cm by 1cm by 3 or 4 cm long. Make them long
enough and/or round o� the ends so that they never settle on the ends. Color the four long sides
four di�erent colors. A collection of such bones is profoundly analogous to a collection of copper
nuclei. The which-way-is-up variable contributes two bits of entropy per bone, while the nuclear
spin contributes two bits of entropy per atom.

In everyday situations, you don't care about this extra entropy in the spin system. It just goes
along for the ride. This is an instance of spectator entropy, as discussed in section 12.6.

However, if you subject the crystal to a whopping big magnetic �eld (many teslas) and get things
really cold (a few millikelvins), you can get the nuclear spins to line up. Each nucleus is like a little
bar magnet, so it tends to align itself with the applied �eld, and at low-enough temperature the
thermal agitation can no longer overcome this tendency.

Let's look at the cooling process, in a high magnetic �eld. We start at room temperature. The
spins are completely random. If we cool things a little bit, the spins are still completely random.
The spins have no e�ect on the observable properties such as heat capacity.

As the cooling continues, there will come a point where the spins start to line up. At this point the
spin-entropy becomes important. It is no longer just going along for the ride. You will observe a
contribution to the heat capacity whenever the crystal unloads some entropy.

You can also use copper nuclei to make a refrigerator for reaching very cold temperatures, as
discussed in section 11.10.

12.5 Entropy is Entropy

Some people who ought to know better try to argue that there is more than one kind of entropy.

Sometimes they try to make one or more of the following distinctions:

Shannon entropy. Thermodynamic entropy.

Entropy of abstract symbols. Entropy of physical systems.

Entropy as given by equation 2.2 or equa-
tion 27.6.

Entropy de�ned in terms of energy and tem-
perature.

Small systems: 3 blocks with 53 states, or 52
cards with 52! states

Large systems: 1025 copper nuclei with 41025

states.
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It must be emphasized that none of these distinctions have any value.

For starters, having two types of entropy would require two di�erent paraconservation laws, one for
each type. Also, if there exist any cases where there is some possibility of converting one type of
entropy to the other, we would be back to having one overall paraconservation law, and the two
type-by-type laws would be seen as mere approximations.

Also note that there are plenty of systems where there are two ways of evaluating the entropy. The
copper nuclei described in section 11.10 have a maximum molar entropy of R ln(4). This value
can be obtained in the obvious way by counting states, just as we did for the small, symbol-based
systems in chapter 2. This is the same value that is obtained by macroscopic measurements of
energy and temperature. What a coincidence!

Let's be clear: The demagnetization refrigerator counts both as a small, symbol-based system and
as a large, thermal system. Additional examples are mentioned in chapter 22.

12.6 Spectator Entropy

Suppose we de�ne a bogus pseudo-entropy S′ as

S′ := S +K (12.3)

for some arbitrary constant K. It turns out that in some (but not all!) situations, you may not be
sensitive to the di�erence between S′ and S.

For example, suppose you are measuring the heat capacity. That has the same units as entropy, and
is in fact closely related to the entropy. But we can see from equation 7.14 that the heat capacity
is not sensitive to the di�erence between S′ and S, because the derivative on the RHS annihilates
additive constants.

Similarly, suppose you want to know whether a certain chemical reaction will proceed spontaneously
or not. That depends on the di�erence between the initial state and the �nal state, that is, di�erences
in energy and di�erences in entropy. So once again, additive constants will drop out.

There are many standard reference books that purport to tabulate the entropy of various chemical
compounds . . . but if you read the �ne print you will discover that they are really tabulating
the pseudo-entropy S′ not the true entropy S. In particular, the tabulated numbers typically do
not include the contribution from the nuclear spin-entropy, nor the contribution from mixing the
various isotopes that make up each element. They can more-or-less get away with this because
under ordinary chem-lab conditions those contributions are just additive constants.

However, you must not let down your guard. Just because you can get away with using S′ instead
of S in a few simple situations does not mean you can get away with it in general. As discussed in
section 12.7 there is a correct value for S and there are plenty of cases where the correct value is
needed.
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12.7 No Secret Entropy, No Hidden Variables

Suppose we want to �nd the value of the true entropy, S. We account for the thermal phonons,
and the electrons, and the nuclear spins. We even account for isotopes, chemical impurities, and
structural defects in the crystal. But . . . how do we know when to stop? How do we know if/when
we've found all the entropy? In section 12.6 we saw how some of the entropy could silently go along
for the ride, as a spectator, under certain conditions. Is there some additional entropy lurking here
or there? Could there be hitherto-unimagined quantum numbers that couple to hitherto-unimagined
�elds?

The answer is no. According to all indications, there is no secret entropy. At any temperature
below several thousand degrees, electrons, atomic nuclei, and all other subatomic particles can
be described by their motion (position and momentum) and by their spin, but that's it, that's a
complete description. Atoms, molecules, and all larger structures can be completely described by
what their constituent particles are doing.

In classical mechanics, there could have been an arbitrary amount of secret entropy, but in the real
world, governed by quantum mechanics, the answer is no.

We have a �rm experimental basis for this conclusion. According to the laws of quantum mechan-
ics, the scattering of indistinguishable particles is di�erent from the scattering of distinguishable
particles.

Therefore let's consider a low-energy proton/proton scattering experiment. We arrange that the
protons are not distinguishable on the basis of position, or on any basis other than spin. That is,
the protons are indistinguishable if and only if they have the same spin.

Next we randomize the spins, so that for each proton, each of the two spin states is equally likely.
Our ignorance of the spin state contributes exactly 1 bit per particle to the entropy.

Now, to make things interesting, suppose that in addition to the aforementioned 1 bit of spin-
entropy, each proton had 17 bits of �secret entropy�, in whatever form you can imagine. That would
mean that there would be 217 di�erent distinguishable types of proton. If you pick protons at
random, they would almost certainly be distinguishable, whether or not their spins were aligned,
and you would almost never observe like-spin scattering to be di�erent from unlike-spin scattering.

Such scattering experiments have been conducted with electrons, protons, various heavier nuclei,
and sometimes entire atoms. There has never been any indication of any secret entropy.

The thermodynamics of chemical reactions tells us that larger structures can be described in terms
of their constituents with no surprises.

The existence of super�uidity is further evidence that we can correctly account for entropy. All
the atoms in the super�uid phase are described by a single quantum wavefunction. The entropy
per atom is zero; otherwise it wouldn't be a super�uid. Super�uid 4He depends on the fact that
all 4He atoms are absolutely totally indistinguishable � not distinguishable on the basis of position,
spin, or any other quantum numbers. This is what we expected, based on two-particle scattering
experiments, but the existence of super�uidity reassures us that we haven't overlooked anything
when going from two particles to 1023 particles.
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Super�uidity occurs because certain identical-particle e�ects are cumulative and therefore have a
spectacular e�ect on the entire �uid. Similar macroscopic identical-particle e�ects have been directly
observed in 3He, spin-polarized monatomic hydrogen, sodium atomic gas, and other systems.

It might also be remarked that the existence of superconductors, semiconductors, metals, molecular
bonds, and the periodic table of elements is strong evidence that electrons have no secret entropy.
The existence of lasers is strong evidence that photons have no secret entropy.

I can't prove that no hitherto-secret entropy will ever be discovered. We might discover a new atom
tomorrow, called loonium, which is exactly the same as helium except that for some reason it always
obeys the distinguishable-particle scattering law when scattering against helium. This wouldn't be
the end of the world; we would just postulate a new quantum number and use it to distinguish the
two types of atom. All I can say is that loonium must be exceedingly rare; otherwise it would have
been noticed.

Reminder: The foregoing discussion applies to �secret entropy� that might exist at room temperature
or below, in analogy to spin entropy. In contrast we are not talking about the plethora of quantum
numbers that are known to come into play at higher energies, but are all in their ground state under
ordinary room-temperature conditions.

12.8 Entropy is Context Dependent

Consider 100 decks of cards. The �rst one is randomly shu�ed. It has an entropy of just under
226 bits. All the rest are ordered the same way as the �rst. If you give me any one of the decks
in isolation, it will take me 226 yes/no questions to �gure out how to return the deck to standard
order. But after I've seen any one of the decks, I know the exact microstate of every other deck
without asking additional questions. The other 99 decks contain zero additional entropy.

In a situation like this, it's hard to consider entropy to be a state variable. In particular, the entropy
density will not be an intensive property.

I know this sounds creepy, but it's real physics. Creepy situations like this do not usually occur in
physical systems, but sometimes they do. Examples include:
• The spin-echo experiment (section 11.7) is the perfect example of this.
• Small thermodynamic systems, including Maxwell demons and Szilárd engines, are also excel-
lent examples.
• There are many magic tricks that involve a deck of cards that is (or appears to be) completely
disordered, yet important details of the con�guration are known to the magician.
• Similarly, in cryptology, a string of symbols that is well encrypted will pass any standard test
for randomness, and is therefore completely unpredictable to most parties . . . yet it is highly
predictable to parties who hold the key.

In an ordinary ideal gas, you can pretty much assume the entropy density is a well-behaved intensive
property � but don't completely let down your guard, or you'll be badly fooled by the spin-echo
setup.
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A related issue concerns the dependence of entropy on the choice of observer. Entropy is not simply
a property of a system, but rather a property of the system and the description thereof. This was
mentioned in passing near the end of chapter 2.

Let's be clear: As a matter of principle, two di�erent observers will in general assign two di�erent
values to �the� entropy.

This is easy to express in mathematical terms. The trustworthy workhorse formula for entropy is
equation 2.2. If we have a conditional probability, things get slightly more complicated, as discussed
in section 12.9.

Human observers are so grossly dissipative and usually �know� so little that it is academic to worry
about the thermodynamics of human �knowledge�. However, the issue takes on new life when we
consider tiny, highly-optimized robot measuring devices � Maxwell demons and the like.

For microscopic systems, it is for sure possible for di�erent observers to report di�erent values of
�the� entropy (depending on what each observer knows about the system). The discrepancy can be
a large percentage of the total.

By way of analogy, you know that di�erent observers report di�erent values of �the�
kinetic energy (depending on the velocity of the observer), and this hasn't caused the
world to end.

For macroscopic systems (1023 particles or thereabouts) it is uncommon for one observer to know
1023 things that the other observer doesn't . . . but even this is possible. The spin echo experiment
is a celebrated example, as discussed in section 11.7.

Regardless of the size of the system, it is often illuminating to consider a complete thermodynamic
cycle, such that all participants are returned to the same state at the end of the cycle. This de-
emphasizes what the observers �know� and instead focuses attention on how they �learn� . . . and
how they forget. In more technical terms: this focuses attention on the observation/measurement
process, which is crucial if you want a deep understanding of what entropy is and where it comes
from. See reference 36 and reference 37.

In particular, at some point in each cycle the observer will have to forget previous information,
to make room for the new information. This forgetting expels entropy, and at temperature T it
dissipates energy TS.

To repeat: When evaluating �the� entropy, it is necessary to account for the information in the
observer-system. In a closed cycle, this focuses attention on the observation and measurement
process. If you don't do this, you will get the wrong answer every time when analyzing spin echo
systems, Maxwell demons, Szilárd engines, reversible computers, et cetera.

12.9 Slice Entropy and Conditional Entropy

Suppose we have the following joint probability:

P [i, j] =

[
a b
c d

]
(12.4)
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From that we can form the marginal probabilities such as u = a+ b and v = c+ d:

P [i, j] =

[
a b
c d

]
...

[
u
v

]
· · ·[
x y

] (12.5)

To allow for the possibility that the probabilities are not normalized, we de�ne
z = u+ v

= x+ y
(12.6)

The conditional probabilities (conditioned on row number) are:

P [@i, j] =

[
a/u b/u
c/v d/v

]
(12.7)

Notation: The probability is conditioned on the variable marked with the �@� sign, as discussed in
reference 1. Brie�y, we can de�ne this notation in terms of the older �|� bar notation:

P [@i, j](y, x) ≡ P [j,@i](x, y)
≡ P [j|i](x, y)

(12.8)

Then for each row y, we can de�ne the row entropy:

S′[P [@i, j]](y) := −
∑

x P [@i, j](y, x) log(P [@i, j](y, x)) (12.9)

So in our example, the row entropy of the �rst row is:

S′[P [@i, j]](1) := −a/u log(a/u)− b/u log(b/u) (12.10)

An analogous expression exists for the column entropy. The term slice entropy is meant to encompass
row entropy, column entropy, and all other ways of slicing up the joint distribution. If the probability
is a function of N variables, there will be 2N − 2 ways of slicing things.

We can now de�ne the full-blown conditional entropy as the weighted sum of the row entropies:

S[P [@i, j]] :=
∑

y S
′[P [@i, j]](y)P [i](y) (12.11)

So in our example, the conditional entropy is:
S[P [@i, j]] := −a/z log(a/u)− b/z log(b/u)

−c/z log(c/v)− d/z log(d/v)
(12.12)

Note that the row entropy is a function of row number, but the full conditional entropy is not. Both
of them are, of course, a functional of the probability distribution.

12.10 Extreme Mixtures

In this section, we consider three possibilities:

� We could have a pure system. A good example is 4He gas. All 4He atoms are identical, in the
strict quantum-mechanical sense.
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� We could have an ordinary mixture with a small number of components, small compared to
the number of particles in the sample. A good example is 3He gas. Each 3He atom has two
possible states (associated with the orientation of its nuclear spin).

� We could have an extreme mixture, where the components of the mixture are drawn from
some �universal set� such that the number of possibilities exceeds the number of particles in
our sample, and � crucially � we don't know which of the possible particles actually appear
in our sample. We call this snow, since snow�akes are proverbially all di�erent.

12.10.1 Simple Model System

Calculating the entropy of an extreme mixture is a bit tricky. It may help to use playing cards as
a model system. There are two possible scenarios:

Scenario 1A : Suppose we deal out three cards, and then look at them to see which cards they
are. At this point, the entropy of the hand is zero, since we know the exact microstate.

Next we shu�e the cards within the hand, so that we no longer know the order of the cards.
Now there is 2.6 bits of entropy, i.e. log2(3!).

Note: In this section, all numerical values for the entropy are rounded to the nearest
0.1 bit.

Let's call this the entropy of permutation of the hand. For some purposes we might consider
this �the� entropy, but not for all purposes, as we shall see. As another way of saying the
same thing: we have just calculated a row entropy (as de�ned in section 12.9 � conditioned
on knowing which three cards are in the hand.

Scenario 1B: I shu�e a new deck and deal three cards at random. Unlike in the previous scenario,
we do not peek to see which cards are in the hand. This hand contains 17 bits of entropy,
i.e. log2(52 ∗ 51 ∗ 50). This is the sum of

� 14.4 bits associated with which cards got dealt, which we call the entropy of the deal,
which we denote SD; and

� the aforementioned 2.6 bits representing the row entropy, conditioned on the deal, which
we denote S|D.

In this example, S|D is just the entropy of permutation within the hand. (For another
system, such as a sample of gas, we would need a more complicated expression for S|D.)

Very commonly, the entropy of the deal is enormous compared to the entropy if permutation
within the hand.

In general, the total system entropy is

S = SD + S|D (12.13)

Reminder: The entropy of the deal, by de�nition, does not include the entropy of permutation
within the sample.
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Under mild conditions, the number of possible deals will be:
SD = log(WD)

= log(MchooseN)

= log( M !
(M−N)!N !)

(12.14)

where WD is the multiplicity of the deal, M is the number of particles in the universal set, and N
is the number of particles that were selected (dealt) into the actual sample. Here we are assuming
that the particles, although distinguishable, all behave very nearly the same, so that they have equal
probability of being selected.

When the number of particles in the universal set (cards in the deck) is very large compared to the
number of particles actually in the sample, equation 12.14 simpli�es to:

SD ≈ log(M
N

N ! ) (for M � N) (12.15)

12.10.2 Two-Sample Model System

We now consider a two-handed version of the same game. Once again, there are two scenarios,
depending on whether we peek or not.

Scenario 2A: We deal two hands. We look to see which cards are in each hand. Then we
shu�e each hand separately The entropy of the each hand is 2.6 bits. This is the entropy of
permutation within each hand. The two shu�es are statistically independent, so the entropy
is additive. Therefore the entropy of the system as a whole is 5.2 bits.

Next, we put the two hands together and shu�e the six cards. Now the system entropy is 9.5
bits, i.e. log2(6!).

The main result here is that the system entropy is increased by mixing the two subsystems.
It has gone up from 5.2 to 9.5, for a gain of 4.3 bits. This newly created entropy, called the
entropy of mixing, can be considered a minature entropy of the deal, created by dealing two
hands from the six-card mini-deck.

We now turn to an ugly and messy side-issue, which you can skip if you want. If we re-
separate these card into two hands of three, it is not easy to decide how the system entropy
gets distributed. Each player, considering his hand alone, evalutes the entropy as 6.9 bits,
i.e. log2(6 ∗ 5 ∗ 4), since he doesn't know which three of the six cards he's got, or what order
they're in. That leaves the familiar 2.6 bits in the other player's hand.

This is another example of context-dependent entropy, as discussed in section 12.8. By sym-
metry, each player evaluates the entropy of his own hand as 6.9 bits and the entropy of the
other player's hand as 2.6 bits. Each of these evaluations is consistent with itself, but not
consistent with the other evaluation.

Scenario 2B: The same as above, but we don't peek so we don't know which cards are in either
hand.

Immediately after dealing the cards, the system entropy is 33.8 bits, i.e. log2(52∗51∗50∗49∗
48 ∗ 47). If the cards were dealt in the usual way, we can say this entropy is distributed as
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follows: There is 16.9 bits in the �rst hand hand, i.e. log2(52 ∗ 50 ∗ 48), plus 16.8 bits in the
other hand, i.e. log2(51 ∗ 49 ∗ 47).

Next, we put the two hands together and shu�e the six cards. This does not increase the
entropy. Before the shu�ing, we knew nothing about which six cards were involved and knew
nothing about the order, and after the shu�ing we don't know any more or less. The system
entropy is still 33.8 bits.

The main result is that in this scenario, mixing does not increase the entropy.

Once again we have a messy and ugly side issue: We now re-separate the cards into two hands
of three. It is, alas, tricky to decide how the entropy is distributed. It might make sense to
distribute the entropy evenly, by symmetry. Or it might make sense to say it was distributed
as before, namely 16.9 plus 16.8. Or it might make sense for one player to decide that in the
absence of information about the other player's hand, he should use the maximally-asymmetric
worst-case estimate, namly 17 bits in his hand, i.e. log2(51 ∗ 51 ∗ 50), plus 16.8 bits in the
other hand i.e. log2(49 ∗ 48 ∗ 47).

Note the contrast:

In scenario 2A, mixing increased the entropy. This can be explained by saying that we zeroed out
the entropy of the deal by peeking, and then re-created a little bit of entropy of the deal by shu�ing
the six-card mini-deck and re-dealing.

In scenario 2B, mixing did not increase the entropy. The system already had the maximal amount
of entropy of the deal, so shu�ing the mini-deck and re-dealing could not possibly increase the
entropy.

12.10.3 Helium versus Snow

We now consider a contrast along a di�erent axis, namely the contrast between a pure substance
and an extreme mixture:

For a sample of helium, the entropy of the
deal is zero. That's because all 4He atoms are
identical. One sample of N atoms of helium
is just like any other sample of N atoms of
helium.

For a sample of gas where the particles are all di�erent, like the proverbial snow�akes, the total
entropy necessarily includes the entropy of the deal. If you have N snow�akes, in general it matters
which N snow�akes they are. If you have two such samples, each individual �ake is di�erent, and
each sample as a whole is di�erent. The two samples may be equivalent as to various macroscopic
average properties, but from the point of view of the foundations of thermodynamics, the two
samples are very di�erent. They are di�erent in a way that two samples of helium are not.

If we perform a Gibbs-type mixing experiment
with helium, mixing does not increase the en-
tropy. This makes sense, because all helium
atoms are identical.

If

we perform a Gibbs-type mixing experiment with snow, there are two possibilities. In scenario 2A
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(as discussed in section 12.10.2), mixing increases the entropy. In this scenario the entropy of the
deal had been removed, and mixing re-created a certain amount of entropy of the deal.

Meanwhile, in scenario 2B, mixing does not increase the entropy.

Note that the non-increase of entropy for mixing snow in scenario 2B is not equivalent to the
non-increase for mixing helium; they occur for di�erent reasons.

12.10.4 Partial Information aka Weak Peek

There is yet another scenario that is worth considering, namely where we have only partial infor-
mation about the particles in each sample. Roughly speaking, imagine mixing red snow with blue
snow, or mixing chocolate milk with regular milk.

Again we use playing cards as our model system.

Scenario 2C : We deal three black cards to one player, and deal three red cards to the other
player. The entropy of each hand is a little over 13.9 bits, i.e. log2(26 ∗ 25 ∗ 24) ... of which
11.3 bits is the entropy of the deal and 2.6 bits is the familiar entropy of permutation within
the hand. The hands are statistically independent, so the system entropy is just twice that,
namely 27.9 bits, which breaks down as 22.7 (deal) plus 5.2 (two permutations).

The information about the coloration of each hand can be considered partial information.
This information could come from any of several possible sources, including a weak peek, i.e.
a peek that ascertains the color without ascertaining the exact suit or rank.

If we put the two hands together and shu�e the six cards, the system entropy increases to
32.2 bits, which breaks down as 22.7 for the entropy of the original deal (unchanged), plus
9.5 for the entropy of permutation of the six cards, i.e. log2(6!). So the entropy-gain due to
mixing is 4.3 bits.

Not coincidentally, this is the exact-same entropy gain as we saw in scenario 2A. The change
is the same, even though the system entropy of the new scenario (2C) is greater. In both of
these scenarios, the entropy of mixing is associated with not knowing which of the two original
hands contributed a given card to the �nal hand.

Again it is tricky to distribute the system entropy. If each player adopts the worst-case
maximum entropy strategy, he will attribute 17.0 bits of entropy to his hand, i.e. log2(52 ∗
51 ∗ 50), since he really has no idea what cards are in his hand. This leaves 15.2 bits in the
other hand. This is another situtaion where each player's evaluation is internally consistent,
but inconsistent with the other player's evaluation.

12.11 Entropy is Not Exactly Extensive

People commonly think of entropy as being an extensive quantity. This is true to a good approx-
imation in many situations, especially for macroscopic systems in thermal equilibrium. However,
there are exceptions.
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As an extreme example of non-extensive entropy, consider the situation described at the beginning
of section 12.8, where we have one randomly-shu�ed deck plus some number of clones. Whichever
one of these decks we look at �rst will look completely random, but the total entropy of the system
does not grow in proportion to the number of decks; indeed it does not grow at all as we add more
decks.

Even for something as simple as a pure monatomic ideal gas, the entropy is �almost� extensive,
but not quite, as discussed in connection with equation 26.17. Similarly, for a gas mixture, see
equation 26.21.

The idea that entropy might be non-extensive should not come as any big surprise. The energy of
a liquid or solid is not exactly extensive either, because of things like surface tension and surface
reconstruction.

Note that in a Gibbs-type mixing experiment, if you start out with helium on one side and neon on
the other, the entropy of the mixture is not the sum of the two original entropies. Not even close.
This is because there is a large entropy of mixing. In this situation we might say the entropy is
grossly non-extensive (if it even makes sense to talk about extensivity in such a situation).

On the other hand, if we start out with a mixture of helium and neon on one side, and the same
mixture on the other side, when we pull out the partition, there is �almost� no change in entropy,
in accordance with equation 26.21.

Similarly, even for an extreme mixture, i.e. snow on one side and snow on the other, the entropy
is extensive (or nearly so) ... provided we account for the entropy of the deal. Beware that the
entropy of the deal is often neglected, even though it is enormous.

12.12 Mathematical Properties of the Entropy

12.12.1 Entropy Can Be In�nite

Let's see what it takes to construct a probability distribution that has in�nite entropy.

For simplicity, let's consider a discrete distribution, with discrete microstates ... such as a distribu-
tion over the integers. (A continuous distribution would make the problem more complicated but
not in any way more interesting.)

There are two ways to proceed. Let's deal with the simple, not-so-interesting case �rst. Imagine
tossing a very large number of coins. The entropy per coin (s) is intensive and is the same every-
where, namely 1 bit per coin. The total entropy (S) is extensive, and grows in proportion to the
number of coins. This situation is easy to understand in the case of a large but �nite number of
coins, but things go haywire if we ask about a truly in�nite number of coins, because then there
would be an in�nite number of microstates with zero probability apiece. Zero probability is not
good.

We can apply the same logic to the physics of a large chunk of metal. The molar entropy, s, is
intensive and is the same everywhere. The total entropy, S, is extensive and grows in proportion
to the size of the chunk. Again, this is easy to understand for a large but �nite chunk, but things
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to haywire if we ask about a truly in�nite chunk, because then every microstate would have zero
probability.

So let's not approach the problem that way. Instead we insist on a well behaved probability distri-
bution, such that

pi > 0 for all integers i ≥ j (12.16a)∑
pi = 1 (12.16b)

where j is some convenient starting-point. The goal of in�nite entropy means that∑
pi ln(1/pi) = ∞ (12.17)

Finding a suitable distribution is going to be a challenge, because we want the series in equa-
tion 12.16b to converge, but we want the closely-related series in equation 12.17 to diverge. This is
possible, but it means that one series will �just barely� converge while the other will �just barely�
diverge.

Let's see whether the probability de�ned by equation 12.18 does what we want.
qi = 1

i (ln i)h
for all i ≥ 3

Z =
∑
qi

pi = qi
Z

(12.18)

As an aid to understanding what's going on, consider the series in equation 12.19. Using the integral
test, you can easily show that the series converges for all h strictly greater than 1, and diverges to
+∞ otherwise.

Z =
∑∞

3
1

i (ln i)h (12.19)

Returning to equation 12.18, let's assume h is greater than one. For de�niteness, you can take h =
1.5 if you wish. This guarantees that the probability is well-behaved as speci�ed in equation 12.16.

We can calculate a lower bound on the entropy as follows:
S =

∑
pi ln(1/pi)

=
∑ ln(Z)+ln(i)+h ln(ln i)

Zi (ln i)h

>
∑ ln(Z)+ln(i)

Zi (ln i)h

> const +
∑ 1

Zi (ln i)(h−1)

= ∞
provided h > 1 and h ≤ 2

(12.20)

The pie chart for this distribution is shown (somewhat impefectly) in �gure 12.2. You can see that
the series converges quite slowly. In fact, the �rst 1000 terms cover only about 86% of the total pie
when h = 2.0. Smaller values of h give even slower convergence.

I can't think of any physics situations where there are countably many states, each with a positive
amount of probability ... but such situations are routine in data compression, communications, and
cryptography. It's an argument for having variable-length codewords. There are in�nitely many
di�erent messages that could be sent. A few of them are very common and should be encoded with
short codewords, while most of the rest are very very unlikely, and should be encoded with much
longer codewords.

This is a way of driving home the point that entropy is a property of the distribution.
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Figure 12.2: Distribution with In�nite Entropy (h = 2.0)

� You can talk about the mean of the distribution.

� You can talk about the second moment of the distribution.

� You can talk about the fourth moment of the distribution.

� You can talk about the entropy of the distribution.

� Et cetera.

The idea of entropy applies to any distribution, not just thermal-equilibrium distributions.

Here is another example of a countable, discrete distribution with in�nite entropy:
qi = 1

ln(i) −
1

ln(i+1) for all i ≥ 3

Z =
∑
qi

= 1
ln(3)

pi = qi
Z

(12.21)

This has the advantage that we can easily calculate the numerical value of Z. If you approximate
this distribution using a Taylor series, you can see that for large i, this distribution behaves similarly
to the h = 2 case of equation 12.18. This distribution is discussed with more formality and more
details in reference 38.



Chapter 13

Temperature : De�nition and
Fundamental Properties

The �rst goal for today is to de�ne what we mean by temperature. In the process, we will discover
that equilibrium is isothermal. That is, when two objects are in contact (so that they can exchange
energy), then in equilibrium they have the same temperature. This is one of the big reasons why
people care about temperature. It could be argued that the notion of temperature is constructed
and de�ned in such a way as to guarantee that equilibrium is isothermal.

We follow the same approach as reference 39. See especially �gure 3 therein. We shall use these
ideas in section 14.4 and elsewhere.

13.1 Example Scenario: Two Subsystems, Same Stu�

In our �rst scenario, suppose we have two subsystems.

� Subsystem #1 has N1 = 48 spins.

� Subsystem #2 has N2 = 24 spins.

Each spin has −1 units of energy when it is in the down state and +1 units of energy when it is
in the up state.

The two subsystems are able to exchange energy (and spin angular momentum) with each other,
but the system as a whole is isolated from the rest of the universe.

Within limits, we can set up initial conditions with a speci�ed amount of energy in each subsystem,
namely E1 and E2. We can then calculate the entropy in each subsystem, namely S1 and S2. By
considering various ways of distributing the energy and entropy, we can �gure out which distribution
corresponds to thermal equilibrium.

In particular, the subsystems reach equilibrium by exchanging energy with each other, under condi-
tions of constant total energy E = E1 + E2. Therefore, at any given value of E, we can keep track
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of the equilibration process as a function of E1. We can calculate E2 as a function of E and E1.
Then we can calculate everything else we need to know as a function of E1 and E2.

This equilibration process is diagrammed in �gure 13.1, for the case where E = −60. Subsequent
�gures show the same thing for other amounts of energy. We pick eight di�erent values for the total
system energy, and calculate everything else accordingly. The method of calculation is discussed in
section 13.5.

In each of the �gures, there is quite a bit of information:

� The blue curve indicates S1, the entropy of system #1, as a function of E1.

� The red curve indicates S2, the entropy of system #2, as a function of E1. You might have
expected S2 to be plotted as a function of E2, but for present purposes it is more useful to
plot everything on a common abscissa, and we choose E1 for this.

� The black curve indicates the entropy of the system as a whole, S = S1 + S2, plotted as a
function of E1.

� The equilibrium situation is indicated by a vertical dashed yellow line. You can see that the
total entropy is maximal at this point, which corresponds to dS/dE = 0.

� The horizontal dashed blue line indicates E1a, the amount of energy above the ground state in
subsystem #1. The �a� in E1a stands for �above�. Note that E1 and E1a increase left-to-right
in the diagram, in the conventional way.

� The horizontal dashed red line indicates E2a, the amount of energy above the ground state in
subsystem #2. Note that E2 and E2a increase right-to-left in the diagram, which makes sense
in this case, even though it is unconventional.

It is important to notice that the red curve plus the blue curve add up to make the black curve,
everywhere. Therefore the slope of the red curve plus the slope of the blue curve add up to make
the slope of the black curve, everywhere. At equilibrium, the slope of the black curve is zero, so the
slope of the other two curves must be equal and opposite. You can see this in the graphs, at the
places where the curves cross the yellow line.

For the blue curve, the slope is:

β1 := ∂S1
∂E1

∣∣∣
N,V

(13.1)
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Figure 13.1: Entropy versus E1, at constant E = −60

Figure 13.2: Entropy versus E1, at constant E = −48
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Figure 13.3: Entropy versus E1, at constant E = −36

Figure 13.4: Entropy versus E1, at constant E = −24
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Figure 13.5: Entropy versus E1, at constant E = −12

Figure 13.6: Entropy versus E1, at constant E = 0
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Figure 13.7: Entropy versus E1, at constant E = +12

Figure 13.8: Entropy versus E1, at constant E = +24
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which depends only on properties of subsystem #1. As plotted in the �gure, the slope of the red
curve is ∂S2

∂E1
, which is somewhat interesting, but in the long run we will be much better o� if we

focus attention on something that depends only on properties of subsystem #2, namely:

β2 := ∂S2
∂E2

∣∣∣
N,V

(13.2)

We now make use of the fact that the system is isolated, so that dE = 0, and make use of conservation
of energy, so that E = E1 + E2. Plugging this in to the de�nition of β2, we �nd

β2 := ∂S2
∂E2

∣∣∣
N,V

= − ∂S2
∂E1

∣∣∣
N,V

= negative slope of red curve

(13.3)

Therefore, when we observe that the slope of the blue curve and the slope of the red curve are equal
and opposite, it tells us that β1 and β2 are just plain equal (and not opposite).

These quantitities are so important that the already has a conventional name: β1 is the inverse

temperature of subsystem #1. Similarly β2 is the inverse temperature of subsystem #2.

13.1.1 Equilbrium is Isothermal

The punch line is that when two subsystems have reached equilibrium by exchanging energy, they
will be at the same temperature. We have just explained why this must be true, as a consequence
of the de�nition of temperature, the de�nition of equilibrium, the law of conservation of energy, and
the fact that the system is isolated from the rest of the world.

Equilibrium is isothermal.

Experts note: The black curve measures ∂S/∂E1 not ∂S/∂E, so it cannot serve as a
de�nition of temperature. Not even close. If we want to ascertain the temperature of
the system, it usually su�ces to measure the temperature of some subsystem. This is
the operational approach, and it almost always makes sense, although it can get you
into trouble in a few extreme cases. Hint: make sure there are at least two subsystems,
each of which is big enough to serve as a heat sink for the other.

13.2 Remarks about the Simple Special Case

The remarks in this section apply only in the special case where one subsystem is twice as large as
the other, and the two subsystems are made of the same kind of stu�. (The case where they are
made of di�erent stu� is more interesting, as discussed in section 13.3.)

You can see from the length of the horizontal dashed lines that at equilibrium, the blue subsystem
has 2/3rds of the energy while the red subsystem has 1/3rd of the energy. This makes sense, since
the blue system is twice as large, and the two subsystems are made of the same kind of stu�.
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Meanwhile, you can see from the height of the horizontal dashed lines that at equilibrium, the blue
subsystem has 2/3rds of the entropy while the red subsystem has 1/3rd of the entropy. Again this
is unsurprising.

The vertical �tail� on the blue dashed line serves to indicate the E1 value that corresponds to
E1a = 0. Similarly, the vertical �tail� on the red dashed line serves to indicate the E1 value that
corresponds to E2a = 0.

Also, turning attention to E1 rather than E1a, you can see from the position of the yellow dashed
line that E1 is 2/3rds of the total E, as shown by the red diamond, which represents total E even
though it is plotted on the nominal E1 axis.

13.3 Two Subsystems, Di�erent Stu�

In this section we consider a new scenario. It is the same as the previous scenario, except that we
imagine that the spins in the red subsystem have only half as much magnetic moment (or are sitting
in half as much magnetic �eld). That means that the amount of energy that �ips one spin in the
blue subsystem will now �ip two spins in the red subsystem.

We also double the number of spins in red subsystem, so that its maximum energy and minimum
energy are the same as before.

Even though the red system cannot hold any more energy than it could before, it is now markedly
more e�ective at attracting energy.

In this scenario, the two subsystems do not share the energy in a simple 1/3rd, 2/3rds fashion. At
low temperatures, the red system is much more agressive than the blue system, and soaks up more
than its �share� of the energy, more than you would have predicted based on its physical size or on
the maximal amount of energy it could hold.

This illustrates an important point: All microstates are equally probable.

This stands in contrast to an oft-mentioned notion, namely the so-called principle of �equipartition
of energy�. It is simply not correct to think that energy is equally distributed per unit mass or per
unit volume or per atom or per spin. The fact is that probability (not energy) is what is getting
distributed, and it gets distributed over microstates.

In the scenario considered in this section, the red system has more microstates, so it has more
probability. As a consequence, it soaks up more energy, disproportionately more, as you can see
by comparing the �gures in this section with the corresponding �gures in section 13.1. Be sure to
notice the red and blue dashed horizontal lines.

In this scenario, equilibrium is isothermal ... as it must be, in any situation where subsystems reach
equilibrium by exchanging energy. As a consequence, at equilibrium, the red slope and the blue
slope are equal and opposite, as you can see in the diagrams.
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Figure 13.9: Entropy versus Energy : Etotal = −60

Figure 13.10: Entropy versus Energy : Etotal = −48
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Figure 13.11: Entropy versus Energy : Etotal = −36

Figure 13.12: Entropy versus Energy : Etotal = −24
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Figure 13.13: Entropy versus Energy : Etotal = −12

Figure 13.14: Entropy versus Energy : Etotal = 0
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13.4 Discussion: Constants Drop Out

It should be noted that temperature is not the same as energy. It's not even the same as energy
per unit volume or energy per unit mass. Dimensionally, it's the same as energy per unit entropy,
but even then it's not the ratio of gross energy over gross entropy. In fact, temperature is the slope,
namely T1 = ∂E1/∂S1|N1, V1.

That means, among other things, that constants drop out. That is to say, if you shift E1 by a
constant and/or shift S1 by a constant, the temperature is unchanged.

As a speci�c example, suppose you have a box of gas on a high shelf and a box of gas on a low
shelf. You let them reach equilibrium by exchanging energy. They will have the same temperature,
pressure, et cetera. The box on the high shelf will have a higher gravitational potential energy, but
that will not a�ect the equilibrium temperature at all.

By the same token, a wound-up spring will be in thermal equilibrium with an unstressed spring at
the same temperature, and a charged-up capacitor will be in thermal equilibrium with an uncharged
capacitor at the same temperature. The same goes for kinetic energy: A rapidly spinning �ywheel
will be in thermal equilibrium with a stationary �ywheel at the same temperature. It's not the
energy that matters. It's the slope ∂E/∂S that matters.

It is common knowledge that a parcel of air high in the atmosphere will be colder than a parcel of
air at lower altitude. That tells us the atmosphere is not in thermal equilibrium. The temperature
pro�le of the troposphere is more nearly adiabatic than isothermal, because it is vigorously stirred.
Thunderstorms contribute quite a lot to the stirring, and it is no accident that the height of a typical
thunderstorm is comparable to the altitude of the tropopause.

13.5 Calculations

We can easily compute the spin entropy as a function of energy, using the obvious combinatoric
formula.

M1 = (E1 +N1)/2 = number of up spins

W1 =
(
N1

M1

)
= multiplicity

S1 = log(W1) = entropy

(13.4)

Note that the binomial coe�cient
(
N
m

)
is generally pronounced �N choose m�.

It is implemented in typical spreadsheet programs by the combin(N,m) function.

One tricky task is calculating the starting point and ending point of each of the curves in the
diagrams. This task is not trivial, and can be understood with the help of �gure 13.15. The colored
rectangles represent the feasible ways in which energy can be allocated to the two subsystems. Each
black line is a contour of constant total energy E, where E = E1 + E2. As you can see, depending
on E and on the amount of energy that each subsystem can hold, there are at least 13 di�erent
ways in which the available energy can cross the boundaries of the feasible region.
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E1

E2

Figure 13.15: Starting Points and Ending Points
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By diagramming the task in this way, we reduce it to a problem in computer graphics, for which
well-known solutions exist. It pays to code this systematically; otherwise you'll spend unreasonable
amounts of time debugging a bunch of special cases.

The spreadsheed used to produce the diagrams is available; see reference 40.

13.6 Chemical Potential

In this chapter we have demonstrated that

� Whenever the two parcels have reached equilibrium by exchanging energy, they will have the
same temperature.

As we shall see in section 14.4, a closely parallel argument demonstrates that

� Whenever the two parcels have reached equilibrium by exchanging particles as well as energy,
they will have the same chemical potential (and the same temperature).



Chapter 14

Spontaneity, Reversibility, Equilibrium,
Stability, Solubility, etc.

14.1 Fundamental Notions

14.1.1 Equilibrium

See section 10.1 for an introduction to the fundamental concept of equilibrium.

Figure 14.1: Equilibrium � Forces in Balance

14.1.2 Stability

See section 10.5 for an introduction to the fundamental concept of stability.
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Figure 14.2: Equilibrium and Stability
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14.1.3 A First Example: Heat Transfer

Suppose we have two objects that can interact with each other but are isolated from the rest of the
universe. Object #2 starts out at a temperature T2, and we want to transfer some so-called �heat�
to object #1 which starts out at some lesser temperature T1. We assume both temperatures are
positive. As usual, trying to quantify �heat� is a losing strategy; it is easier and better to formulate
the analysis in terms of energy and entropy.

Under the given conditions we can write
dE1 = T1dS1

dE2 = T2dS2
(14.1)

In more-general situations, there would be other terms on the RHS of such equations, but for present
purposes we require all other terms to be negligible compared to the TdS term. This requirement
essentially de�nes what we mean by heat transfer or equivalently thermal transfer of energy.

By conservation of energy we have
dE1 + dE2 = 0
dE1 = −dE2

(14.2)

One line of algebra tells us that the total entropy of the world changed by an amount

dS1 + dS2 = (1/T1 − 1/T2)dE1 (14.3)

or equivalently
dS1 + dS2 = T2−T1

T1T2
dE1

> 0 (since T2 > T1)
(14.4)

From the structure of equation 14.4 we can see that entropy is created by a thermal transfer from
the hotter object to the cooler object. Therefore such a transfer can (and typically will) proceed
spontaneously. In contrast, a transfer in the reverse direction cannot proceed, since it would violate
the second law of thermodynamics.

We can also see that:

� If the two temperatures are very close together, a thermal transfer of energy can be very nearly
reversible.

� Conversely, if the temperature di�erence is large, the transfer creates a lot of entropy, and is
therefore strongly dissipative, strongly irreversible.

A useful rule of thumb says that any reversible reversible thermal transfer will be rather slow. This
can be understood in terms of the small temperature di�erence in conjunction with a �nite thermal
conductivity. In practice, people usually accept a goodly amount of ine�ciency as part of the price
for going fast. This involves engineering tradeo�s. We still need the deep principles of physics (to
know what's possible) ... but we need engineering on top of that (to know what's practical).
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14.1.4 Graphical Analysis � One Dimension

Questions about equilibrium, stability, and spontaneity are often most conveniently formulated as
maximization or minimization problems. This is not the most general way to do things, but it
is a convenient and intuitive starting point. In the one-dimensional case especially, the graphical
approach makes it easy to see what is going on.

In �gure 14.3, we are trying to minimize some objective function R (the �regret�). In an economics
problem, R might represent the cost. In a physics or chemistry problem, R might represent some-
thing like the energy, or the Gibbs free enthalpy, or the negative of the entropy, or whatever. For
now let's just call it R.
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Figure 14.3: Minimizing Some Objective Function
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In a physics problem, the abscissa x could be the position of a particle rolling in a potential well,
subject to damping. In a chemistry problem, x could be the reaction coordinate, where x = 0
corresponds to 100% reactants and x = 1 corresponds to 100% products.

Global equilibrium corresponds to the lowest point on the curve. (If there are multiple points all
at the minimum value, global equilibrium corresponds to this set of points.) This can be stated in
mathematical terms as follows: For some �xed point A, if R(B)−R(A) is greater or equal to zero
for all points B, then we know A is a global equilibrium point.

Note: Sometimes people try to state the equilibrium requirement in terms of
∆R, where ∆R := R(B) − R(A), but this doesn't work very well. We are
better o� if we speak about point A and point B directly, rather than hiding
them inside the ∆.

Now suppose we restrict point B to be near point A. Then if R(B) − R(A) is greater or equal to
zero for all nearby points B, then we say A is a local equilibrium point. (A local equilibrium point
may or may not be a global equilibrium point also.) In �gure 14.3, point A is a global minimum,
while point D is only a local minimum.

Now let's consider the direction of spontaneous reaction. Given two points B and C that are near
to each other, then if R(C) is less than R(B) then the reaction is will proceed in the direction from
B to C (unless it is forbidden by some other law). In other words, the reaction proceeds in the
direction that produces a negative ∆R.

Note that this rule applies only to small deltas. That is, it applies only to pairs of nearby points.
In particular, starting from point B, the reaction will not proceed spontaneously toward point D,
even though point D is lower. The local slope is the only thing that matters. If you try to formulate
the rule in terms of ∆R in mathematical terms, without thinking about what it means, you will get
fooled when the points are not nearby.

14.1.5 Graphical Analysis � Multiple Dimensions

It is often interesting to ask whether a given situation is unstable, i.e. expected to change sponta-
neously � and if so, to ask in which direction it is expected to change. So, let's examine what it
means to talk about �direction� in thermodynamic state-space.

For starters, consider reactions involving carbon, oxygen, and carbon dioxide.

C + O2 → CO2 (14.5)

Under some conditions we have a simple reaction that proceeds mostly in the left-to-right direction
equation 14.5, combining carbon with oxygen to form carbon dioxide. Meanwhile, under other
conditions the reverse proceeds mostly in the opposite direction, i.e. the decomposition of carbon
dioxide to form carbon and oxygen.
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More generally, however, we need to consider other possibilities, such as the possible presence of
carbon monoxide.

CO + 1/2O2

↗ ↘
C + O2 CO2

(14.6)

This is now a multi-dimensional situation, as shown schematically in �gure 14.4.

C

CO

CO2

Figure 14.4: Reaction Space with Objective Function Contours

Consider the contrast:

In one dimension, we can speak of a given
transformation proceeding forward or back-
ward. Forward means proceeding left-to-right
as written in equation 14.5, while backwards
means proceeding right-to-left.

In multiple dimensions, we cannot speak of
forward, backward, right, or left. We need
to specify in detail what sort of step is taken
when the transformation proceeds.

Remark on terminology: In this document, the term �transformation� is meant to be very general,
including chemical reactions and phase transitions among other things. (It is not necessary to
distinguish �chemical processes� from �physical processes�. )

At any temperature other than absolute zero, a chemical reaction will never really go to completion.
There will always be some leftover reactants and leftover intermediates, along with the nominal
products. This is indicated by the contours in �gure 14.4. The endpoint of the reaction is inside
the smallest contour.

So far, in �gure 14.3 and �gure 14.4 we have been coy about what the objective function represents.
Here's a de�nite example: For an isolated system, the objective function is S, the entropy of the
system. The endpoint is the point of maximum S, and we can interpret the contours in �gure 14.4
as contours of constant S. As the reaction proceeds, it moves uphill in the direction of increasing
S.

For a system that is not isolated � such as a system in contact with a heat bath � the system entropy
S is not the whole story. The objective function is the entropy of the universe as a whole. Therefore
we need to worry about not just the system entropy S, but also how much entropy has been pushed
across the boundary of the system.
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14.1.6 Reduced Dimensionality

The ideas of section 14.1.4 and section 14.1.5 can be combined, as shown in �gure 14.5. Some-
times a system is constrained to move along a lower-dimensional reaction pathway within a higher
dimensional space.

C

CO

CO2

Figure 14.5: Hypothetical Reaction Pathway

Often it's hard to know exactly what the pathway is. Among other things, catalysis can drastically
change the pathway.

14.1.7 General Analysis

In all cases, the analysis is based on the second law of thermodynamics, equation 2.1, which we
restate here:

change in entropy ≥ net �ow of entropy
(inside boundary) (inward minus outward across boundary)

(14.7)

We can use this to clarify our thinking about equilibrium, stability, reversibility, et cetera:

� A transformation will not proceed in any direction that violates equation 14.7.

� For any reversible transformation, equation 14.7 is restricted to a strict equality, not an
inequality:

change in entropy = net �ow of entropy
(inside boundary) (inward minus outward across boundary)

(14.8)

In other words, entropy is conserved during a reversible transformation.

� For any irreversible transformation, equation 14.7 is restricted to a strict inequality, not an
equality:

change in entropy > net �ow of entropy
(inside boundary) (inward minus outward across boundary)

(14.9)

In other words, entropy is created during a reversible transformation. You know the transfor-
mation is irreversible, because the reverse would violate the second law, equation 14.7.
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To repeat: in all cases, we can analyze the system by direct application of the second law of
thermodynamics, in the form given by equation 14.7. This is always possible, but not necessarily
convenient.

Be that as it may, people really like to have an objective function. They like this so much that they
often engineer the system to have a well-behaved objective function (exactly or at least approxi-
mately). That is, they engineer it so that moving downhill in �gure 14.4 corresponds to creating
entropy, i.e. an irreversible transformation. Moving along an isopotential contour corresponds to a
transformation that does not create entropy, i.e. a reversible transformation.

Beware: This is tricky, because �the amount of entropy created� is not (in general) a function of
state. Sometimes we can engineer it so that there is some function of state that tells us what we
need to know, but this is not guaranteed.

Having an objective function is useful for multiple reasons. For one thing, it provides a way to
visualize and communicate what's going on. Also, there are standard procedures for using variational
principles as the basis for analytical and computational techniques. These techniques are often
elegant and powerful. The details are beyond the scope of this document.

You don't know what the objective function is until you see how the system is engineered. In all
cases the point of the objective function (if any) is to express a corollary to the second law of
thermodynamics.

� A microcanonical system cannot exchange energy, entropy or anything else with its surround-
ings. It is isolated. Maximizing the entropy S is the relevant objective function. See sec-
tion 14.2.1.

� Sometimes one subsystem can do something that creates entropy somewhere else. Minimizing
the subsystem energy E may be the relevant objective function. See section 14.2.2.

� A canonical system can exchange energy and entropy (but nothing else) by means of thermal
contact with a heat bath at some de�nite temperature T . In this case, minimizing the system
free energy E − TS is the relevant objective function. See section 14.2.3.

� Sometimes the system can do work by expanding against the ambient pressure P , and can
also exchange energy and entropy with a heat bath at temperature T . Then the Gibbs free
enthalpy E + PV − TS may be the relevant objective function. See section 14.2.4.

� Sometimes something else.

� Sometimes none of the above, in which case you have to rely directly on the second law directly.
This requires considering two contributions: the change in entropy ∆S inside the region of
interest, plus whatever entropy (if any) �owed out of the region across the boundaries during
the transformation. The entropy S is a function of state of the region. However, the �ow term
cannot be expressed in terms of a function of state, so we have to be careful.

This completes the analysis of the general principle. The second law is the central, fundamental
idea. However, direct application of the second law is often inconvenient.
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Therefore the rest of this chapter is mostly devoted to developing less-general but more-convenient
techniques. In various special situations, subject to various provisos, we can �nd quantities that are
convenient to measure that serve as proxies for the amount of entropy created.

14.1.8 What's Fundamental and What's Not

At this point we should discuss the oft-quoted words of David Goodstein. In reference 41, the
section on �Variational Principles in Thermodynamics� begins by saying:

Fundamentally there is only one variational principle in ther-
modynamics. According to the Second Law, an isolated body
in equilibrium has the maximum entropy that physics circum-
stances will allow.

The second sentence is true and important. For an isolated system, the maximum-entropy principle
is an immediate corollary of the second law of thermodynamics, equation 14.7.

The �rst sentence in that quote seems a bit overstated. It only works if you consider a microcanonical
(isolated) system to be more fundamental than, say, a canonical (constant-temperature) system.
Note the contrast:

The maximum entropy principle is not true in
general; it is only true for an isolated system.

The second law of thermodynamics is true in
all generality.

The book goes on to say:

However, given in this form, it is often inconvenient to use.

It's true that the maximum-entropy principle is often inconvenient, but it's even worse than that.
For a non-isolated system, maximizing the system entropy S is not even the correct variational
principle. It's not just inconvenient, it's invalid. For a non-isolated system, in general there might
not even be a valid variational principle of the type we are talking about.

14.2 Proxies for Predicting Spontaneity, Reversibility,
Equilibrium, etc.

In this section, we apply the general law to some important special cases. We derive some simpli�ed
laws that are convenient to apply in such cases.
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14.2.1 Isolated System; Proxy = Entropy

Consider a completely isolated system. No entropy is �owing across the boundary of the system. If
we know the entropy of the system, we can use that to apply the second law directly.

It tells us that the system entropy cannot decrease. Any transformation that leaves the system
entropy unchanged is reversible, and any change that increases the system entropy is irreversible.

It must be emphasized that these conclusions are very sensitive to the provisos and assumptions of
this scenario. The conclusions apply only to a system that isolated from the rest of the universe.

14.2.2 External Damping; Proxy = Energy

In �gure 14.6, we have divided the universe into three regions:

� the interior region � the mass and the spring

� the neighborhood � the damper, separate from the interior region but inside the black rectangle;
and

� the rest of the universe � outside the black rectangle.

The combination of interior region + neighborhood will be called the local region. We assume the
local region is thermally isolated from the rest of the universe.

We have engineered things so that the linkage from the internal region to the damper to be thermally
insulating. That means the internal region can do mechanical work on the damper, but cannot
exchange entropy with it.

The decision to consider the damper as not part of the interior was a somewhat arbitrary, but not
unreasonable. There are plenty of real-world systems where this makes sense, such as a charged
harmonic oscillator (where radiative damping is not considered interior to the system) or a marble
oscillating in a bowl full of �uid (where the viscous damping is not considered interior to the marble).

Local conservation of energy tells us:

dE = −dEn (14.10)

We use unadorned symbols such as E and S etc. to denote the energy and entropy etc. inside the
interior region. We use a subscript �n� as in En and Sn etc. to represent the energy and entropy
etc. in the neighborhood. In this example, the neighborhood is the damper.

Now, suppose the oscillator starts out with a large amount of energy, large compared to kT . As the
oscillator moves, energy will be dissipated in the damper. The entropy of the damper will increase.
The entropy of the interior region is unknown and irrelevant, because it remains constant:

dS = 0
S = unknown

(14.11)

We require that the damper has some de�nite temperature. That allows us to relate its energy to
its entropy in a simple way:

dEn = Tn dSn (14.12)
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Figure 14.6: Oscillator with Damper
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with no other terms on the RHS. There are undoubtedly other equally-correct ways of expanding
dEn, but we need not bother with them, because equation 14.12 is correct and su�cient for present
purposes.

Physically, the simplicity of equation 14.12 depends on (among other things) the fact that the energy
of the neighborhood does not depend on the position of the piston within the damper (x), so we do
not need an F · x term in equation 14.12. The frictional force depends on the velocity (dx/dt) but
not on the position (x).

We assume that whatever is going on in the system is statistically independent of whatever is
going on in the damper, so the entropy is extensive. Physically, this is related to the fact that we
engineered the linkage to be thermally non-conducting.

dS
local

= dS + dSn (14.13)

Combining the previous equations, we �nd:

dS
local

= −dE/Tn (14.14)

This means that for any positive temperature Tn, we can use the energy of the system as a proxy
for the entropy of the local region.

So, let's apply the second law to the local region. Recall that no entropy is �owing across the
boundary between the local region and the rest of the universe. So the second law tells us that
the system energy cannot increase. Any transformation that leaves the system energy unchanged
is reversible, and any change that decreases the system energy is irreversible.

It must be emphasized that these conclusions are very sensitive to the provisos and assumptions of
this scenario. The restrictions include: The system must be connected by a thermally-insulating
linkage to a damper having some de�nite positive temperature, and the system must be isolated
from the rest of the universe.

Another restriction is that the entropy within the system itself must be negligible or at least constant.
If we implement the spring in �gure 14.6 using a gas spring, i.e. a pneumatic cylinder, we would
not be able to lower the system energy by condensing the gas, since that would require changing
the system entropy.

Note: In elementary non-thermal mechanics, there is an unsophisticated rule that says �balls roll
downhill� or something like that. That is not an accurate statement of the physics, because in the
absence of dissipation, a ball that rolls down the hill will immediately roll up the hill on the other
side of the valley.

If you want the ball to roll down and stay down, you need some dissipation, and we can understand
this in terms of equation 14.14.

Note that the relevant temperature is the temperature of the damper, Tn. The system itself and the
other non-dissipative components might not even have a well-de�ned temperature. The temperature
(if any) of the non-dissipative components is irrelevant, because it doesn't enter into the calculation
of the desired result (equation 14.14). This is related to the fact that dS is zero, so we know TdS
is zero even if we don't know T .
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14.2.3 Constant V and T ; Proxy = Helmholtz Free Energy

In this section, we consider a di�erent system, and a di�erent set of assumptions.

We turn our attention to a sample of gas, held under conditions of constant volume and constant
positive temperature. We shall see that this allows us to answer questions about spontaneity using
the system Helmholtz free energy F as a proxy for the amount of entropy created.

The situation is shown in �gure 14.7. We have divided the universe into three regions:

� the interior region � inside the blue cylinder;

� the neighborhood � outside the cylinder but inside the black rectangle; and

� the rest of the universe � outside the black rectangle.

The combination of interior region + neighborhood will be called the local region.

Inside the blue cylinder is some gas. In the current scenario, the volume of the cylinder is constant.
(Compare this to the constant-pressure scenario in section 14.2.4, where the volume is not constant.)

Inside the neighborhood is a heat bath, as represented by the magenta region in the �gure. It is in
thermal contact with the gas inside the cylinder. We assume the heat capacity of the heat bath is
very large.

We assume the combined local system (interior + neighborhood) is isolated from the rest of the
universe. Speci�cally, no energy or entropy can �ow across the boundary of the local system (the
black rectangle in �gure 14.7).

We use unadorned symbols such as F and S etc. to denote the free energy and entropy etc. inside
the interior region. We use a subscript �n� as in En and Sn etc. to represent the energy and entropy
etc. in the neighborhood.

Here's an outline of the usual calculation that shows why dF is interesting. Note that F is the free
energy inside the interior region. Similarly S is the entropy inside the interior region (in contrast
to S

local
, which includes all the local entropy, S

local
= S + Sn). This is important, because it is

usually much more convenient to keep track of what's going on in the interior region than to keep
track of everything in the neighborhood and the rest of the universe.

We start by doing some math:
F := E − TS by de�nition of F

dF = dE − TdS − SdT by di�erentiating
= dE − TdS since dT = 0 by hypothesis

dS − dE/T = −dF/T by rearranging

(14.15)

Next we relate certain inside quantities to the corresponding outside quantities:
T = Tn temperature the same everywhere
E + En = const isolation + local conservation of energy
dE = −dEn by di�erentiating

(14.16)
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Figure 14.7: Constant Volume and Temperature; Cylinder + Neighborhood
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Next we assume that the heat bath is internal equilibrium. This is a nontrivial assumption. We are
making use of the fact that it is a heat bath, not a bubble bath. We are emphatically not assuming
that the interior region is in equilibrium, because one of the major goals of the exercise is to see
what happens when it is not in equilibrium. In particular we are emphatically not going to assume
that E is a function of S and V alone. Therefore we cannot safely expand dE = TdS − PdV in
the interior region. We can, however, use the corresponding expansion in the neighborhood region,
because it is in equilibrium:

dEn = TdSn − PdVn bath in equilibrium
= TdSn constant V by hypothesis

dSn = dEn/T by rearranging
= −dE/T by conservation of energy, equation 14.16

(14.17)

Next, we assume the entropy is an extensive quantity. That is tantamount to assuming that the
probabilities are uncorrelated, speci�cally that the distribution that characterizes the interior is
uncorrelated with the distribution that characterizes the neighborhood. This is usually a very
reasonable assumption, especially for macroscopic systems.

We are now in a position to �nish the calculation.
dS

local
= dS + dSn entropy is extensive

= dS − dE/T by equation 14.17
= −dF/T by equation 14.15

(14.18)

This means that for any positive temperature Tn, we can use the Helmholtz free energy of the
system as a proxy for the entropy of the local region.

So, let's apply the second law to the local region. Recall that no entropy is �owing across the
boundary between the local region and the rest of the universe. So the second law tells us that
the system free energy cannot increase. Any transformation that leaves the system free energy
unchanged is reversible, and any change that decreases the system free energy is irreversible.

It must be emphasized that these conclusions are very sensitive to the provisos and assumptions of
this scenario. The conclusions apply only to a constant-volume system that can exchange energy
thermally with a heat bath at some positive temperature ... and is otherwise isolated from the rest
of the universe.

14.2.4 Constant P and T ; Proxy = Gibbs Free Enthalpy

We now turn our attention to conditions of constant pressure and constant positive temperature.
This is closely analogous to section 14.2.3; the only di�erence is constant pressure instead of constant
volume. We shall see that this allows us to answer questions about spontaneity using the system's
Gibbs free enthalpy G as a proxy for the overall entropy S

total
.

In �gure 14.8, we have divided the universe into three regions:

� the interior region � inside the blue cylinder;

� the neighborhood � outside the cylinder but inside the black rectangle; and
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� the rest of the universe � outside the black rectangle.

The combination of interior region + neighborhood will be called the local region.

Figure 14.8: Constant Pressure and Temperature; Cylinder + Neighborhood

Inside the blue cylinder is some gas. The cylinder is made of two pieces that can slide up and
down relative to each other, thereby changing the boundary between the interior region and the
neighborhood. (Contrast this against the constant-volume scenario in section 14.2.3.)

Inside the neighborhood is a heat bath, as represented by the magenta region in the �gure. It is in
thermal contact with the gas inside the cylinder. We assume the heat capacity of the heat bath is
very large.

Also in the neighborhood there is a complicated arrangement of levers and springs, which maintains
a constant force (and therefore a constant force per unit area, i.e. pressure) on the cylinder.
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We also assume that the kinetic energy of the levers and springs is negligible. This is a nontrivial
assumption. It is tantamount to assuming that whatever changes are taking place are not too
sudden, and that the springs and levers are somehow kept in thermal equilibrium with the heat
bath.

We assume the combined local system (interior + neighborhood) is isolated from the rest of the
universe. Speci�cally, no energy or entropy can �ow across the boundary of the local system (the
black rectangle in �gure 14.8).

Note that G is the free enthalpy inside the interior region. Similarly S is the entropy inside the
interior region (in contrast to S

local
, which includes all the local entropy, S

local
= S + Sn). This

is important, because it is usually much more convenient to keep track of what's going on in the
interior region than to keep track of everything in the neighborhood and the rest of the universe.

We start by doing some math:
G := H − TS by de�nition of G

dG = dH − TdS − SdT by di�erentiating
= dH − TdS since dT = 0 by hypothesis

dS − dH/T = −dG/T by rearranging

(14.19)

Next we relate certain inside quantities to the corresponding outside quantities. We will make use
of the fact that in this situation, enthalpy is conserved, as discussed in section 14.3.2.

T = Tn temperature the same everywhere
H +Hn = const local conservation of enthalpy
dH = −dHn by di�erentiating

(14.20)

Next we assume that the heat bath is internal equilibrium. This is a nontrivial assumption. We are
making use of the fact that it is a heat bath, not a bubble bath. We are emphatically not assuming
that the interior region is in equilibrium, because one of the major goals of the exercise is to see
what happens when it is not in equilibrium. In particular we are emphatically not going to assume
that H is a function of S and P alone. Therefore we cannot safely expand dH = TdS + V dP in
the interior region. However, we don't need to do that. It su�ces to rely on the assumption that
the neighborhood is a well-behaved heat bath:

dHn = TdSn + V dPn bath in equilibrium
= TdSn constant P by hypothesis

dSn = dHn/T by rearranging
= −dH/T using equation 14.20

(14.21)

Again we assume the entropy is extensive. We are now in a position to �nish the calculation.
dS

local
= dS + dSn entropy is extensive

= dS − dH/T by equation 14.21
= −dG/T by equation 14.19

(14.22)

So, let's apply the second law to the local region. Recall that no entropy is �owing across the
boundary between the local region and the rest of the universe. So the second law tells us that
the system free enthalpy cannot increase. Any transformation that leaves the system free enthalpy
unchanged is reversible, and any change that decreases the system free enthalpy is irreversible.
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It must be emphasized that these conclusions are very sensitive to the provisos and assumptions of
this scenario. The conclusions apply only to a constant-pressure system that can exchange energy
thermally with a heat bath at some positive temperature ... and is otherwise isolated from the rest
of the universe.

14.2.5 Constant P and Thermally Insulated; Proxy = Enthalpy

We now turn our attention to conditions of volume and constant positive temperature. The cal-
culation is closely analogous to the previous sections. We shall see that this allows us to answer
questions about spontaneity using the system's enthalpy H as a proxy for the overall entropy S

total
.

In �gure 14.9, the region inside the blue cylinder is insulated from the rest of the world. It cannot
exchange energy with the rest of the world except insofar as it does mechanical work against the
spring.

Figure 14.9: Constant Pressure, Thermally Insulated
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The cylinder is made of two pieces that can slide up and down relative to each other. Inside the
cylinder is some gas. We call this the interior region.

In the neighborhood there is a complicated arrangement of levers and springs, which maintains a
constant force (and therefore a constant force per unit area, i.e. pressure) on the cylinder.

There is no heat bath, in contrast to the constant-temperature scenario in section 14.2.4.

We also assume that the kinetic energy of the levers and springs is negligible. This is a nontrivial
assumption. It is tantamount to assuming that whatever changes are taking place are not too
sudden.

Note that H is the enthalpy inside the interior region. By de�nition, S is the entropy inside the
interior region. In this scenario it is equal to the total entropy; that is, S

total
= S. That's because

there is no entropy in the neighborhood.

We start by doing some math:
H := E + PV by de�nition

dH = dE + PdV + V dP di�erentiating
= TdS − PdV + PdV + V dP expanding dE
= TdS + V dP simplifying
= TdS since dP = 0 by hypothesis

dS = dH/T rearranging

(14.23)

The second law tells us that the system entropy cannot increase. Any transformation that leaves
the system free enthalpy unchanged is reversible, and any change that decreases the system free
enthalpy is irreversible.

It must be emphasized that these conclusions are very sensitive to the provisos and assumptions
of this scenario. The conclusions apply only to a constant-pressure system that cannot exchange
energy thermally with the rest of the universe.

14.3 Discussion: Some Fine Points

Let's take a moment to discuss a couple of tangentially-related points that sometimes come up.

14.3.1 Local Conservation

In ultra-simple situations, it is traditional to divide the universe into two regions: �the system�
versus �the environment�. Sometimes other terminology is used, such as �interior� versus �exterior�
, but the idea is the same.

In more complicated situations, such as �uid dynamics, we must divide the universe into a great
many regions, aka parcels. We can ask about the energy, entropy, etc. internal to each parcle, and
also ask about the transfer of energy, entropy, etc. to adjacent parcels.
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This is important because, as discussed in section 1.2, a local conservation law is much more useful
than a global conservation law. If some energy disappears from my system, it does me no good to
have a global law that says the energy will eventually reappear �somewhere� in the universe. The
local laws says that energy is conserved right here, right now.

For present purposes, we can get by with only three regions: the interior, the immediate neighbor-
hood, and the rest of the universe. Examples of this can be seen in section 14.2.3, section 14.2.4,
and section 14.2.2.

14.3.2 Lemma: Conservation of Enthalpy, Maybe

Energy is always strictly and locally conserved. It is conserved no matter whether the volume is
changing or not, no matter whether the ambient pressure is changing or not, no matter whatever.

Enthalpy is sometimes conserved, subject to a few restrictions and provisos. The primary, crucial
restriction requires us to work under conditions of constant pressure.

Another look at �gure 14.8 will help us �ll in the details.

As always, the enthalpy is:

H = E + PV (interior region)
Hn = En + PVn (neighborhood region)

(14.24)

By conservation of energy, we have

E + En = E0 = const (14.25)

Next we are going to argue for a �local conservation of volume� requirement. There are several ways
to justify this. One way is to argue that it is corollary of the previous assumption that the local
system is isolated and not interacting with the rest of the universe. Another way is to just impose
it as a requirement, explicitly requiring that the volume of the local region (the black rectangle in
�gure 14.8) is not changing. A third way is to arrange, as we have in this case, that there is no
pressure acting on the outer boundary, so for purposes of the energy calculation we don't actually
care where the boundary is; this would require extra terms in equation 14.27 but the extra terms
would all turn out to be zero.

We quantify the idea of constant volume in the usual way:

V + Vn = V0 = const (14.26)

Now we do some algebra:

E + En = E0 by equation 14.25
E + PV + En − PV = E0 add and subtract PV
E + PV + En − P (V0 − Vn) = E0 by equation 14.26
E + PV + En + PVn = E0 + PV0 by rearranging
H +Hn = const by equation 14.24

(14.27)
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14.3.3 Energy and Entropy (as opposed to �Heat�)

Note that each of the calculations in section 14.2 was carried out by keeping track of the energy
and entropy.

Thinking in terms of energy and entropy is
good practice.

Thinking in terms of �heat� and �work� would
be a fool's errand.

Energy is conserved. Neither heat nor work is separately conserved.

We can easily understand that the linkage that
connects the interior to the damper carries
zero entropy and carries nonzero energy.

We see �work� leaving the interior in the form
of PdV or F · dx. We see no heat leaving
the interior. Meanwhile, we see heat showing
up in the damper, in the form of TdS. This
would be confusing, if we cared about heat
and work, but we don't care, so we escape un-
harmed.

Keeping track of the energy and the entropy is the easy and reliable way to solve the problem.

14.3.4 Spontaneity

Spontaneity is not quite the same as irreversibility, for the following reason: If a transformation can
proceed in a direction that creates entropy, then as a rule of thumb, in many cases the transformation
will spontaneously proceed in such a direction. However, this is only a rule of thumb, not a guarantee.
As a counterexample, consider the transformation of diamond into graphite. Calculations show that
under ordinary conditions this creates entropy, so it is de�nitely irreversible. However, the rate is
so slow as to be utterly negligible, so we cannot say that the reaction occurs spontaneously, in any
practical sense.

If a transformation does not occur, it might be because of the second law ... or because of any of
the other laws of nature. It might be restricted by huge activation barriers, symmetries, selection
rules, or other laws of physics such that it cannot create entropy at any non-negligible rate.

14.3.5 Conditionally Allowed and Unconditionally Disallowed

A reminder: The second law is only one law among many. Other laws include conservation of energy
(aka the �rst law of thermodynamics), other conservation laws, various symmetries, spectroscopic
selection rules, mathematical theorems, et cetera.

A process can proceed only if it complies with all the laws. Therefore if a process is forbidden by
one of the laws, it is unconditionally forbidden. In contrast, if the process is allowed by one of the
laws, it is only conditionally allowed, conditioned on compliance with all the other laws.

Based on a second-law analysis alone, we can determine that a process absolutely will not proceed
spontaneously, in situations where doing so would violate the second law. In contrast, a second-law
analysis does not allow us to say that a process �will� proceed spontaneously. Until we do a more
complete analysis, the most we can say is that it might proceed spontaneously.
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We are on much �rmer ground when it comes to reversibility. In the context of ordinary chemical
reactions, if we know the reaction can proceed in one direction, it is reversible if and only if it
does not create entropy. That's because of the reversibility of all the relevant1 fundamental laws
governing such reactions, except the second law. So if there is no barrier to the forward reaction,
there should be no barrier to the reverse reaction, other than the second law. (Conversely, if the
reaction cannot proceed in any direction, because of conservation laws or some such, it is pointless
to ask whether it is reversible.)

14.3.6 Irreversible by State or by Rate

Consider the contrast:

In �gure 14.10, there is no attempt to make
the process reversible. The descent of the anvil
is grossly dissipative. You can tell how much
energy is dissipated during the process just by
looking at the initial state and the �nal state.

In �gure 14.11, the process is very nearly re-
versible. There will probably always be �some�
friction, but we may be able to engineer the
bearing so that the friction is small, maybe
even negligible. Typically, to a good approx-
imation, the power dissipation will be second
order in the rate of the process, and the total
energy dissipated per cycle will be �rst order
in the rate.

We can call this �irreversible by state� and say
that the amount of dissipation per operation
is zeroth order in the rate (i.e. independent of
the rate).

We can call this �irreversible by rate� and say
that the amount of dissipation per operation
is �rst order in the rate.

1We disregard the non-time-reversible behavior of weak nuclear processes, such as decay of neutral Kaons. Such
processes are irrelevant to ordinary chemistry, biochemistry, and mechanics.



14�22 Modern Thermodynamics

Damper

Figure 14.10: Irreversible by State
Figure 14.11: Irreversible by Rate

14.4 Temperature and Chemical Potential in the Equilibrium
State

In this section, we derive a couple of interesting results. Consider a system that is isolated from
the rest of the universe, and can be divided into two parcels. We imagine that parcel #1 serves as
a heat bath for parcel #2, and vice versa. Then:

� Whenever the two parcels have reached equilibrium by exchanging energy, they will have the
same temperature.
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� Whenever the two parcels have reached equilibrium by exchanging particles as well as energy,
they will have the same chemical potential (and the same temperature).

We begin with a review of basic ideas of temperature in the equilibrium state, as introduced in
chapter 13. With great generality, we can say that at thermodynamic equilibrium, the state of the
system may change, but only in directions that do not create any entropy.

We write the gradient as dS rather than ∇S for technical reasons, but either way, the gradient is
a vector. It is a vector in the abstract thermodynamic state-space (or more precisely, the tangent
space thereof).

As usual, subject to mild conditions, we can expand dS using the chain rule:

dS = ∂S
∂N

∣∣
E
dN + ∂S

∂E

∣∣
N
dE (14.28)

We assume constant volume throughout this section. We also assume all the potentials are su�-
ciently di�erentiable.

We recognize the partial derivative in front of dE as being the inverse temperature, as de�ned by
equation 24.4, which we repeat here:

β := ∂S
∂E

∣∣
N

(14.29)

We can rewrite the other partial derivative by applying the celebrated cyclic triple partial derivative
rule:

∂S
∂N

∣∣
E

∂N
∂E

∣∣
S
∂E
∂S

∣∣
N

= −1 (14.30)

For an explanation of where this rule comes from, see section 14.10. We can re-arrange equation 14.30
to obtain:

∂S
∂N

∣∣
E

= −1 ∂E
∂N

∣∣
S
∂S
∂E

∣∣
N

(14.31)

Note that if you weren't fastidious about keeping track of the �constant E� �constant S� and �con-
stant N � speci�ers, it would be very easy to get equation 14.31 wrong by a factor of −1.

We recognize one of the factors on the RHS as the chemical potential, as de�ned by equation 7.32,
which we repeat here:

µ := ∂E
∂N

∣∣
S

(14.32)

Putting together all the ingredients we can write:
dS = 0

= −µβdN + βdE
(14.33)

Since we can choose dN and dE independently, both terms on the RHS must vanish separately.

If we divide the system into two parcels, #1, and #2, then
dS1 = −dS2 since dS = 0 at equilibrium
dN1 = −dN2 since N is conserved
dE1 = −dE2 since E is conserved

(14.34)

plugging that into the de�nitions of β and µ, we conclude that at equilibrium:
β1 = β2 if parcels exchange energy
β1µ1 = β2µ2 if parcels exchange energy and particles
T1 = T2

µ1 = µ2

(14.35)



14�24 Modern Thermodynamics

The last two lines assume nonzero β i.e. non-in�nite temperature.

So, we have accomplished the goal of this section. If/when the two parcels have reached equilib-
rium by exchanging energy, they will have the same inverse temperature. Assuming the inverse
temperature is nonzero, then:

� If/when the two parcels have reached equilibrium by exchanging energy, they will have the
same temperature. In other words, equilibrium is isothermal. See chapter 13 and reference 39
for more on this.

� If/when the two parcels have reached equilibrium by exchanging particles as well as energy,
they will have the same chemical potential (and the same temperature).

One way to visualize this is in terms of the gradient vector dS. The fact that dS = 0 implies
the projection of dS in every feasible direction must vanish, including the dE direction and the
dN direction among others. Otherwise the system would be at non-equilibrium with respect to
excursions in the direction(s) of non-vanishing dS.

14.5 The Approach to Equilibrium

14.5.1 Non-Monotonic Case

Figure 14.12 shows the position and momentum of a damped harmonic oscillator. The system
starts from rest at a position far from equilibrium, namely (position, momentum) = (1, 0). It then
undergoes a series of damped oscillations before settling into the equilibrium state (0, 0). In this
plot, time is an implicit parameter, increasing as we move clockwise along the curve.
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Figure 14.12: Phase Space : Under-Damped Harmonic Oscillator
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You will note that neither variable moves directly toward the equilibrium position. If we divide the
phase space into quadrants, and look at the sequence of events, ordered by time:

� In quadrant IV, the momentum is negative and becoming more so, i.e. moving away from
equilibrium.

� In quadrant III, the position is negative and becoming more so, i.e. moving away from equi-
librium.

� In quadrant II, the momentum is positive and becoming more so, i.e. moving away from
equilibrium.

� In quadrant I, the position is positive and becoming more so, i.e. moving away from equilib-
rium.

This should convince you that the approach to equilibrium is not necessarily monotonic. Some
variables approach equilibrium monotonically, but others do not.

When analyzing a complex system, it is sometimes very useful to identify a variable that changes
monotonically as the system evolves. In the context of ordinary di�erential equations, such a variable
is sometimes called a Lyapunov function.

In any physical system, the overall entropy (of the system plus environment) must be a monotone-
increasing Lyapunov function, as we know by direct application of the second law of thermody-
namics. For a system with external damping, such as the damped harmonic oscillator, decreasing
system energy is a convenient proxy for increasing overall entropy, as discussed in section 14.2.2;
see especially equation 14.14. Note that contours of constant energy are circles in �gure 14.12, so
you can see that energy decreases as the system evolves toward equilibrium.

14.5.2 Monotonic Case

For a critically damped or overdamped system, the approach to equilibrium is non-oscillatory. If
the system is initially at rest, the position variable is monotonic, and the momentum variable is
�almost� monotonic, in the sense that its absolute value increases to a maximum and thereafter
decreases monotonically. More generally, each variable can cross through zero at most once. The
critically damped system is shown in �gure 14.13.

14.5.3 Approximations and Misconceptions

We know that if two or more regions have reached equilibrium by the exchange of energy, they have
the same temperature, subject to mild restrictions, as discussed in section 14.4. This is based on
fundamental notions such as the second law and the de�nition of temperature.

We now discuss some much less fundamental notions:

� Roughly speaking, ordinarily, hot things tend to cool o� and cold things tend to warm up.
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Figure 14.13: Phase Space : Critically-Damped Harmonic Oscillator

� Roughly speaking, ordinarily, hot things cool o� monotonically and cold things warm up mono-
tonically. In other words, in each region, temperature �ordinarily� behaves like a Lyapunov
function.

Beware that some authorities go overboard and elevate these rules of thumb to the status of ax-
ioms. They assert that heat can never spontaneously �ow from a lower-temperature region to a
higher-temperature region. Sometimes this overstatement is even touted as �the� second law of
thermodynamics.

This overstatement is not reliably true, as we can see from the following examples.

As a simple �rst example, consider a spin system. Region #1 is at a moderate positive temperature,
while region #2 is at a moderate negative temperature. We allow the two regions to move toward
equilibrium by exchanging energy. During this process, the temperature in region #1 will become
more positive, while the temperature in region #2 will become more negative. The temperature
di�erence between the two regions will initially increase, not decrease. Energy will �ow from the
negative-temperature region into the positive-temperature region.

This example tells us that the concept of inverse temperature is more fundamental than temperature
itself. In this example, the di�erence in inverse temperature between the two regions tends to
decrease. This is the general rule when two regions are coming into equilibrium by exchanging
energy. It is a mistake to misstate this in terms of temperature rather than inverse temperature,
but it is something of a technicality, and the mistake is easily corrected.

Here is another example that raises a much more fundamental issue: Consider the phenomenon of
second sound in super�uid helium. The temperature oscillates like one of the variables in �gure 14.12.
The approach to equilibrium is non-monotonic.

Let's be clear: For an ordinary material such as a hot potato, the equation of thermal conductivity
is heavily overdamped, which guarantees that temperature approaches equilibrium monotonically
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... but this is a property of the material, not a fundamental law of nature. It should not be taken
as the de�nition of the second law of thermodynamics, or even a corollary thereof.

14.6 Natural Variables, or Not

14.6.1 The �Big Four� Thermodynamic Potentials

Suppose we assume, hypothetically and temporarily, that you are only interested in questions of
stability, reversibility, and spontaneity. Then in this scenario, you might choose to be interested in
one of the following thermodynamic potentials:

∆E at constant S and V : Energy
∆F at constant T and V : Helmholtz Free Energy
∆G at constant T and P : Gibbs Free Enthalpy
∆H at constant S and P : Enthalpy

(14.36)

For more about these potentials and the relationships between them, see chapter 15.

There is nothing fundamental about the choice of what you are interested in, or what you choose
to hold constant. All that is a choice, not a law of nature. The only fundamental principle here is
the non-decrease of overall entropy, S

total
.

In particular, there is no natural or fundamental reason to think that there are any �natural vari-
ables� associated with the big four potentials. Do not believe any assertions such as the following:

allegedly E is �naturally�E(S, V ) ×◦
allegedly F is �naturally�F (T, V ) ×◦
allegedly G is �naturally�G(T, P ) ×◦
allegedly H is �naturally�H(S, P ) ×◦

(14.37)

I typeset equation 14.37 on a red background with skull-and-crossbones symbols to emphasize my
disapproval. I have never seen any credible evidence to support the idea of �natural variables�. Some
evidence illustrating why it cannot be generally true is presented in section 14.6.2.

14.6.2 A Counterexample: Heat Capacity

Consider an ordinary heat capacity measurement that measures ∆T as a function of ∆E. This is
perfectly well behaved operationally and conceptually.

The point is that E is perfectly well de�ned even when it is not treated as the dependent variable.
Similarly, T is perfectly well de�ned, even when it is not treated as the independent variable. We
are allowed to express T as T (V,E). This doesn't directly tell us much about stability, reversibility,
or spontaneity, but it does tell us about the heat capacity, which is sometimes a perfectly reasonable
thing to be interested in.
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14.7 Going to Completion

Suppose we are interested in the following reaction:
N2 + O2 → 2NO

(x = 0) (x = 1)
(14.38)

which we carry out under conditions of constant pressure and constant temperature, so that when
analyzing spontaneity, we can use G as a valid proxy for S

total
, as discussed in section 14.2.4.

Equation 14.38 serves some purposes but not all.

� It de�nes what we mean by reactants and products.

� It de�nes a direction (a very speci�c direction) in parameter space.

� In some cases but not all, the reaction will essentially go to completion, so that the ∆G
of interest will be G(RHS) − G(LHS) where RHS and LHS refer to this equation, namely
equation 14.38.

Let x represent some notion of reaction coordinate, proceeding in the direction speci�ed by equa-
tion 14.38, such that x = 0 corresponds to 100% reactants, and x = 1 corresponds to 100% products.

Equation 14.38 is often interpreted as representing the largest possible ∆x, namely leaping from
x = 0 to x = 1 in one step.

That's OK for some purposes, but when we are trying to �gure out whether a reaction will go to
completion, we usually need a more nuanced notion of what a reaction is. We need to consider small

steps in reaction-coordinate space. One way of expressing this is in terms of the following equation:

aN2 + bO2 + cNO → (a− ε)N2 + (b− ε)O2 + (c+ 2ε)NO (14.39)

where the parameters a, b, and c specify the �current conditions� and ε represents a small step in the
x-direction. We see that the RHS of this equation has been displaced from the LHS by an amount
ε in the direction speci�ed by equation 14.38.

To say the same thing another way, equation 14.38 is the derivative of equation 14.39 with respect
to x (or, equivalently, with respect to ε). Equation 14.38 is obviously more compact, and is more
convenient for most purposes, but you should not imagine that it describes everything that is going
on; it only describes the local derivative of what's going on.

The amount of free enthalpy liberated by equation 14.39 will be denoted δG. It will be in�nitesimal,
in proportion to ε. If divide δG by ε, we get the directional derivative ∇xG.

Terminology note: In one dimension, the directional derivative ∇xG is synonymous with
the ordinary derivative dG/dx.

This tells us what we need to know. If∇xG is positive, the reaction is allowed proceed spontaneously
by (at least) an in�nitesimal amount in the +x direction. We allow it to do so, then re-evaluate
∇xG at the new �current� conditions. If ∇xG is still positive, we take another step. We iterate



Spontaneity, Reversibility, Equilibrium, Stability, Solubility, etc. 14�29

until we come to a set of conditions where ∇xG is no longer positive. At this point we have found
the equilibrium conditions (subject of course to the initial conditions, and the constraint that the
reaction equation 14.38 is the only allowed transformation).

Naturally, if we ever �nd that ∇xG is negative, we take a small step in the −x direction and iterate.

If the equilibrium conditions are near x = 1, we say that the reaction goes to completion as written.
By the same token, if the equilibrium conditions are near x = 0, we say that the reaction goes to
completion in the opposite direction, opposite to equation 14.38.

14.8 Example: Shift of Equilibrium

Let's consider the synthesis of ammonia:
N2 + 3H2 ⇔ 2NH3

(x = 0) (x = 1)
(14.40)

We carry out this reaction under conditions of constant P and T . We let the reaction reach
equilibrium. We arrange the conditions so that the equilibrium is nontrivial, i.e. the reaction does
not go to completion in either direction.

The question for today is, what happens if we increase the pressure? Will the reaction remain at
equilibrium, or will it now proceed to the left or right?

We can analyze this using the tools developed in the previous sections. At constant P and T , subject
to mild restrictions, the reaction will proceed in whichever direction minimizes the free enthalpy:

dG/dx > 0 ⇒ proceed to the left
dG/dx < 0 ⇒ proceed to the right
dG/dx = 0 ⇒ equilibrium

(14.41)

where x is the reaction coordinate, i.e. the fraction of the mass that is in the form of NH3, on the
RHS of equation 14.40. See section 14.2.4 for an explanation of where equation 14.41 comes from.

Note that P and T do not need to be constant �for all time�, just constant while the d/dx equilibration
is taking place.

As usual, the free enthalpy is de�ned to be:

G = E + PV − TS (14.42)

so the gradient of the free enthalpy is:

dG = dE + PdV − TdS (14.43)

There could have been terms involving V dP and SdT , but these are not interesting since we are
working at constant P and T .

In more detail: If (P1, T1) corresponds to equilibrium, then we can combine equation 14.43 with
equation 14.41 to obtain:

dG
dx

∣∣∣
(P1,T1)

=
[
dE
dx + P dV

dx − T
dS
dx

]
(P1,T1)

= 0
(14.44)
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To investigate the e�ect of changing the pressure, we need to compute
dG
dx

∣∣∣
(P2,T1)

=
[
dE
dx + P dV

dx − T
dS
dx

]
(P2,T1)

(14.45)

where P2 is slightly di�erent from the equilibrium pressure; that is:

P2 = (1 + δ)P1 (14.46)

We now argue that E and dE are insensitive to pressure. The potential energy of a given molecule
depends on the bonds in the given molecule, independent of other molecules, hence independent of
density (for an ideal gas). Similarly the kinetic energy of a given molecule depends on temperature,
not on pressure or molar volume. Therefore:

dE
dx

∣∣∣∣
(P2,T1)

=
dE
dx

∣∣∣∣
(P1,T1)

(14.47)

Having examined the �rst term on the RHS of equation 14.45, we now examine the next term,
namely the P dV/dx term. It turns out that this term is insensitive to pressure, just as the previous
term was. We can understand this as follows: Let N denote the number of gas molecules on hand.
Let's say there are N1 molecules when x = 1. Then for general x we have:

N = N1 (2− x) (14.48)

That means dN/dx = −N1, independent of pressure. Then the ideal gas law tells us that

d
dx

(P V )

∣∣∣∣
(P,T )

=
d
dx

(N kT )

∣∣∣∣
(P,T )

(14.49)

Since the RHS is independent of P , the LHS must also be independent of P , which in turn means
that P dV/dx is independent of P . Note that the V dP/dx term is automatically zero.

Another way of reaching the same conclusion is to recall that PV is proportional to the kinetic
energy of the gas molecules: PV = N kT = (γ − 1)E, as discussed in section 26.5. So when the
reaction proceeds left to right, for each mole of gas that we get rid of, we have to account for
RT/(γ − 1) of energy, independent of pressure.

This is an interesting result, because you might have thought that by applying pressure to the
system, you could simply �push� the reaction to the right, since the RHS has a smaller volume.
But it doesn't work that way. Pressurizing the system decreases the volume on both sides of the
equation by the same factor. In the PdV term, the P is larger but the dV is smaller.

Also note that by combining the pressure-independence of the dE/dx term with the pressure-
independence of the P dV/dx term, we �nd that dH/dx is pressure-independent also, where H is
the enthalpy.

Now we come to the −TdS/dx term. Entropy depends on volume.

By way of background, let us temporarily consider a slightly di�erent problem, namely
one that has only N1 molecules on each side of the equation. Consider what would
happen if we were to run this new reaction backwards, i.e. right to left, i.e. from x = 1
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to x = 0. The system volume would double, and we would pick up N1 k ln(2) units
of entropy ... independent of pressure. It is the volume ratio that enters into this
calculation, inside the logarithm. The ratio is independent of pressure, and therefore
cannot contribute to explaining any pressure-related shift in equilibrium.

Returning to the main problem of interest, we have not N1 but 2N1 molecules when x = 0. So
when we run the real reaction backwards, in addition to simply letting N1 molecules expand, we
have to create another N1 molecules from scratch.

For that we need the full-blown Sackur-Tetrode equation, equation 26.17, which we repeat here.
For a pure monatomic nondegenerate ideal gas in three dimensions:

S/N = k ln(V/N
Λ3 ) + 5

2k (14.50)

which gives the entropy per particle in terms of the volume per particle, in an easy-to-remember
form.

For the problem at hand, we can re-express this as:
Si = Ni(x) k ln(kT/P

Λ3
i

) + 5
2k (14.51)

where the index i runs over the three types of molecules present (N2, H2, and NH3). We have also
used the ideal gas law to eliminate the V dependence inside the logarithm in favor of our preferred
variable P . We have (�nally!) identi�ed a contribution that depends on pressure and also depends
on x.

We can understand the qualitative e�ect of this term as follows: The −TS term always contributes
a drive to the left. According to equation 26.17, at higher pressure this drive will be less. So if we
are in equilibrium at pressure P1 and move to a higher pressure P2, there will be a net drive to the
right.

We can quantify all this as follows: It might be tempting to just di�erentiate equation 14.51 with
respect to x and examine the pressure-dependence of the result. However, it is easier if we start by
subtracting equation 14.44 from equation 14.45, and then plug in equation 14.51 before di�erenti-
ating. A lot of terms are una�ected by the change from P1 to P2, and it is helpful if we can get
such terms to drop out of the calculation sooner rather than later:[

dG
dx (P2)

−0

]
=

[
dE
dx (P2) + P dV

dx (P2) − T dS
dx (P2)

−dEdx (P1) − P dV
dx (P1) + T dS

dx (P1)

]
= 0 + 0− T d

dx [S(P2)− S(P1)]

= −kT d
dx

∑
iNi(x) [ln(1/P2)− ln(1/P1)]

= +kT d
dx

∑
iNi(x) ln(1 + δ)

= −kT ln(1 + δ)

(14.52)

This quantitative result reinforces the previous qualitative analysis: If P2 is greater than P1, the
reaction will proceed in the +x direction, since that is what will minimize G.

The calculation involved many steps, but each step was reasonably easy.

Remark: The result is surprisingly simple. Whenever a complicated calculation produces a simple
result, it is a sign that we don't really understand what's going on. I suspect there is an easier way
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to obtain this result. In particular, since we have �gured out that the entropy term is running the
show, I conjecture that it may be possible to start from �rst principles and just keep track of the
entropy.

Remark: In equation 14.52, by a �rst order expansion of the logarithm on the last line, you can
verify that when the reaction is pushed toward equilibrium, the amount of push is proportional to
δ, which makes sense.

Exercise: Use a similar argument to show that increasing the temperature will shift the equilibrium
of equation 14.40 to the left. Hint: In a gas-phase reaction such as this, the side with more moles
of gas will have more entropy.

14.9 Le Châtelier's �Principle�, Or Not

One sometimes sees equilibrium (and or the shift of equilibrium) �explained� by reference to Le
Châtelier's �principle�. This is highly problematic.

Le Châtelier in his lifetime gave two inconsistent statements of his so-called �principle�. Restating
them in modern terms:

(1) The �rst version says, in e�ect, that all chemical equilibria are stable.

(2) The second version says, in e�ect, that all stable chemical equilibria are stable.

Version 2 is tautological. As such, it is not wrong ... but it is utterly uninformative.

Version 1 is just wrong, as we can see from the following examples:

Example #1: As a familiar, important situation, consider ice in equilibrium with liquid water,
under the usual constant-pressure conditions. Let x represent the reaction coordinate, i.e. the
fraction of the mass of the system that is in the form of ice. If you perturb the system by changing
x � perhaps by adding water, adding ice, or adding energy � the system will exhibit zero tendency
to return to its previous x-value. This system exhibits zero stability, aka neutral instability, aka
neutral stability, as de�ned in �gure 14.2.

Example #2: Consider an equilibrium mixture of helium and neon. Let the reaction coordinate
(x) be the fraction of the mass that is helium. If you perturb the system by increasing x, there will
be no tendency for the system to react so as to decrease x. This is another example of zero stability
aka neutral instability.

Example #3: Consider the decomposition of lead azide, as represented by the following reaction:

Pb(N3)2 → Pb + 3N2

(x = 0) (x = 1)
(14.53)

Initially we have x = 0. That is, we have a sample of plain lead azide. It is in thermodynamic
equilibrium, in the sense that it has a de�nite pressure, de�nite temperature, et cetera.
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If we perturb the system by increasing the temperature a small amount, the system will not react
so as to counteract the change, not even a little bit. Indeed, if we increase the temperature enough,
the system will explode, greatly increasing the temperature.

We say that this system is unstable. More speci�cally, it exhibits negative stability, as de�ned in
�gure 14.2.

Example #4: Suppose you raise the temperature in an RBMK nuclear reactor. Do you think the
reaction will shift in such a way as to counteract the increase? It turns out that's not true, as some
folks in Chernobyl found out the hard way in 1986.

Example #5: A simple mechanical example: Consider a perfectly balanced wheel, as in the middle
example in the bottom row of �gure 14.2. It is in equilibrium. If you rotate it to a new angle, it will
not exhibit any tendency to return to its original state. This is neutral stability, i.e. neutrally-stable
equilibrium.

Example #6: Consider a wheel with an o�-center weight at top dead center, as in the lower-right
example in �gure 14.2. It is in equilibrium, but it is unstable.

Suggestion: If you want to talk about equilibrium and stability, use the standard terminology,
namely equilibrium and stability, as de�ned in �gure 14.1 and �gure 14.2. There is no advantage to
mentioning Le Châtelier's ideas in any part of this discussion, because the ideas are wrong. If you
want to remark that �most� chemical equilibria encountered in the introductory chemistry course are
stable equilibria, that's OK ... but such a remark must not be elevated to the status of a �principle�,
because there are many counterexamples.

Note that Lyapunov's detailed understanding of what stability means actually predates Le Châte-
lier's infamous �principle� by several years.

When �rst learning about equilibrium, stability, and damping, it is best to start with a one-
dimensional system, such as the bicycle wheel depicted in �gure 14.2. Then move on to multi-
dimensional systems, such as an egg, which might be stable in one direction but unstable in another
direction. Also note that in a multi-dimensional system, even if the system is stable, there is no
reason to expect that the restoring force will be directly antiparallel to the perturbation. Very
commonly, the system reacts by moving sideways, as discussed in section 14.5.

14.10 Appendix: The Cyclic Triple Derivative Rule

In this section, we derive a useful identity involving the partial derivatives of three variables. This
goes by various names, including cyclic chain rule, cyclic partial derivative rule, cyclic identity,
Euler's chain rule, et cetera. We derive it twice: once graphically in section 14.10.1 and once
analytically section 14.10.3. For an example where this rule is applied, see section 14.4.

14.10.1 Graphical Derivation

In �gure 14.14 the contours of constant x are shown in blue, the contours of constant y are shown
in black, and the contours of constant z are shown in red. Even though there are three variables,
there are only two degrees of freedom, so the entire �gure lies in the plane.



14�34 Modern Thermodynamics

y=3

y=4

y=5
x
=
2

x
=
4

x
=
6

x
=
8

z=
10

z=
11

z=
12

z=
13

z=
14

Figure 14.14: Cyclic Triple Derivative
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The red arrow corresponds to:
∂x
∂y

∣∣∣
z

= 3
−1 =

# of blue contours
# of black contours crossed by red arrow (14.54)

and can be interpreted as follows: The arrow runs along a contour of constant z, which is the z on
the LHS of equation 14.54. The arrow crosses three contours of constant x, which is the numerator
in equation 14.54. It crosses one contour of constant y, in the direction of decreasing y, which is
the denominator.

Collecting results for all three vectors, we have:
∂x
∂y

∣∣∣
z

= 3
−1 =

# of blue contours
# of black contours crossed by red arrow

∂y
∂z

∣∣∣
x

= 1
−2 =

# of black contours
# of red contours crossed by blue arrow

∂z
∂x

∣∣
y

= 2
−3 =

# of red contours
# of blue contours crossed by black arrow

(14.55)

and if we multiply those together, we get:
∂x
∂y

∣∣∣
z

∂y
∂z

∣∣∣
x

∂z
∂x

∣∣
y

= −1 (14.56)

14.10.2 Validity is Based on Topology

Note the contrast:

The cyclic triple derivative identity is a topo-

logical property. That is, you can rotate or
stretch �gure 14.14 however you like, and the
result will be the same: the product of the
three partial derivatives will always be −1. All
we have to do is count contours, i.e. the num-
ber of contours crossed by each of the arrows.

The result does not depend on any geometri-

cal properties of the situation. No metric is
required. No dot products are required. No
notion of length or angle is required. For ex-
ample, as drawn in �gure 14.14, the x con-
tours are not vertical, the y contours are not
horizontal, and the x and y contours are not
mutually perpendicular ... but more generally,
we don't even need to have a way of knowing
whether the contours are horizontal, vertical,
or perpendicular.

Similarly, if you rescale one set of contours, perhaps by making the contours twice as closely spaced,
it has no e�ect on the result, because it just increases one of the numerators and one of the
denominators in equation 14.56.

The validity of equation 14.56 depends on the following topological requirement: The three vectors
must join up to form a triangle. This implies that the contours {dx, dy, dz} must not be linearly
independent. In particular, you cannot apply equation 14.56 to the Cartesian X, Y , and Z axes.

Validity also depends on another topological requirement: The contour lines must not begin or end
within the triangle formed by the three vectors. We are guaranteed this will always be true, because
of the fundamental theorem that says d(anything) is exact ... or, equivalently, d(d(anything)) = 0.
In words, the theorem says �the boundary of a boundary is zero� or �a boundary cannot peter out�.
This theorem is discussed in reference 4.
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We apply this idea as follows: Every contour line that goes into the triangle has to go out again.
From now on, let's only count net crossings, which means if a contour goes out across the same edge
where it came in, that doesn't count at all. Then we can say that any blue line that goes in across
the red arrow must go out across the black arrow. (It can't go out across the blue arrow, since
the blue arrow lies along a blue contour, and contours can't cross.) To say the same thing more
quantitatively, the number of net blue crossings inward across the red arrow equals the number of
net blue crossings outward across the black arrow. This number of crossings shows up on the LHS
of equation 14.56 twice, once as a numerator and once as a denominator. In one place or the other,
it will show up with a minus sign. Assuming this number is nonzero, its appearance in a numerator
cancels its appearance in a denominator, so all in all it contributes a factor of −1 to the product.
Taking all three variables into account, we get three factors of −1, which is the right answer.

Here is yet another way of saying the same thing. To simplify the language, let's interpret the
x-value as �height�. The blue arrow lies along a contour of constant height. The black arrow goes
downhill a certain amount, while the red arrow goes uphill by the same amount. The amount must
be the same, for the following two reasons: At one end, the red and black arrows meet at a point,
and x must have some de�nite value at this point. At the other end, the red and black arrows
terminate on the same contour of constant x. This change in height, this ∆x, shows up on the LHS
of equation 14.56 twice, once as a numerator and once as a denominator. In one place or the other,
it shows up with a minus sign. This is guaranteed by the fact that when the arrows meet, they
meet tip-to-tail, so if one of the pair is pointed downhill, the other must be pointed uphill.

14.10.3 Analytic Derivation

Let's start over, and derive the result again. Assuming z can be expressed as a function of x and
y, and assuming everything is su�ciently di�erentiable, we can expand dz in terms of dx and dy
using the chain rule:

dz = ∂z
∂x

∣∣
y
dx+ ∂z

∂y

∣∣∣
x
dy (14.57)

By the same token, we can expand dx in terms of dy and dz:

dx = ∂x
∂y

∣∣∣
z
dy + ∂x

∂z

∣∣
y
dz (14.58)

Using equation 14.58 to eliminate dx from equation 14.57, we obtain:

dz = ∂z
∂x|y

(
∂x
∂y|z dy + ∂x

∂z|y dz
)

+ ∂z
∂y|x dy (14.59)

hence (
1− ∂z

∂x|y
∂x
∂z|y

)
dz =

(
∂z
∂x|y

∂x
∂y|z + ∂z

∂y|x

)
dy (14.60)

We are free to choose dz and dy arbitrarily and independently, so the only way that equation 14.60
can hold in general is if the parenthesized factors on each side are identically zero. From the LHS of
this equation, we obtain the rule for the reciprocal of a partial derivative. This rule is more-or-less
familiar from introductory calculus, but it is nice to know how to properly generalize it to partial
derivatives:

∂z
∂x

∣∣
y
∂x
∂z

∣∣
y

= 1 (14.61)
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Meanwhile, from the parenthesized expression on the RHS of equation 14.60, with a little help from
equation 14.61, we obtain the cyclic triple chain rule, the same as in section 14.10.1:

∂x
∂y

∣∣∣
z

∂y
∂z

∣∣∣
x

∂z
∂x

∣∣
y

= −1 (14.62)

14.10.4 Independent and Dependent Variables, or Not

In this situation, it is clearly not worth the trouble of deciding which are the �independent� variables
and which are the �dependent� variables. If you decide based on equation 14.57 (which treats z as
depending on x and y) you will have to immediately change your mind based on equation 14.58
(which treats x as depending on y and z).

Usually it is best to think primarily in terms of abstract points in thermodynamic state-space. You
can put your �nger on a point in �gure 14.14 and thereby identify a point without reference to its
x, y, or z coordinates. The point doesn't care which coordinate system (if any) you choose to use.
Similarly, the vectors in the �gure can be added graphically, tip-to-tail, without reference to any
coordiate system or basis.

If and when we have established a coordinate system:

� Given a point, you can determine its x, y, and z coordinates.

� Given x and y, you can locate the point and determine its properties, including its z coordinate.

� Equally well, given y and z, you can locate the point and determine its properties, including
its x coordinate.

14.10.5 Axes, or Not

Note that there no axes in �gure 14.14, strictly speaking. There are contours of constant x, constant
y, and constant z, but no actual x-axis, y-axis, or z-axis.

In other, simpler situations, you can of course get away with a plain horizontal axis and a plain
vertical axis, but you don't want to become too attached to this approach. Even in cases where you
can get away with plain axes, it is a good habit to plot the grid also (unless there is some peculiar
compelling reason not to). Modern software makes it super-easy to include the grid.

Make it a habit to include the contours.

For more on this, see reference 42.

14.11 Entropy versus �Irreversibility� in Chemistry

In chemistry, the word �irreversible� is commonly used in connection with multiple inconsistent
ideas, including:
• The reaction is spontaneous.
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• The reaction strongly goes to completion.
• The reaction is thermodynamically irreversible.

Those ideas are not completely unrelated . . . but they are not completely identical, and there is
potential for serious confusion.

You cannot look at a chemical reaction (as written in standard form) and decide whether it is
spontaneous, let alone whether it goes to completion. For example, consider the reaction

3Fe + 4H2O→ Fe3O4 + 4H2 (14.63)

If you �ow steam over hot iron, you produce iron oxide plus hydrogen. This reaction is used to
produce hydrogen on an industrial scale. It goes to completion in the sense that the iron is used
up. Conversely, if you �ow hydrogen over hot iron oxide, you produce iron and H2O. This is the
reverse of equation 14.63, and it also goes to completion, in the sense that the iron oxide is used up.

What's more, none of that has much to do with whether the reaction was thermodynamically
reversible or not.

In elementary chemistry classes, people tend to pick up wrong ideas about thermodynamics, because
the vast preponderance of the reactions that they carry out are grossly irreversible, i.e. irreversible
by state, as discussed in section 14.3.6. The reactions are nowhere near isentropic.

Meanwhile, there are plenty of chemical reactions that are very nearly reversible, i.e. irreversible by
rate, as discussed in section 14.3.6. In everyday life, we see examples of this, such as electrochemical
reactions, e.g. storage batteries and fuel cells. Another example is the CO2/carbonate reaction
discussed below. Alas, there is a tendency for people to forget about these reversible reactions and
to unwisely assume that all reactions are grossly irreversible. This unwise assumption can be seen
in the terminology itself: widely-used tables list the �standard heat of reaction� (rather than the
standard energy of reaction), apparently under the unjusti�able assumption that the energy liberated
by the reaction will always show up as heat. Similarly reactions are referred to as �exothermic� and
�endothermic�, even though it would be much wiser to refer to them as exergonic and endergonic.

It is very di�cult, perhaps impossible, to learn much about thermodynamics by studying bricks
that fall freely and smash against the �oor. Instead, thermodynamics is most understandable and
most useful when applied to situations that have relatively little dissipation, i.e. that are nearly
isentropic.

Lots of people get into the situation where they have studied tens or hundreds or thousands of
reactions, all of which are irreversible by state. That's a trap for the unwary. It would be unwise
to leap to the conclusion that all reactions are far from isentropic . . . and it would be even more
unwise to leap to the conclusion that �all� natural processes are far from isentropic.

Chemists are often called upon to teach thermodynamics, perhaps under the guise of a �P-Chem�
course (i.e. physical chemistry). This leads some people to ask for purely chemical examples to
illustrate entropy and other thermodynamic ideas. I will answer the question in a moment, but
�rst let me register my strong objections to the question. Thermodynamics derives its great power
and elegance from its wide generality. Specialists who cannot cope with examples outside their own
narrow specialty ought not be teaching thermodynamics.

Here's a list of reasons why a proper understanding of entropy is directly or indirectly useful to
chemistry students.
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1. Consider electrochemical reactions. Under suitable conditions, some electrochemical reactions
can be made very nearly reversible in the thermodynamic sense. (See reference 43 for some
notes on how such cells work.) In these cases, the heat of reaction is very much less than the
energy of reaction, and the entropy is very much less than the energy divided by T .

2. Consider the reaction that children commonly carry out, adding vinegar to baking soda,
yielding sodium acetate and carbon dioxide gas. Let's carry out this reaction in a more
grown-up apparatus, namely a sealed cylinder with a piston. By pushing on the piston with
weights and springs, we can raise the pressure of the CO2 gas. If we raise the pressure high
enough, we push CO2 back into solution. This in turn raises the activity of the carbonic acid,
and at some point it becomes a strong enough acid to attack the sodium acetate and partially
reverse the reaction, liberating acetic acid. So this is clearly and inescapably a chemistry

situation.

Much of the signi�cance of this story revolves around the fact that if we arrange the weights
and springs just right, the whole process can be made thermodynamically reversible (nearly
enough for practical purposes). Adding a tiny bit of weight will make the reaction go one way,
just as removing a tiny bit of weight will make the reaction go the other way.

Now some interesting questions arise: Could we use this phenomenon to build an engine, in
analogy to a steam engine, but using CO2 instead of steam, using the carbonate ↔ CO2

chemical reaction instead of the purely physical process of evaporation? How does the CO2

pressure in this system vary with temperature? How much useful work would this CO2 engine
generate? How much waste heat? What is the best e�ciency it could possibly have? Can we
run the engine backwards so that it works as a refrigerator?

There are more questions of this kind, but you get the idea: once we have a reaction that
is more-or-less thermodynamically reversible, we can bring to bear the entire machinery of
thermodynamics.

3. Consider the colligative e�ects of a solute on the on freezing point, boiling point, and vapor
pressure of a solvent. The fact that they're colligative � i.e. insensitive to the chemical proper-
ties of the solute � is strong evidence that entropy is what's driving these e�ects, not enthalpy,
energy, or free energy.

4. Similarly: consider the Gibbs Gedankenexperiment (section 11.6). Starting with a sample of
4He, we get an increase in entropy if we mix it with 3He, or Ne, or Xe . . . but we get no e�ect
if we �mix� it with more of the same 4He.

5. People who take chemistry classes often go on to careers in other �elds. For example, you
might need knowledge of chemistry, physics, and engineering in order to design a rocket engine,
or a jet engine, or a plain old piston engine. Such things commonly involve a chemical reaction
followed by a more-or-less isentropic expansion. Even though the chemical reaction is grossly
irreversible, understanding the rest of the system requires understanding thermodynamics.

To be really speci�c, suppose you are designing something with multiple heat engines in series.
This case is considered as part of the standard �foundations of thermodynamics� argument, as
illustrated �gure 14.15. Entropy is conserved as it �ows down the totem-pole of heat engines.
The crucial conserved quantity that is the same for all the engines is entropy . . . not energy,



14�40 Modern Thermodynamics

free energy, or enthalpy. No entropy is lost during the process, because entropy cannot be
destroyed, and no entropy (just work) �ows out through the horizontal arrows. No entropy is
created, because we are assuming the heat engines are 100% reversible. For more on this, see
reference 8.

Figure 14.15: Heat Engines In Series

6. Consider �Design of Experiment�, as discussed in reference 13. In this case the entropy of
interest is not the entropy of the reaction, but still it is entropy, calculated in accordance
with equation 2.2, and it is something a chemist ought to know. Research chemists and
especially chemical engineers are often in the situation where experiments are very expensive,
and someone who doesn't understand Design of Experiment will be in big trouble.



Chapter 15

The �Big Four� Energy-Like State
Functions

15.1 Overview and Mathematical Preliminaries

The �big four� thermodynamic potentials are E, F , G, and H. That is:

E = energy chapter 1
F = Helmholtz free energy section 15.4
G = Gibbs free enthalpy section 15.5
H = enthalpy section 15.3

(15.1)

Terminology note: Beware that H does not stand for Helmholtz (or for heat); H is the enthalpy.
This is discussed in more detail in section 15.9.7.

There are systematic relationships between these quantities, as spelled out in section 15.7.

Depending on details of how the system is constrained, some one of these potentials might be useful
for predicting equilibrium, stability, and spontaneity, as discussed in chapter 14.

15.1.1 Integration by Parts; PV and its Derivatives

Let's establish a little bit of background. We will soon need to use the fact that

d(P V ) = PdV + V dP (15.2)

which is just the rule for di�erentiating a product. For present purposes, we do not care about the
physical signi�cance of P and V ; this is just math. This formula applies to any two variables (not
just P and V ), provided they were di�erentiable to begin with. Note that this rule is intimately
related to the idea of integrating by parts, as you can see by writing it as

PdV = d(P V )− V dP (15.3a)∫
PdV = ∆(P V )−

∫
V dP (15.3b)
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Note that the RHS of equation 15.3b could be obtained two ways, either by direct integration of
the RHS of equation 15.3a, or by integrating the LHS, integrating by parts.

The idea behind integration by parts can be visualized using the indicator diagram in �gure 15.1.
The black dividing line represents the equation of state, showing P as a function of V (and vice
versa). The blue-shaded region is the area under the curve, namely

∫
PdV , where the P in the

integrand is not any old P , but rather the P (V ) you compute as a function of V , according the
equation of state. By the same logic, the red-shaded region has area

∫
V dP , by which we mean∫

V (P )dP , computing V (P ) as function of P , according to the equation of state.

copyright © 2013 jsd

dV

dP
∫V(P)dP

∫P(V)dV

V1 V2

P1

P2

Figure 15.1: Integration by Parts

The large overall rectangle has height P2, width V2, and area P2 V2. The small unshaded rectangle
has area P1 V1. So the entire shaded region has area ∆(PV ). One way of looking at it is to say
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the area of any rectangle is
∫ ∫

dPdV where here P and V range over the whole rectangle, without
regard to the equation of state.

If you think of
∫
PdV as the work, you can think of

∫
V dP as the krow, i.e. the reverse work, i.e.

the shaded area minus the work. Equivalently we can say that it is the entire area of the indicator
diagram, minus the small unshaded rectangle, minus the work.

We can rewrite equation 15.3b as ∫
PdV +

∫
V dP = ∆(P V ) (15.4)

which has the interesting property that the RHS depends only on the endpoints of the integration,
independent of the details of the equation of state. This is in contrast to the LHS, where the work∫
PdV depends on the equation of state and the krow

∫
V dP also depends on the equation of state.

If we hold the endpoints �xed and wiggle the equation of state, any wiggle that increases the work
decreases the krow and vice versa.

In the case where P happens to be a decreasing function of V , the picture looks di�erent, but the
bottom-line mathematical formula is the same and the meaning is the same.

Figure 15.2: Integration by Parts, Decreasing Function

Here subscript �b� stands for beginning, while subscript �e� stands for ending. The trick is to notice
that the �nal pressure Pe is less than the initial pressure Pb, so the integral of V dP is negative.
If we keep the endpoints the same and wiggle the equation of state, anything that makes the work∫
P dV more positive makes the krow

∫
V dP more negative.

15.1.2 More About PdV versus V dP

Consider the thermodynamic cycle shown on the indicator diagram in �gure 15.3.

In �gure 15.4, we plot P , V , and PV as functions of arc length s, as we go around the cycle, starting
from the southeast corner. These are functions of state, so at the end of the cycle, they will certainly
return to their initial values.

In �gure 15.5, we plot some integrals. The integral of PdV is not a function of state; its value
depends on the path whereby we reached the state. Ditto for the integral of V dP .
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Figure 15.3: Indicator Diagram: (P, V ) Space

Figure 15.4: Functions of State: P , V , and PV
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Interestingly, the sum of
∫
PdV plus

∫
V dP

is a function of state, because it is the integral
of a gradient, namely the integral of d(PV ).

In contrast, PdV is not the gradient of any-
thing, and V dP is not the gradient of any-
thing. See section 8.2 for details on this.

You can verify that on a point-by-point basis, the
∫
d(PV ) curve is the algebraic sum of the other

two curves.

Figure 15.5: Integrals Along the Path

Figure 15.6 is another way of presenting the same basic idea. The shaded areas represent the
derivative of PV .

In this section, in a departure from our usual practice, we are di�erentiating things with
respect to the arc length s (rather than using the more sophisticated idea of gradient).
This is not a good idea in general, but it is expedient in this special case. The whole
notion of arc length is arbitrary and unphysical, because there is no natural notion of
distance or angle in thermodynamic state space. If we rescaled the axes, it would have
not the slightest e�ect on the real physics, it would change the arc length.

Because PV is a function of state, we know the area above the axis is equal to the area below
the axis. When integrated over the whole cycle, the PdV contributions (red and blue) must be
equal-and-opposite to the V dP contributions (green and magenta).

In other words, when we integrate over the whole cycle, we �nd that the total work is equal-and-
opposite to the total krow. This applies to the whole cycle only; if we look at any particular leg
of the cycle, or any other subset of the cycle, there is no reason to expect any simple relationship
between the total work and the total krow. It is usually better to think in terms of the simple yet
powerful local relationship between the derivatives: d(PV ) = PdV + V dP .
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Figure 15.6: Areas Under the Curve

15.2 Energy

The energy is one of the �big four� thermodynamic potentials.

The concept of energy has already been introduced; see chapter 1.

15.3 Enthalpy

15.3.1 De�nition of Enthalpy

We hereby de�ne the enthalpy as:

H := E + P V (15.5)

where H is the near-universally conventional symbol for enthalpy, E is the energy, V is the volume
of the system, and P is the pressure on the system. We will brie�y explore some of the mathematical
consequences of this de�nition, and then explain what enthalpy is good for.

Di�erentiating equation 15.5 and using equation 7.8 and equation 15.2, we �nd that
dH = −PdV + TdS + PdV + V dP

= V dP + TdS
(15.6)

which runs nearly parallel to equation 7.8; on the RHS we have transformed −PdV into V dP , and
of course the LHS is enthalpy instead of energy.
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This trick of transforming xdy into −ydx (with a leftover d(xy) term) is an example of a Legen-

dre transformation. In general, the Legendre transformation is a very powerful tool with many
applications, not limited to thermodynamics. See reference 44.

In the chemistry lab, it is common to carry out reactions under conditions of constant pressure.
If the reaction causes the system to expand or contract, it will do work against the surroundings.
This work will change the energy ... but it will not change the enthalpy, because dH depends on
V dP , and dP is zero, since we assumed constant pressure.

This means that under conditions of constant pressure, it is often easier to keep track of the enthalpy
than to keep track of the energy.

For simple reactions that take place in aqueous solution, usually both dP and dV are zero to a
good approximation, and there is no advantage to using enthalpy instead of energy. In contrast,
gas-phase reactions commonly involve a huge change in volume. Consider for example the decay of
ozone: 2O3 → 3O2.

Enthalpy is important in �uid dynamics. For example, Bernoulli's principle, which is often a
convenient way to calculate the pressure, can be interpreted as a statement about the enthalpy of
a parcel of �uid. It is often claimed to be a statement about energy, but this claim is bogus. The
claim is plausible at the level of dimensional analysis, but that's not good enough; there is more to
physics than dimensional analysis.

See section 15.9 for an example of how enthalpy can be put to good use.

15.3.2 Enthalpy is a Function of State

It is important to keep in mind that whenever we write something like H = E+PV , it is shorthand
for

Hc = Ec + PcVc (15.7)

where every variable in this equation is a function of state, i.e. a function of the state of the stu�
in the cell c. Speci�cally

� Hc refers to the enthalpy within the cell,

� Ec refers to the energy within the cell,

� Pc refers to the pressure within the cell,

� Vc refers to the volume within the cell,

It is important that these things be functions of state. This is an important issue of principle. The
principle is sometimes obscured by the fact that

� Sometimes it is possible to equate the pressure in the cell Pc to the ambient pressure Pa.

� Sometimes it is possible to related the entropy in the cell Sc to the entropy in the heat bath
Sh.



15�8 Modern Thermodynamics

� et cetera.

So, you might be tempted to write something like;

Hc = Ec + PaVc ×◦ (15.8)

However, that is risky, and if you do something like that, it is up to you to demonstrate, on a
case-by-case basis, that it is OK. Beware beware that there are lots of situations where it is not
OK. For example:

� In an air gun, the pressure in the cell Pc is de�nitely not equal to the ambient atmospheric
pressure Pa.

� In a dissipative system, dSc (in the cell) is de�nitely not equal to −dSh (in the heat bath).

� et cetera.

15.3.3 Derivatives of the Enthalpy

It is informative to di�erentiate H with respect to P and S directly, using the chain rule. This gives
us:

dH =
∂H

∂P

∣∣∣∣
S

dP +
∂H

∂S

∣∣∣∣
P

dS (15.9)

which is interesting because we can compare it, term by term, with equation 15.6. When we do
that, we �nd that the following identities must hold:

V =
∂H

∂P

∣∣∣∣
S

(15.10)

and

T =
∂H

∂S

∣∣∣∣
P

(15.11)

which can be compared to our previous de�nition of temperature, equation 7.7, which says

T := ∂E
∂S

∣∣
V

(15.12)

(assuming the derivative exists). Equation 15.11 is not meant to rede�ne T ; it is merely a useful
corollary, based on of our earlier de�nition of T and our de�nition of H (equation 15.5).
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15.4 Free Energy

In many situations � for instance when dealing with heat engines � it is convenient to keep track of
the free energy of a given parcel. This is also known as the Helmholtz potential, or the Helmholtz
free energy. It is de�ned as:

F := E − T S (15.13)

where F is the conventional symbol for free energy, E is (as always) the energy, S is the entropy,
and T is the temperature of the parcel.

The free energy is extremely useful for analyzing the spontaneity and reversibility of transformations
taking place at constant T and constant V . See chapter 14 for details.

See section 15.6 for a discussion of what is (or isn't) �free� about the free energy.

The energy and the free energy are related to the partition function, as discussed in chapter 24.

15.5 Free Enthalpy

Combining the ideas of section 15.3 and section 15.4, there are many situations where it is convenient
to keep track of the free enthalpy. This is also known as theGibbs potential or the Gibbs free enthalpy.
It is de�ned as:

G = E + P V − T S
= H − T S (15.14)

where G is the conventional symbol for free enthalpy. (Beware: G is all-too-commonly called the
Gibbs free �energy� but that is a bit of a misnomer. Please call it the free enthalpy, to avoid
confusion between F and G.)

The free enthalpy has many uses. For starters, it is extremely useful for analyzing the spontaneity
and reversibility of transformations taking place at constant T and constant P , as discussed in
chapter 14. (You should not however imagine that G is restricted to constant-T and/or constant-P
situations, for reasons discussed in section 15.7.)

15.6 Thermodynamically Available Energy � Or Not

The notion of �available energy� content in a region is mostly a bad idea. It is an idea left over from
cramped thermodynamics that does not generalize well to uncramped thermodynamics.

15.6.1 Overview

The notion of �free energy� is often misunderstood. Indeed the term �free energy� practically begs
to be misunderstood.



15�10 Modern Thermodynamics

It is super�cially tempting to divide the energy E into two pieces, the �free� energy F and the
�unfree� energy TS, but that's just a pointless word-game as far as I can tell, with no connection
to the ordinary meaning of �free� and with no connection to useful physics, except possibly in a few
unusual situations.

� As discussed in section 1.7, the amount of energy available for doing work is not the same as
the total energy E.

� As we shall see in this section, the available energy is also not equal to the free energy
F = E − TS.
To repeat: You should not imagine that the free energy is the �thermodynamically available�
part of the energy. Similarly you should not imagine that TS is the �unavailable� part of the
energy.

The free energy of a given parcel is a function of state, and in particular is a function of the
thermodynamic state of that parcel. That is, for parcel #1 we have F1 = E1 − T1 S1 and for parcel
#2 we have F2 = E2 − T2 S2.

Suppose we hook up a heat engine as shown in �gure 15.7. This is virtually the same as �gure 1.2,
except that here we imagine that there are two heat-sinks on the cold side, namely region #2 and
region #3. Initially heat-sink #2 is in use, and heat-sink #3 is disconnected. We imagine that
the heat-reservoir on the high side (region #1) is has much less heat capacity than either of the
heat-sinks on the low side. Also, we have added an anvil so that the heat engine can do work against
the gravitational �eld.

Assume the heat engine is maximally e�cient. That is to say, it is reversible. Therefore its e�ciency
is the Carnot e�ciency, (T1 − T2)/T2. We see that the amount of �thermodynamically available�
energy depends on T2, whereas the free energy of parcel #1 does not. In particular, if T2 is cold
enough, the work done by the heat engine will exceed the free energy of parcel #1. Indeed, in the
limit that parcel #2 is very large and very cold (approaching absolute zero), the work done by the
heat engine will converge to the entire energy E1, not the free energy F1.

We can underline this point by switching the cold-side connection from region #2 to region #3.
This changes the amount of energy that we can get out of region #1, even though there has been
no change in the state of region #1. This should prove beyond all doubt that �available energy�
is not equal to the Helmholtz free energy F = E − TS. Similarly it is not equal to the Gibbs free
enthalpy G = H − TS. It's not even a function of state.

� It is possible to construct scenarios in which there is a well-de�ned notion of available energy
� available within that scenario. See section 15.6.2 for an example.

� On the other hand, all-too-often people throw around the term �available energy� in situations
where it cannot possibly have any well-de�ned meaning. For example, there is � in general �
no way to attribute a de�nite amount of �available energy� to a gallon of gasoline, for reasons
discussed in section 15.6.2.

You may wish there were a de�nite state-function that would quantify the �available energy�
of the gasoline, but wishing does not make it so.
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Figure 15.7: Heat Engine with Multiple Heat-Sinks
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We can reconcile the two previous itemized points by making the distinction between a scenario-
function and a state-function. Something that is well de�ned in a careful scenario (involving two
reservoirs and numerous restrictions) is not well de�ned for a single reservoir (all by itself with no
restrictions).

Every minute spent learning about �available energy� is two minutes wasted, because everything
you learn about it will have to be unlearned before you can do real, uncramped thermodynamics.

Constructive suggestion: In any case, if you �nd yourself trying to quantify the so-called �thermal
energy� content of something, it is likely that you are asking the wrong question. Sometimes you
can salvage part of the question by considering microscopic versus macroscopic forms of energy, but
even this is risky. In most cases you will be much better o� quantifying something else instead. As
mentioned in section 17.1:

� Sometimes �heat� means TdS. In such a case, quantify TdS.

� Don't bother trying to quantify the �heat content� or �thermal energy content�. Instead quantify
the energy and entropy. The latter are unambiguous and unproblematic.

� Very often, when people speak about �heat energy� you can just cross out the word �heat� and
assume they meant �energy�. Ditto for �thermal energy�. This is consistent with the previous
item, in the sense that the �heat energy� is one component of the �heat�.

See chapter 19 for more on this.

In general, you should never assume you can �gure out the nature of a thing merely by looking at
the name of a thing. As discussed in reference 45, a titmouse is not a kind of mouse, and buckwheat
is not a kind of wheat. As Voltaire remarked, the Holy Roman Empire was neither holy, nor Roman,
nor an empire. By the same token, free energy is not the �free� part of the energy.

15.6.2 A Calculation of �Available� Energy

You are encouraged to skip this section. It exists primarily to dispel some misconceptions. However,
experience indicates that discussing a misconception is almost as likely to consolidate the miscon-
ception as to dispel it. Your best option is to accept the idea that energy and entropy are primary
and fundamental, whereas heat, work, and �available energy� are not. Accept the fact that any
notion of �useful energy� belongs more to microeconomics than to physics.

Alas, some people stubbornly wish for there to be some state-function that tells us the �available
energy�, and the purpose of this section is to disabuse them of that notion.

The plan is to analyze in more detail the system shown in �gure 15.7. This provides a more-detailed
proof of some of the assertions made in section 15.6.1.

The idea behind the calculation is that we start out with region 1 hotter than region 2. We operate
the heat engine so as to raise the weight, doing work against gravity. This extracts energy and
entropy from region 1. When T1 becomes equal to T2 we have extracted all of the energy that
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was available in this scenario, and the height of the weight tells us how much �available� energy we
started with. We can then operate the heat engine in reverse, using it as a heat pump driven by the
falling weight. We can arrange the direction of pumping so that energy and entropy are extracted
from region 1, so that region 1 ends up colder than region 2, even though it started out warmer.

A major purpose here is to do everything in su�cient detail so that there is no doubt what we mean
by the amount of energy �available� for doing work in this scenario. We measure the �available
energy� quite simply and directly, by doing the work and measuring how much work is done. At
any moment, the �available energy� is the amount of energy not (yet) transferred to the load.

This calculation is tantamount to rederiving the Carnot e�ciency formula.

By conservation of energy we have:
E1 + E2 +mgh = const
dE1 + dE2 +mgdh = 0

(15.15)

Since the heat engine is reversible, we have:

dS1 + dS2 = 0 (15.16)

Di�erentiating the energy, and using the fact that the reservoirs are held at constant volume, we
have:

dE1 = T1 dS1 − P1 dV1

= T1 dS1

dE2 = T2 dS2 − P2 dV2

= T2 dS2

(15.17)

We assume that region 1 has a constant heat capacity over the range of interest. We assume
that region 2 is an enormous heat bath, with an enormous heat capacity, and therefore a constant
temperature.

E1 = Cv1 T1

dT1 = (1/Cv1) dE1

dT2 = 0

(15.18)

Plugging equation 15.18 into equation 15.17 we obtain:
dE1 = (E1/Cv1) dS1

d ln(E1) = (1/Cv1) dS1
(15.19)

Doing some integrals gives us:
ln(E1) = (1/Cv1)S11 + const1
E1 = α exp(S1/Cv1)

E2 = T2 S2 + const2
= −T2 S1 + const3

(15.20)

Remember: At any moment, the available energy is the energy that has not (yet) been transferred
to the external load. Using conservation of energy (equation 15.15), we obtain:

−mg h ≡ available energy
= E1 + E2

= E1 − T2 S1 + const5

(15.21)
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Here's the punchline: the RHS here is not the free energy F1 := E1 − T1 S1. It is �almost� of the
right form, but it involves T2 instead of T1. It is provably not possible to write the available energy
as F1 or F2 or F1 +F2 (except in the trivial case where T1 ≡ T2, in which case nobody is interested,
because the available work is zero).

Equation 15.21 is a thinly-disguised variation of the Carnot e�ciency formula. You should have
known all along that the available energy could not be written as F1 or F2 or any linear combination
of the two, because the Carnot e�ciency formula depends on both T1 and T2, and it is nonlinear.

Here's another way you should have known that the available energy cannot possible correspond
to the free energy � without doing more than one line of calculation: Look at the de�nition F1 :=
E1−T1 S1 and consider the asymptotic behavior. In the case of an ideal gas or anything else with a
constant heat capacity, at high temperatures F must be negative. It must have a downward slope.
Indeed it must be concave downward. Surely nobody thinks that a hot �uid has a negative available
energy, or that the hotter it gets the less useful it is for driving a heat engine.

Thirdly and perhaps most importantly, we note again that we can change the amount of �available
energy� by switching the lower side of the heat engine from heat-sink 2 to heat-sink 3. This changes
the amount of work that the engine can do, without change the state of any of the reservoirs.

We now introduce ∆S to represent the amount of entropy transferred to region 1 from region 2 (via
the heat engine), and we choose the constants such that ∆S is zero when the two regions are in
equilibrium. That allows us to write the �available energy� as a simple function of ∆S:

−mg h = Cv1 T2 [exp(∆S/Cv1)− (∆S/Cv1)] (15.22)

This function is plotted in �gure 15.8. You can see that the available energy is positive whenever
region 1 is hotter or colder than region 2. It is usually more practical to store available energy
in a region that is hotter than the heat sink, and you can understand why this is, because of the
exponential in equation 15.22. However, at least in principle, anything that is colder than the heat
sink also constitutes a source of available energy.

15.7 Relationships among E, F , G, and H

We have now encountered four quantities {E,F,G,H} all of which have dimensions of energy. The
relationships among these quantities can be nicely summarized in two-dimensional charts, as in
�gure 15.9.
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Figure 15.10: Some Derivatives of E, F , G,
and H

The four expressions in �gure 15.10 constitute all of the expressions that can be generated by starting
with equation 7.8 and applying Legendre transformations, without introducing any new variables.
They are emphatically not the only valid ways of di�erentiating E, F , G, and H. Equation 7.12 is
a very practical example � namely heat capacity � that does not show up in �gure 15.10. It involves
expressing dE in terms of dV and dT (rather than dV and dS). As another example, equation 26.10
naturally expresses the energy as a function of temperature, not as a function of entropy.

Beware: There is a widespread misconception that E is �naturally� (or necessarily) expressed in
terms of V and S, while H is �naturally� (or necessarily) expressed in terms of P and S, and so on
for F (V, T ) and G(P, S). To get an idea of how widespread this misconception is, see reference 46
and references therein. Alas, there are no good reasons for such restrictions on the choice of variables.

These restrictions may be a crude attempt to solve the problems caused by taking
shortcuts with the notation for partial derivatives. However, the restrictions are neither
necessary nor su�cient to solve the problems. One key requirement for staying out of
trouble is to always specify the direction when writing a partial derivative. That is, do
not leave o� the �at constant X� when writing the partial derivative at constant X. See
section 7.5 and reference 3 for more on this.

Subject to some signi�cant restrictions, you can derive a notion of conservation of enthalpy. Speci�-
cally, this is restricted to conditions of constant pressure, plus some additional technical restrictions.
See chapter 14. (This stands in contrast to energy, which obeys a strict local conservation law with-
out restrictions.) If the pressure is changing, the safest procedure is to keep track of the pressure
and volume, apply the energy conservation law, and then calculate the enthalpy from the de�nition
(equation 15.5) if desired.

15.8 Yet More Transformations

Starting from equation 7.33 there is another whole family of Legendre transformations involving
µN .
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15.9 Example: Hydrogen/Oxygen Fuel Cell

15.9.1 Basic Scenario

Consider the simpli�ed fuel cell shown in �gure 15.11.
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Figure 15.11: Fuel Cell Et Cetera

Ideally, the fuel cell carries out the following reaction:

H2 + 1/2O2 → H2O
gas gas liquid

(15.23)

That equation is an OK place to start, but there's a lot it isn't telling us. For one thing, we have
not yet begun to account for the energy and entropy.
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There are four main energy reservoirs we need to keep track of:
Ea = energy in the ambient atmosphere
Eb = energy in the battery
Ec = energy in the chemicals in the fuel cell
Eh = energy in the heat bath

(15.24)

The product on the RHS of equation 15.23 is a liquid, so, on a mole-for-mole basis, it takes up a
lot less volume than the corresponding reactants. This means that as the reaction proceeds left-to-
right, the collection of chemicals shrinks. In turn, that means that the ambient atmosphere does
PdV work on the chemicals.

Also, although it's not accounted for in equation 15.23 the way we have written it, the reaction
must be balanced with respect to electrons (not just with respect to atoms). To make a long story
short, this means that as the reaction proceeds, the chemicals do work against the battery.

Notation: The conventional symbols for electrical quantities include the charge Q and
the voltage V . However, those letters mean something else in thermodynamics, so we
are going to write the electrical work as F · dx. You can think of it as the force on the
electrons times the distance the electrons move in the wire. Or you can imagine replacing
the battery with a highly-e�cient reversible motor, and measuring the genuine force and
distance on the output shaft of the motor.

At this point we have enough variables to write down a useful expansion for the derivative of the
energy:

dEc = TcdSc − Fc · dxc − PcdVc (15.25)

15.9.2 Enthalpy

For reasons that will be explained in a moment, it is useful to introduce the enthalpy H, and its
gradient dH:

H := E + PV
dH := dE + PdV + V dP

(15.26)

Plugging this into equation 15.25 we obtain
dHc = TcdSc − Fc · dxc + VcdPc (15.27a)
dHc = TcdSc − Fc · dxc (15.27b)

Equation 15.27b is predicated on the assumption that the pressure in our fuel cell (Pc) is constant
all during the reaction, so that the derivative dPc vanishes.

Here's one reason why it is worthwhile to analyze the system in terms of enthalpy: We can look at
tabulated data to �nd the enthalpy of reaction for equation 15.23 (subject to mild restrictions). If
the reaction is carried out under �standard conditions�, tables tell us the enthalpy of the chemicals
Hc is 286 kJ/mol less on the RHS compared to the LHS. The enthalpy includes the energy of
the reaction ∆E plus the PdV work (speci�cally ∆Ec plus PcdVc) ... neither of which we have
evaluated separately. We could evaluate them, but there is no need to.
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Tangential remark: Before we go on, let's take another look at equation 15.25. From
the point of view of mathematics, as well as fundamental physics, the PdV term and
the F · dx term play exactly the same role. So the question arises, why do we include
PdV in the de�nition of enthalpy ... but not F · dx???

Partly it has to do with convention, but the convention is based on convenience. It is
fairly common for the pressure to be constant, which makes it not very interesting, so
we use the enthalpy formalism to make the uninteresting stu� drop out of the equation.

On the other hand, if you ever �nd yourself in a situation where there is an uninteresting
F · dx term, you are encouraged to de�ne your own enthalpy-like state function that
deals with F · x the same way enthalpy deals with PV .

To make progress, we need more information. We need to know the entropy. It turns out that the
entropy is known for oxygen, hydrogen, and water under standard conditions. This can be found,
to a su�cient approximation, by starting at some very low temperature and integrating the heat
capacity. (This procedure overlooks a certain amount of spectator entropy, but that is not important
for present purposes.) Tabulated data tells us that the entropy (under standard conditions) of the
RHS of equation 15.23 is 164 J/K/mol lower compared to the LHS.

At this point we can calculate the maximum amount of energy that can be delivered to the battery.
Re-arranging equation 15.27b we have

Fc · dxc = TcdSc − dHc (15.28)

The large negative ∆H means that a large amount of F · dx work can be done on the battery,
although the rather large negative ∆S interferes with this somewhat. At 20◦ C, the TdS term
contributes about 47.96 J/mol in the unhelpful direction, so the best we can expect from our fuel
cell is about 238 kJ/mol. That represents about 83% e�ciency. The e�ciency is less that 100%
because a certain amount of �waste heat� is being dumped into the heat bath.

Note that the Carnot e�ciency would be essentially zero under these conditions, because the highest
temperature in the device is the same as the lowest temperature. So the fuel cell exceeds the Carnot
e�ciency, by an enormous margin. This does not violate any laws of physics, because the Carnot
formula applies to heat engines, and the fuel cell is not a heat engine.

If we were to burn the hydrogen and oxygen in an ordinary �ame, and then use the �ame to operate
a heat engine, it would hardly matter how e�cient the engine was, how reversible the engine
was, because the chemisty of combustion is grossly irreversible, and this would be the dominant
ine�ciency of the overall process. See section 15.9.5 for more discussion of combustion.

15.9.3 Gibbs Free Enthalpy

For reasons that will explained in a moment, it is useful to introduce the Gibbs free enthalpy:
G = E + P V − T S

= H − T S
dG = dH − TdS − SdT

(15.29)
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Plugging into equation 15.27b we obtain

dGc = −Fc · dxc − ScdTc (15.30a)
dGc = −Fc · dxc (15.30b)

where the last line is predicated on the assumption of constant temperature.

You should recognize the tactic. If our fuel cell is operating at constant temperature, we can declare
the TdS term �uninteresting� and make it go away. This is the same tactic we used to make the
PdV term go away in section 15.9.2.

In favorable situations, this means we have an even easier time calculating the F · dx work done
by the fuel cell. All we need to do is look up the tabulated number for the Gibbs free enthalpy
of reaction, for the reaction of interest. (This number will of course depend on temperature and
pressure, but if the reaction takes place under �standard� or well-known conditions, it is likely that
tabulated date will be available.)

15.9.4 Discussion: Assumptions

In this section, we have made a great many simplifying assumptions. Let's try to be explicit about
some of the most-important and least-obvious assumptions. Here is a partial list:

� We assume no entropy crosses the C/A boundary (from the cell to the atmosphere or vice
versa).

� We assume no entropy �ows down the wires, crossing the C/B boundary.

� We assume no entropy or energy �ows across the A/H boundary, the A/B boundary, or the
B/H boundary.

� There is certainly entropy �owing across the C/H boundary.

However, unless otherwise stated, we assume that the overall process is reversible. In particu-
lar, there are no contributions to dSc other than a reversible �ows of entropy across the C/H
boundary. In mathematical terms: dSh = −dSc.

� We assume xPc = Pa. This is a pretty safe assumption, for this apparatus, based on previous
assumptions plus the third law of motion. However, if you change the apparatus, all bets are
o�.

� We assume Fcdxc = −Fbdxb. This should be pretty safe, based on previous assumptions
plus conservation of energy.

� etc. etc. etc.
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15.9.5 Plain Combustion ⇒ Dissipation

Back in the bad old days, before fuel cells were invented, there was no way to carry out the reaction
in such a way that equation 15.27b applied. Approximately the only thing you could do was plain old
combusion. If we remove the electrical connections from the fuel cell, all that remains is combustion,
and the relevant enthalpy equation reduces to:

dHc = TcdSc (15.31a)
∆Hc =

∫
TcdSc along some path Γ (15.31b)

Previously, when analyzing the fuel cell, we had essentially two equations in two unknows: We used
entropy considerations (the second law) to determine how much energy was �owing from the cell
into the heat bath (in the form of TdS heat), and then used energy conservation (the �rst law) to
determine how much energy was �owing from the cell into the battery (in the form of F · dx work).

Now, with the electrical connections removed, we have a problem. We how have two equations in
only one unknown, and the two equations are inconsistent. Something has to give.

To make a long story short, the only way we can restore consistency is to stop assuming that the
process is reversible. The laws of thermodynamics are telling us that if our heat bath is at some
ordinary reasonable temperature, any attempt to use combustion of H2 in O2 to deliver energy to
the heat bath will be grossly irreversible.

We now have a two-step process: We use the �rst law to determine how much energy will be delivered
to the heat bath. We then create from scratch enough entropy so that this energy can be delivered
in the form of TdS heat. This newly-created entropy is a new variable. We have returned to having
two equations in two unknowns. This allows us to satisfy the second law while still satisfying the
�rst law.

Let's analyze this situation in more detail, using pictures. We start with �gure 15.12, which is a
pictorial representation of xsequation 15.25. This remains a valid equation.

Neither equation 15.25 nor �gure 15.12 expresses conservation of energy. Indeed, they don't express
very much at all, beyond the assumption that E can be expressed as a di�erentiable function of
three state-variables, namely S, x, and V .

It must be emphasized that each and every term in equation 15.25 is a function of state. Ditto for
each and every term depicted in �gure 15.12. The equation and the �gure apply equally well to
thermally-isolated and non-isolated systems. They apply equally well to reversible transformations
and irreversible transformations.

Having said that, we can take two further steps: We assume that the heat �ow across the A/H
boundary is reversible. (This implies, among other things, that the cell and the heat bath are at
the same temperature.) We then apply local conservation laws to each of the boundaries of the cell:

� We have reversible �ow of PdV work across the A/C boundary. Energy leaves the ambient
atmosphere and �ows into the cell

� We have reversible �ow of F · dx work across the C/B boundary. Energy �ows out of the cell
into the battery.



15�22 Modern Thermodynamics

dE
T  dS

equals

copyright © 2013 jsd

c
c

-F ·dxc c
c

-P dVc c

Figure 15.12: dE � Derivatives in Place



The �Big Four� Energy-Like State Functions 15�23

� We have reversible heat �ow across the C/H boundary. Energy �ows out of the cell into the
heat bath.

These three �ows are diagrammed in �gure 15.13.
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Figure 15.13: dE � Flowing, or Not

For a dissipative process, there is another term that must be included, in order to account for the
possibility of entropy being created inside the cell. This term has got nothing to do with any �ow.
This is the Sd term in �gure 15.15, and the corresponding TcdSd term in �gure 15.13.

We have divided dS into two pieces:

� dSx, where the subscript x indicates �xfer� (as in transfer). This represents the reversible
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transfer of entropy across the boundary, as shown in �gure 15.15. Any entropy lost from the
cell via this mechanism will be gained by the heat bath.

� dSd, where the subscript d indicates �dissipation�. This does not represent the �ow energy
across any boundary. This represents endogenous entropy, created in place. For a reversible
process, this contribution is zero.

dSc
ddS

HdS
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Figure 15.15: dS � Flowing, or Not

To summarize:

1. It is always OK to interpret equation 15.25 in terms of derivatives in place. Each and every
term is a function of state. Each and every term is independent of what, if anything, is going
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on in adjacent regions. This works for thermally-isolated and non-isolated systems. This
works for reversible transformations and irreversible transformations. Ditto for �gure 15.12.

2. You can to a limited degree add a layer of interpretation that interprets each term on the RHS
of equation 15.25 in terms of �ow.

� You can re-interpret some of the terms all of the time.

� You can re-interpret all of the terms some of the time.

� You cannot re-interpret all of the terms all of the time.

In particular:

For a reversible system, entropy is locally
conserved, and of course energy is locally
conserved. In such a system, each term
on the RHS of equation 15.25 corresponds
both to an internal change within the sys-
tem and a �ow across the boundary.

For an irreversible system, the dissipative
part of dS is purely internal. It is not as-
sociated with any �ow. It will not show up
on any �ow diagram.

15.9.6 Underdetermined

When we disconnected the fuel cell from the electrical load, the problem became overdetermined,
and we had to add a new variable � the amount of dissipation � in order to make sense of the
situation.

Now imagine that we keep the new variable and re-connect the electrical load. That makes the
problem underdetermined. The amount of dissipation cannot be determined from the original state-
ment of the problem, and without that, we cannot determine how much energy goes into the heat
bath, or how much energy goes into the battery.

This is a correct representation of the actual physics.

As always, a good way to deal with an underdetermined problem is to obtain more information.

For example, if you think I2R losses are the dominant contribution to the dissipation, you can
measure the current I and measure the resistivity of the electrolyte. The current of course depends
on the rate of the reaction. This is not something you can determine by looking at the reaction
equation (equation 15.23), but it is easy enough to measure.

If you slow down the reaction so that I2R losses are no longer dominant, you still have to worry
about overvoltage issues, side reactions, and who-knows-what all else.

15.9.7 H Stands For Enthalpy

Consider the contrast:

In equation 15.31b, the enthalpy could reason-
ably be identi�ed as �the heat�. However (!),
examples of this kind are not enough to estab-
lish a general rule.

Our fuel cell is the poster child for illustrating
that H is generally not the heat, as you can
see in equation 15.27b for example.
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Conclusion: The enthapy is always the enthalpy, but it is not always equal to the heat.

Beware that all too often, documents that tabulate ∆H call it the �heat� of reaction, even though
it really should be called the enthalpy of reaction.

More generally, it gets even worse than that. The term �heat� means di�erent things to di�erent
people, depending on context. This includes, for example, the di�erential form TdS on the RHS of
equation 15.31a. Other possibilities are discussed in section 17.1.
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Chapter 16

Adiabatic Processes

16.1 Various De�nitions of �Adiabatic�

The word adiabatic is another term that su�ers from multiple inconsistent meanings. The situation
is summarized in �gure 16.1. The underlined terms capture some of the possible meanings of
adiabatic.
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Figure 16.1: Some Concepts Related to Adiabatic

a) a) Some thoughtful experts use the term adiabatic to denote a process where no entropy
is transferred across the boundary of the region of interest. In other words, the system
is thermally insulated. This was probably the original meaning, according to several lines of
evidence, including the Greek etymology: a + dia + batos = not passing across. This implies
that the process must be fast enough so that the inevitable small heat leaks are insigni�cant.
As a corollary, we conclude the entropy of the region does not decrease. This is represented
by regions 2, 3, 6, and 7 in the diagram.

b) b) Other thoughtful experts use the term adiabatic approximation (in contrast to the sudden
approximation) to describe a transformation carried out su�ciently gently that each initial
state can be identi�ed with a corresponding �nal state, and the probabilities (aka occupation
numbers) are not changed � at least not changed by the transformation process itself.

c) c) Dictionaries and textbooks commonly de�ne �adiabatic� to mean no �ow of entropy across
the boundary and no creation of entropy. This is represented by regions 6 and 7 in the diagram.
As a corollary, this implies that the system is isentropic. That is to say, its entropy is not
changing.

Here are some illustrations of the relationships between the various de�nitions:
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� As an example where de�nition (a) applies, but de�nition (c) does not, see reference 47. It
speaks of an irreversible adiabatic process. That means the system is thermally insulated, but
entropy is being created deep within the interior of the system. This is represented by regions
2 and 3 in the �gure.

To say the same thing the other way: In the dream-world where only reversible processes need
be considered, de�nitions (a) and (c) would be equivalent, but that's not much help to us in
the real world.

(In contrast, if we were discussing energy, the ideas of �no �ow across the boundary� and �no
change� would be equivalent, since energy can never be created or destroyed.)

� As an example where de�nition (b) applies but de�nition (a) might or might not, consider the
refrigeration technique known as adiabatic demagnetization. The demagnetization is carried
out gently, so that the notion of corresponding states applies to it � or at least it would, if the
system were isolated. It would cause the temperature of the spin system to decrease.

The interesting thing is that people still call it �adiabatic� demagnetization, to indicate gentle-
ness, even when the system is not insulated, i.e. when de�nition (a) does not apply. Speci�cally,
consider the subcase where there is a steady �ow of heat inward across the boundary of the
system, balanced by a steady demagnetization, so as to maintain constant temperature. Lots
of entropy is �owing across the boundary, violating the �rst de�nition, but it is still called adi-
abatic demagnetization in accordance with the second de�nition. This subcase is represented
by regions 1 and 5 in the diagram.

� As an example where all three de�nitions would apply, but only de�nition (b) is intended,
consider the magnetic resonance technique known as �adiabatic fast passage� or �rapid adi-
abatic passage�. The word �adiabatic� in this context means the process is slow and gentle
enough that there will be corresponding states, and occupation numbers will be preserved.
Meanwhile, in this context the notion of no entropy �ow across the boundary is not implied
by the word �adiabatic�, so the word �fast� is used to indicate that not much entropy �ows
across the boundary in the available time. To repeat: adiabatic fast passage involves both
ideas: it must be both �fast enough� and �slow enough�. This example sits in region 7 in the
diagram.

� It is possible to have a transformation that is isentropic but does not produce states with
corresponding probabilities. This is illustrated by �gure 16.2. The red probability distribution
and the blue probability distribution have the same entropy, namely 2 bits. However, there
is no way to match red states with blue states of the same probability. This should be clear
from the fact that two of the red states have exactly the same probability, whereas no two
blue states do. Also, you can see that the lowest two red states cannot be matched with any
blue state of the same probability, not even close.

We can arbitrarily identify certain states as �corresponding� according to their identi�cation
number, 1 though 11, but the entropy doesn't care about that. It only cares about the
probabilities.

For another example where there are corresponding state ID numbers, but the probability of
each state might or might not be preserved, see section 16.2.
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Figure 16.2: Non-Corresponding Probabilities

� Although a reversible insulated system must be isentropic, the converse does not hold. Con-
sider for example a metal wire with one end connected to a hot heat bath, and the other end
connected to a cold heat bath. In the steady state, the entropy of the wire is not changing.
The entropy just �ows through without accumulating.

My recommendation is to avoid using the term adiabatic whenever possible. Some constructive
suggestions include:
• If you mean thermally insulated, say thermally insulated.
• If you mean a non-sudden perturbation, say non-sudden or gentle.
• If you mean isentropic, say isentropic.
• Instead of the nouns �adiabat� or �adiabatic line�, say �contour of constant entropy�.

16.2 Adiabatic versus Isothermal Expansion

Suppose we have some gas in a cylinder with a piston, and we gradually move the piston so that
the gas expands to twice its original volume.

Further suppose that we do this fast enough that there is no thermal energy transport through the
walls of the cylinder ... yet slow enough that there is a 1-to-1 correspondence between the states
before and after. So this is adiabatic in every sense of the word. The process is diagrammed in
�gure 16.3.

We consider 20 states, as shown by the dots in the diagram. These are, for practical purposes,
the only accessible states. That is to say, all the higher-energy states are unoccupied, to a good
approximation. In the diagram, there are three panels. The left panel shows the situation before
expansion, and the right panel shows the situation after. The middle panel is a �energy level
diagram� that shows how the energy of each mode changes during the expansion.

You can see that within each pair of corresponding dots, the probability is the same before and
after. Therefore the entropy of the gas is exactly the same. The energy of the gas has gone down,
and the temperature has gone down in equal measure. The slope of the red line is an indication of
temperature, in accordance with the Boltzmann factor.

We can contrast this with the isothermal expansion shown in �gure 16.4. The gas in this case is
in contact with a heat bath, so that during the expansion the temperature does not decrease. The
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Figure 16.3: Isentropic Expansion

energy of each mode goes down as before, but the occupation numbers do not stay the same. The
lion's share of the probability is now distributed over twice as many states. Therefore the entropy
of the gas goes up. Within each pair of corresponding states, each state is very nearly half as likely
after, as compared to before.
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Figure 16.4: Isothermal Expansion

The red line is shifted to the right by one unit, re�ecting the 2× lower probability of each state,
but it keeps the same slope, representing the constant temperature.



Chapter 17

Heat

17.1 De�nitions

The term �heat� is a confusing chimera. It is partly energy, partly entropy, partly temperature, and
partly who-knows-what. It shows up in a variety of idiomatic expressions, some of which are useful,
as discussed in section 17.2. However �heat� by itself is not particularly useful.

By itself, the word �heat� has at least six reasonable and widely-used but mutually-inconsistent tech-
nical meanings, as enumerated below. In addition there are innumerable nontechnical, metaphorical,
jocular, and/or not-so-reasonable meanings. It is not worth arguing about the relative merits of
these meanings, except to say that each has some merit. I observe that a typical thoughtful ex-
pert will use each of these meanings, depending on context. It would be nice to have a single,
universally-accepted meaning, but I doubt that will happen anytime soon.

In some cases you can �gure out the meaning from context. In other cases it is better to avoid the
term �heat� altogether, and quantify something else instead (perhaps temperature, energy, and/or
entropy).

Here are some of the relatively-sensible technical de�nitions of �heat�. Studying this list in detail is
not worthwhile, but you should skim it, just to get some appreciation for how much trouble you get
into when you try to de�ne �heat�:

(1) Sometimes �heat� simply means hotness, i.e. relatively high temperature. Example: if we're
having a heat wave, it means a spell of hot weather. The corresponding verb, heating, simply
means making something hotter. This type of heat is an intensive scalar quantity, and can be
measured in degrees.

(2) Sometimes the word �heat� is used to refer to the T dS term in equation 7.8. This type of heat is
a vector quantity, not a scalar. In particular it is a one-form. In uncramped thermodynamics,
it is an ungrady one-form. The corresponding verb, heating, happens if and only if there is a
change in the entropy of the region.

This type of heat is extensive, in the sense that if you build twice as many heat engines and
operate them all in the same way, you get twice as much TdS.



17�2 Modern Thermodynamics

(3) Sometimes �heat� is de�ned to be the integral of T dS. For the moment, let's consider the
de�nite integral

∫
Γ T dS, integrated along some pre-speci�ed path Γ.

For any given path Γ, this heat is a scalar with dimensions of energy. However, it is very
sensitive to how you choose the path, so it might be better to think of it as a functional of
the path, as discussed in item 4. The overall functional f [] is distinct from the speci�c scalar
f [Γ].

(4) Sometimes it pays to work at a higher level, and de�ne �heat� as the inde�nite integral
∫
T dS,

ready to be integrated along some as-yet-unspeci�ed path. Equivalently, you can think of it
as a lambda-expression: (

∫
Γ T dS for all Γ).

When we consider the various paths Γ from state A to state B, the heat is not a function
of state (h(B) for all B) or even a function of the two states (h(A,B) for all A and B), but
rather a functional depending on every detail of the path (h[Γ] for all Γ). See chapter 7 for
a discussion of functions of state. See reference 48 for the de�nition of functional. We write
h[· · ·] with square brackets to emphasize that it is a functional, not a mere function.

This heat is a mapping from paths to scalars. Thinking of it as a mapping highlights the
connection with item 2, insofar as a one-form is a mapping from vectors to scalars.

(5) Sometimes �heat� is de�ned as �energy that is transferred from one body to another as the
result of a di�erence in temperature�. This implies a transfer of entropy across the boundary of
the region. This de�nition is quite prevalent in encyclopedias, dictionaries, and grade-school
textbooks. Some people learn this by rote, and rely on it as if it were the 11th commandment,
and fail to appreciate its limitations. It works OK within a modest range of �textbook�
situations, but it can be hard to quantify and can lead to nasty inconsistencies when applied
to other situations, notably when dissipation is occurring, as discussed in section 11.5.6.

(6) Sometimes people use the terms �heat energy� or �heat content� or �thermal energy� (in
contrast to �mechanical energy�) to identify the parts of a compound cramped system, such
as the Slinktato�, as discussed in section 19.1. This makes sense in a compound cramped
system and not otherwise. In contrast, in a non-compound cramped system such as an ideal
potato by itself, there is no advantage to talking about the �heat� energy as opposed to the
plain old energy; it's harmless but pointless. A vastly worse problem arises in uncramped
systems, where there is provably no such thing as �heat content� or �thermal energy content�
. This problem cannot be �xed by changing the terminology, because when a thing does not
exist, it doesn't matter what you call it. This type of heat (if it exists at all) is an extensive
scalar, and can be measured in joules.

In the narrow set of situations where the concept makes sense, it goes by various names
including heat content, aka thermal energy, aka caloric, aka Q. An example of this is discussed
in section 11.5.3. This is an extensive scalar, and can be measured in joules. Beware that this
notion cannot be extended to uncramped thermodynamics. It cannot even be safely extended
from one cramped situation to another, as you can see from the fact that ∆Q = CV ∆T is
di�erent from ∆Q = CP∆T ... yet each is called �heat� within its own cramped subspace
(constant V or constant P respectively).

In addition, one sometimes encounters some less-than-reasonable de�nitions, including:



Heat 17�3

4. Chemists commonly use �heat� as an all-purpose synonym for enthalpy, for instance in ex-
pressions such as �heat of reaction� or �heat of formation�. This includes cases where there
the �heat� (i.e. enthalpy) is not �owing across a boundary. Even more remarkably, it includes
cases where the enthalpy is predominantly nonthermal, for instance in an electrochemical fuel
cell. This usage is quite common, but I consider it a very unhelpful misnomer. I recommend
crossing out terms like �heat of formation� and replacing them with terms like �enthalpy of
formation� at every opportunity. Similarly the terms �exothermic� and �endothermic� in most
cases should be crossed out and replaced with �exergonic� and �endergonic� respectively . . .
or perhaps �exenthalpic� and �endenthalpic�.

You have to be careful, though, because even though heat usually is connected to enthalpy
(as in the heat capacity CP ), sometimes it is connected to energy instead. For example,
as discussed in section 7.5, the heat capacity CP measures enthalpy per unit temperature,
whereas the heat capacity CV measures energy per unit temperature. The fact that both are
called the �heat� capacity makes it impossible to assign an unambiguous meaning to �heat�.

5. Some non-experts, when asked to de�ne �heat�, describe something that is, in e�ect, the
infrared portion of the electromagnetic spectrum. This notion is the basis of the phrase �heat
rays�, and of the cliché �it gives o� more heat than light�. Alas, this cliché makes no sense from
a scienti�c point of view: It's true that a black body that gives o� primarily infrared radiation
is hot . . . but a black body that gives o� primarily visible light is hotter. To consider IR as
more �heat-like� than visible light is completely backwards, from a basic-physics point of view.

6. There are endless attempts to extend the vague idea of �heat content� from cramped to
uncramped thermodynamics, i.e. to situations where thermodynamic cycles are possible. This
is highly pernicious. Such attempts never succeed, for reasons discussed in chapter 19.

As an example where de�nition #1 and de�nition #2 apply, but de�nition #5 does not, consider
the notion that a microwave oven heats a potato. Clearly (1) the food gets hotter. Clearly (2)
the entropy of the food changes. However, (5) no entropy was transferred across the boundary

of the food. Energy was transferred, but the entropy was created from scratch, within the food.
According to any reasonable de�nition of temperature, the microwave-generating components inside
the oven aren't very hot, so you can't say the energy was transferred �as the result of a di�erence
in temperature�. This is one of the examples shown in the Venn diagram in �gure 17.1.

As an even more spectacular example, consider a system consisting of a closed loop of wire. At
time t = 0 there is a current �owing in the wire. This current is decaying, on a timescale given
by L/R. The entropy and temperature of the wire are increasing, even though no energy is being
transferred (thermally or otherwise) across the boundary of the system. NMR τ1 processes are in
the same category.

The distinction between (2) and (5) is an instance of the boundary/interior issue, as discussed in
section 8.6.

As an example where de�nition #2 and de�nition #5 apply, but de�nition #1 does not, consider
a glass of ice water sitting on the table. We say that heat leaks into the system and melts the ice.
The temperature does not change during the process.
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As an example where de�nition #2 applis, but de�nition #5 and de�nition #1 do not, consider a
glass of ice water in the microwave oven. The ice melts, but the temperature does not change, and
no energy was tranferred in thermal form across the boundary.

As an even more spectacular example, consider the NMR τ2 process. Entropy is increasing, even
though no energy whatsoever is being transferred (thermally or otherwise).

As an example where de�nition #1 applies but de�nition #2 and de�nition #5 do not, consider
the reversible thermally-insulated compression of a parcel of gas. We say the gas heats up, and
arguably one could say there is an increase in the amount of �thermal energy� within the region.
On the other hand, clearly no heat or entropy was transferred across the boundary, and there was
no change in the entropy within the region. I have seen experts refer to this as adiabatic heating;
this makes perfect sense in context, but comes as a shock to anyone who thinks de�nition #5 is the
only de�nition.

We now discuss in more detail the advantages and disadvantages of de�nition #5:

De�nition #5 is the most prevalent, perhaps
in part because it is easily expressed in non-
mathematical words. Many students have
been forced to learn this de�nition by rote.

Rote learning is a poor substitute for under-
standing.

De�nition #5 makes sense in some situations,
such as a simple non-moving heat exchanger
in a non-dissipative system.

Such situations are not representative of the
general case.

De�nition #5 focuses attention on �ow across
a boundary. This is good, because we believe
all the laws of physics should be stated in local
form, and �ows across a boundary are crucial
for this.

It focuses on temperature and heat. It would
be better to focus on energy and entropy. Cer-
tainly energy and entropy can �ow between
systems that don't even have a well-de�ned
temperature (let alone a di�erence in temper-
ature). Also remember that heat is not a con-
served quantity, and it is hard to know what
��ow� means when applied to non-conserved
quantities. Whenever you talk about heat
�ow, you run the risk that non-experts will
visualize heat as some sort of conserved �uid.

Heat is non-conserved twice over. First of all, even in reversible processes, heat is non-conserved
because non-Locrian energy can be converted to Locrian energy and (within limits) vice versa. As
mentioned in section 11.5.7 energy is conserved, but heat (by itself) is not conserved. Secondly, in
irreversible processes heat is not conserved because entropy is not conserved.

17.2 Idiomatic Expressions

The word �heat� occurs in a great number of idiomatic expressions.
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As is always the case with idiomatic expressions, the meaning of the expression as a whole cannot be
inferred from the meaning of the individual words. In particular, most of the following heat-related
idiomatic expressions are reasonably well de�ned, even though the word �heat� by itself is not:

• heat engine

• heat pump

• heat exchanger

• heat bath

• heat sink

• heat source

• heat capacity (ambiguous and sometimes misleading)

• heat leak and/or heat �ow (problematic)

• heat of reaction (very problematic)

• et cetera.

At the next level of detail, here are some notes on the last three items:

� The term �heat capacity� is ambiguous for multiple reasons, some of which have nothing to do
with heat. One problem is that there are multiple di�erent heat capacities, such as the heat
capacity at constant temperature, heat capacity at constant volume, et cetera. Also note that
in all cases, �heat capacity� is something of a misnomer, since it would be simpler to think of
it as the entropy capacity, as discussed in section 7.5.

� In the context of �heat �ow� the term �heat� almost certainly means energy, because energy is
a conserved quantity, and the concept of ��ow� is hard to de�ne for non-conserved quantities.
See reference 6. We conclude that �heat �ow� must refer to energy that is �owing via some
thermal process (perhaps conduction or radiation or something like that).

� As discussed in section 14.11, whenever you see the phrase �heat of reaction� you should cross
it out and replace it with �enthalpy of reaction� or something similar. Also beware that Hess's
law is often taught in such a way that it seems to express conservation of heat, as discussed
in connection with �gure 7.2. That's terrible! Heat is not conserved!

As a related point of terminology: Keep in mind that the symbol H conventionally stands
for enthalpy; it does not stand for heat. Alas, many texts don't distinguish between heat and
enthalpy. That's a problem because sometimes the enthalpy of reaction (δH) shows up as
heat, and sometimes as something else (such as electrical energy).

17.3 Resolving or Avoiding the Ambiguities

If you mean hotness, as in de�nition #1 above, it is better to speak of temperature rather than
heat. This avoids an ambiguous use of the term �heat�.

When experts talk about the T dS vector (de�nition #2) they commonly call it literally T dS
(pronounced literally �tee dee ess�). This is nicely unambiguous. The term �heat vector� is a
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slightly more elegant way of talking about the same idea. The point is that saying �heat vector�
rather than merely �heat� makes it clear we are talking about T dS, thereby removing a great deal
of ambiguity. Remember that this vector is a one-form (as opposed to a pointy vector), and lives
in abstract thermodynamic state-space (unlike everyday position vectors). The RHS of �gure 8.4
shows you how to visualize the T dS vector. For an introduction to one-forms and how they apply
to thermodynamics, see reference 4.

In almost all cases where the �transfer across a boundary� idea is used (de�nition #5), the T dS
vector idea (de�nition #2) would be a more precise and more reliable way of describing what is
going on. This removes the inconsistencies associated with the �transfer across a boundary� idea.
Also, whether or not energy is being transferred across a boundary, visualizing T dS as a vector
resolves a goodly number of conceptual problems.

Here is a helpful analogy:

The problematic concept of phlogiston was re-
placed by two precise concepts (namely oxy-
gen and energy).

The problematic concept of heat has been re-
placed by two precise concepts (namely energy
and entropy).

As another analogy, consider the comparison between �heat� and �blue�, another common four-letter
word.

Nobody in his right mind would try to quan-
tify what �blue� means. Instead of quantifying
the blueness, you should quantify something
else, perhaps power versus wavelength.

Instead of quantifying heat, you should quan-
tify the energy and entropy.

Actually �heat� is far more problematic than �blue�, because there's something even worse than
imprecision, namely holy wars between the Big-Endians and the Little-Endians, each of whom
think they know �the one true de�nition� of what �heat� is.
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Chapter 18

Work

18.1 De�nitions

The de�nition of work su�ers from one major problem plus several minor nuisances.

The major problem is that there are two perfectly good but inconsistent notions:

1. Mechanical transfer of energy across a boundary. Here mechanical means non-thermal and
non-advective.

2. Force times distance.

These two notions are closely related but certainly not identical. This is an instance of the bound-
ary/interior issue, as discussed in section 8.6. This is a recipe for maximal confusion. (Wildly
di�erent ideas are easily distinguished, and identical ideas need not be distinguished.)

Within the force-times-distance family, there are the following nuisance factors, which will be dis-
cussed below:
• Done �on� versus done �by�.
• Di�erential versus integral formulation.
• Microscopic versus coarse-grained on some length-scale λ.
• Local versus overall.

We start by considering the case where the energy is a nice di�erentiable function of state, and is
known as a function of two variables V and S alone. Then we can write

dE =
∂E

∂V

∣∣∣∣
S

dV +
∂E

∂S

∣∣∣∣
V

dS

= −PdV + TdS

(18.1)

which is just a repeat of equation 7.5 and equation 7.8. This gives us the di�erential formulation of
work, as follows:
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The �rst term on the RHS, namely −PdV , is
commonly called the work done on the system.
Positive work done on the system increases the
energy of the system.

The negative thereof, namely PdV , is the
work done by the system. Positive work done
by the system decreases the energy of the sys-
tem.

As an elaboration, consider the common case where V itself is known as a di�erentiable function of
some other variables (say) A, B, and C.

Example #1: Suppose the system is the parallelepiped spanned by the vectors A, B, and C.
Then the volume is V = A ∧B ∧ C.

Figure 18.1: Parallelepiped

Example #2: Suppose the system is a spring as shown in �gure 18.2. It has one end attached
to point A and the other end attached to point B, where both A and B are points on a long
one-dimensional track. Then V is just the length of the spring, V = B −A.

Figure 18.2: Spring

We can di�erentiate V to obtain

dV =
∂V

∂A

∣∣∣∣
B,C

dA+
∂V

∂B

∣∣∣∣
C,A

dB +
∂V

∂C

∣∣∣∣
A,B

dC (18.2)

and plug that into equation 18.1 to obtain

dE =
∂E

∂V

∣∣∣∣
S

∂V

∂A

∣∣∣∣
B,C

dA+
∂E

∂V

∣∣∣∣
S

∂V

∂B

∣∣∣∣
C,A

dB +
∂E

∂V

∣∣∣∣
S

∂V

∂C

∣∣∣∣
A,B

dC +
∂E

∂S

∣∣∣∣
V

dS (18.3)

We can write this more compactly as:

dE = −FA|B,CdA− FB|C,AdB − FC|A,BdC + TdS (18.4)

where we have de�ned the notion of force in a given direction according to:

FA|B,C := − ∂E

∂A

∣∣∣∣
B,C

(18.5)

and similarly for the other directions. Compare equation 7.30.
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It is conventional but very risky to write FA (meaning force �in the A direction�) as shorthand for
FA|B,C . This is risky because the notion of �the A direction� is not well de�ned. It is OK to speak
of the direction of constant B and C, but not the direction of changing A. Speci�cally, in example
#2, when we evaluate ∂E/∂A, we get very di�erent results depending on whether we evaluate it at
constant B or at constant V .

There is no reliable, general way to disambiguate this by assuming that B and C are the directions
�perpendicular� to A. As an aside, note that in the two examples above, if A and B are interpreted
as position-vectors in real space, they are de�nitely not perpendicular. More to the point, when A
and B are interpreted as part of the abstract thermodynamic state-space, we cannot even de�ne a
notion of perpendicular.

In the present context, FA is unambiguous because FA|B,C is by far the strongest candidate for what
it might mean. But in another context, the symbol FA might be highly ambiguous.

18.1.1 Integral versus Di�erential

We can convert to the integral formulation of work by integrating the di�erential representation
along some path Γ. The work done by the system is:

workby[Γ] =

∫
Γ
P · dV (18.6)

Consider the contrast:

The di�erential formulation of work (PdV ) is
a vector, speci�cally a one-form. A one-form
can be considered as a mapping from pointy
vectors to scalars.

The integral formulation of work (workby[· · ·])
is a functional. It is a mapping from paths to
scalars.

In particular, if Γ is a path from point X to point Y , you should not imagine that the work is a
function of X and/or Y ; rather it is a functional of the entire path. If PdV were a grady one-form,
you could express the work as a function of the endpoints alone, but is isn't so you can't.

18.1.2 Coarse Graining

For each length scale λ, we get a di�erent notion of work; these include microscopic work, mesoscopic
work, and holoscopic work (aka macroscopic work, aka pseudowork, as discussed in section 18.5).
These are all similar in spirit, but the di�erences are hugely important. To illustrate this point,
consider a �ywheel in a box:
• The holoscopic KE is zero, because the CM of the box is not moving.
• If we look inside the box, we see that the �ywheel as mesoscopic KE, because it is spinning.
• If we look more closely, we �nd additional KE in the thermally-excited phonon modes, because
the �ywheel has nonzero temperature.

• If we look yet more closely, we �nd yet more KE, including the KE of electrons whizzing
around inside atoms.
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More generally, there are innumerable gray areas, depending on the length scale λ.

In thermodynamics, it is usually � but not necessarily � appropriate to assume that �work� refers
to either mesoscopic or holoscopic work.

18.1.3 Local versus Overall

Sometimes it is useful to consider the force and displacement acting locally on part of the boundary,
and sometimes it is useful to consider the overall force and overall displacement.

To say the same thing in mathematical terms, let's multiply both sides of equation 18.2 by P to
obtain:

PdV = FA|B,CdA+ FB|C,AdB + FC|A,BdC (18.7)

In some contexts, it would make sense to speak of just one of the terms on the RHS as �the� work.

18.2 Energy Flow versus Work

Let's consider systems that have some internal structure.

Our �rst example is shown in �gure 18.3, namely a spring with a massive bob at one end. The
other end is anchored. The mass of the spring itself is negligible compared to the mass of the bob.
Dissipation is negligible. I am pushing on the bob, making it move at a steady speed v ≡ dA/dt.
This requires adjusting the applied force F so that it always just balances the force of the spring.

Figure 18.3: Spring with Bob

When we ask how much �work� is involved, we have a bit of a dilemma.

It certainly feels to me like I am doing work
on the spring+bob system. Energy is �owing
across the boundary from me into the bob.

The overall work on the spring+bob system
is zero. The force of my push on one end is
exactly balanced by the force of constraint on
the other end. Zero total force implies zero
macroscopic work (aka pseudowork). Having
zero macroscopic work is consistent with the
work/KE theorem, since the KE of the system
is not changing.

This dilemma does not go away if we break the system into sub-systems. The applied force on the
bob is just balanced by the force of the spring, so there is no net force (hence no overall work) on
the bob considered as a subsystem. The same goes for each small subsection of the spring: No net
force, no acceleration, no work, and no change in KE.
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The �local work� at the moving end is F · dx.

The �local work� at the �xed end is zero, since it is F · 0.

It is OK to think of energy pouring into the spring as a whole at the rate dE/dt = F · v. It is OK
to think of energy as being like an abstract �uid �owing across the boundary.

It seems highly problematic to treat work as if it were a �uid �owing across the boundary. In
particular, a naive attempt to apply the work/KE theorem is a disaster, because the energy inside
the spring is virtually all potential energy; the KE inside the spring is negligible. The alleged work-
�uid is �owing into the spring from the bob, and not �owing out anywhere, yet no work or KE is
accumulating inside the spring.

As a second example, consider the oil bearing in section 11.5.5. Again we have a boundary/interior
issue. Again we have a dilemma, due to con�icting de�nitions of work:

I am doing work in the sense of force (at a
given point) times distance (moved by that
point). I am doing work in the sense of pour-
ing net energy across the boundary of the sys-
tem.

There is no overall force, no overall work, no
acceleration, and no change in KE.

Part of the lesson here is that you need to think carefully about the conditions for validity of the
work/KE theorem. A non-exhaustive list is:
• It su�ces to have a rigid body, i.e. no motion of one part relative to another, i.e. no internal
forces except forces of constraint. This implies no change in the internal potential energy.
• It su�ces to have a dismembered body, i.e. no internal forces between the parts, i.e. parts free
to move independently of each other. Again this implies no change in the internal potential
energy.
• It su�ces to carry out a full accounting for the internal forces, not just the external forces.
This implies accounting for the changing internal potential energy.

There are some interesting parallels between the oil bearing and the spring:
• In both cases, momentum �ows into the system on one side and simultaneously �ows out the
other side, so there is no net accumulation of momentum within the system.
• Meanwhile, energy �ows into the system on one side and does not �ow out the other side, so
that energy accumulates within the system.
• In one case the accumulated energy is in microscopic form, raising the temperature of the oil,
while in the other case it takes the form of non-Locrian potential energy in the spring.

If you want a third parallel system, consider a force applied to a free body, such as the bob in
�gure 18.3 without the spring and without the anchor. Energy and momentum �ow into the system
and accumulate. The accumulated energy takes the form of non-Locrian kinetic energy.

From this we see that the work/KE theorem is intimately connected to the accumulation of mo-

mentum within the system, not the accumulation of energy per se.

A related thought is that momentum is conserved and energy is conserved, while work (by itself) is
not conserved. KE (by itself) is not conserved.
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18.3 Remarks

Keep in mind that �work� is ambiguous. If you decide to speak in terms of work, you need to spell
out exactly what you mean.

Also keep in mind that dissipative processes commonly convert mesoscopic KE into microscopic
KE as well as non-kinetic forms of energy. Energy is conserved; mesoscopic KE is not (by itself)
conserved.

18.4 Hidden Energy

You can't hide momentum; if an object has momentum its center-of-mass will be moving, and this
will be easy to notice. In contrast, you can easily hide energy in an object's internal degrees of
freedom, perhaps in the form of spinning �ywheels, taut springs, random microscopic energy, or
other things having nothing to do with center-of-mass motion.

Here is an example of hidden energy: Consider a cart with two �ywheels on board. Initially
everything is at rest. Apply a pair of forces (equal and opposite) to the front �ywheel, causing it
to spin up, clockwise. Apply a similar pair of forces to the back �ywheel, causing it to spin up,
counterclockwise. The net force on the cart is zero. The motion of the cart's center of mass is zero.
The net force dot the overall motion is zero squared. The cart's overall angular momentum is also
zero. Yet the cart has gained kinetic energy: internal, mesoscopic kinetic energy.

Examples like this are a dime a dozen. In some sense what we are seeing here is the di�erence between
holoscopic and mesoscopic kinetic energy. If you don't recognize the di�erence, and recklessly talk
about �the� kinetic energy, you're going to have trouble.

18.5 Pseudowork

Sometimes it is appropriate to focus attention on the coarsest level of course-graining. We continue
using the ideas and notation introduced in section 18.1.2.

In the large-λ limit we have:

d(P 2/(2M)) = Ftot · dxcm (18.8)

where P =
∑
pi is the total momentum of the system, M :=

∑
mi is the total mass, Ftot :=

∑
Fi

is total force applied to the system, and xcm is the distance travel led by the center of mass. This
is similar in form to equation 18.6, but the meaning is di�erent. See reference 18 for a derivation
and discussion.

The RHS of equation 18.8 is called the pseudowork. The LHS represents the change in something
we can call the pseudokinetic energy. This is just a synonym for the holoscopic kinetic energy.

There is an easy-to-prove theorem that says that for any length scale λ, an object's total KE[λ]
measured in the lab frame is equal to the KE[λ] of the relativemotion of the components of the object
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(i.e. the KE[λ] measured in a frame comoving with the CM of the object) . . . plus the holoscopic
KE associated with the motion of the CM relative to the lab frame (as given by equation 18.8).

Mesoscopic work and holoscopic work (aka pseudowork) are consistent with the spirit of thermody-
namics, because they don't require knowing the microscopic forces and motions.

However, the pseudowork is not equal to the �thermodynamic� w that appears in the oft-abused
equation 7.5. Here's a counterexample: Suppose you apply a combination of forces to a system and
its center of mass doesn't move. Then there are at least three possibilities:
• Maybe there is no energy transfer at all, e.g. static equilibrium;
• Maybe there is a completely nonthermal transfer of energy, e.g. spinning up a �ywheel; or
• Maybe the energy is completely thermalized, as in boring a cannon with a completely dull
tool (section 11.5.3).

According to the meaning of w usually associated with equation 7.5, w is zero in the �rst case,
nonzero in the second case, and who-knows-what in the third case. It is a common mistake to
confuse w with work or pseudowork. Don't do it.
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Chapter 19

Cramped versus Uncramped
Thermodynamics

19.1 Overview

In this chapter we consider some basic questions about what can be done with thermodynamics.
These include:

� Is it possible to de�ne a nontrivial quantitative notion of �heat content� or �thermal energy
content� of a system?

� Is it possible to use the system as the working �uid in a heat engine?

We shall see that at most one of these things is possible for any given system. Sometimes neither is
possible, but never both. There are actually four scenarios that are worth considering. An overview
of the situation can be found in �gure 19.1.
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Figure 19.1: Heat Engine versus Slinktato�

Inside the playpen we have three toys: An ideal spring, an ideal heat container (represented by a
potato), and a combination of the two (the legendary Slinktato�). Outside the playpen we have a



19�2 Modern Thermodynamics

heat engine, and for present purposes we are interested in the thermodynamics of the working �uid
within the heat engine.

In more detail:

1. You can perform F · dx work on the spring. In contrast, the spring is thermally isolated
from the rest of the world, so you cannot perform appreciable TdS heating on the spring.
Furthermore, and more importantly, even if you did change the temperature, it would have no
e�ect on the length or spring-constant of the spring. (Real springs are somewhat sensitive to
temperature, but this is an ideal spring, engineered to minimize the temperature dependence.)

2. You can perform TdS heating on the potato. In contrast, the potato is rigid and well protected
from outside forces, so you cannot perform appreciable F · dx work on it. Furthermore, and
more importantly, even if you did apply a force, it would have no e�ect on the temperature,
heat capacity, size, or mechanical properties of the potato.

3. You can write an equation for the Slinktato� that contains both TdS and F · dx terms ...
but there is no coupling between the two terms. Changing the length of the spring does not
change the temperature of the potato, and changing the entropy of the potato does not change
the force on the spring.

It is not possible to build a heat engine using a Slinktato� or anything else you �nd inside
the playpen.

4. Outside the playpen, things are much more interesting. The working �uid in the heat engine
can take in TdS heat and put out F · dx work.

Life would be much simpler if we could just get rid of the notion of �thermal energy content�
altogether. This is �almost� but not quite possible. Let's check the various cases one by one:

1. For the ideal spring, we can get rid of the notion of �thermal energy� because there isn't any.

2. For the ideal potato, we have the option of getting rid of the notion of �thermal energy�. We
can replace it with the simpler notion of �energy� because 100% of the relevant energy (or
energy-change) is thermal.

3. A system where it is possible to have a cycle, but the cycle cannot be used to build a heat
engine is called a compound cramped system. The Slinktato� is an example; see section 19.3
for other examples. This is the only case where it is both possible and worthwhile to de�ne
a notion of �thermal energy content�. The energy in the potato part of the Slinktato� is
thermal energy, while the energy in the spring part is mechanical energy. It is useful to have
terminology to describe these two contributions.

4. For a heat engine, it is essential to get rid of the notion of �thermal energy content�. Any such
notion makes it completely impossible to understand what's going on.

The situation is summarized in the following table:
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system: heat content? variables? heat engine?
spring: trivial (zero) too few no
potato: trivial (total) too few no

Slinktato�: nontrivial decoupled no
heat engine working �uid: impossible coupled yes

To make it easier to discuss things, we de�ne an uncramped system to be one that has su�ciently
many variables and su�ciently few restrictions, so that it could be used as the working �uid in a
heat engine. Anything else is considered cramped. In �gure 19.1, cramped systems are inside the
playpen, while uncramped systems are outside.

There are three main ways of obtaining a cramped system, if that's what you want:

� You might be so lucky that the �rst system you stumble upon is a cramped system.

� You might sort through a large number of systems and select one where the variables are
decoupled in the desired way.

� You might work hard and engineer a cramped system.

However, if you are not su�ciently lucky, selective, and/or industrious, it is very likely that a typical
system will not be cramped. The relevant variables will not be decoupled.

Furthermore, cramped is not always desirable. If you're trying to build a heat engine, you want a
working �uid that is not cramped.

Often there are timescales that must be considered. For example, if you have a huge current of
water in the ocean, the thermal variables are more-or-less decoupled from the mechanical variables
on a timescale of days or weeks, but not forever.

Bottom line: Sometimes it makes sense to talk about �heat energy� as something distinct from
�mechanical energy� � and sometimes it doesn't. There is nothing in the laws of physics that makes
it certain � or even likely � that such a distinction makes sense. In particular, if you want to use
such concepts, it is your responsibility to prove that they make sense, in any given situation.

19.2 A Closer Look

Let's look into the situation more carefully, more quantitatively.

1. Let's start with a plain-vanilla uncramped system. For simplicity, we assume the energy is
known as a function of V and S. Indeed, we assume this function is di�erentiable, so we can
write:

dE = −F · dx+ TdS (19.1)

In such a system, we can have nontrivial thermodynamic cycles.
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2. The easiest way (but not the only way) to create a cramped system is to reduce the number
of variables. For instance, starting from equation 19.1 we can consider cases where the PdV
term is neglible, and all that remains on the RHS is the TdS term. This corresponds to the
potato in �gure 19.1.

By the same token, we can consider systems where the TdS term is negligible, and all that
remains on the RHS of equation 19.1 is the F · dx term. This corresponds to the spring in
�gure 19.1.

When there are so few nontrivial variables, you couldn't draw a thermodynamic cycle if you
wanted to. The system is e�ectively one-dimensional. The notion of �area� on the indicator
diagram is unde�ned and unde�nable.

3. The other type of cramped system is a compound cramped system. The Slinktato� is an
example. Such a system has enough variables to make it possible to draw a thermodynamic
cycle, but the cycle is trivial in the sense that

∮
F · dx = 0 and

∮
TdS = 0 when we integrate

around any cycle.

The distinction between cramped and uncramped is indicated in �gure 19.2. This is a copy of
�gure 2 as seen in section 0.3.
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Figure 19.2: Cramped versus Uncramped

Remember: The de�ning property of a cramped system is that it is so constrained that it is not
possible to build a heat engine. That means either

� No cycles at all, as in the left part of �gure 19.2. The ideal potato by itself is an example.

� If there is a cycle it is trivial, in the sense that the integral around the cycle is always zero,
as in the middle of �gure 19.2. The Slinktato� is an example.
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As will be explained in a moment, in any uncramped system, there cannot be any notion of �heat
content� or �thermal energy content�. To say the same thing the other way, if the system has a
well-de�ned heat-function Q, it cannot be used as the working �uid in a heat engine.

(The converse does not hold; we are not saying that every cramped system
has a well-de�ned Q-function.)

We can begin to understand this as follows: In an uncramped system, you can put energy into the
system via TdS heat and take energy out via F ·dx work. That's pretty much the de�ning property
of a heat engine. It guarantees that you cannot de�ne the �thermal energy content� of the system
by keeping track of how much heat you put in.

We can formalize this as follows: Suppose there is a Q function, representing thermal energy content,
such that Q is a function of state. Consistency with other notions of heat requires that dQ = TdS.
Now

∮
dQ = 0 since

∮
d(anything) = 0 automatically. That means

∮
TdS = 0, which makes it

impossible to build a heat engine.

We are not saying that the notion of �thermal energy content� is always wrong; we are just saying
that it cannot exist in any situation where it is possible to build a heat engine.

Here is another calculation we can do that sheds additional light on the situation. Again suppose
that we have

dQ = TdS (19.2)

Taking the exterior derivative of both sides, we obtain
ddQ = d(TdS)

= TddS + dT ∧ dS (19.3)

hence
dT ∧ dS = 0 (19.4)

since d(d(anything)) = 0. That is equivalent to saying �the boundary of a boundary is zero� as
discussed in reference 4. Equation 19.4 can be satis�ed if T is constant. It can also be satis�ed if
the contours of constant T run parallel to the contours of constant S. There are lots of ways this
could happen; you could have T ∝ S or T ∝ S2 or whatever. An example is shown in the middle
part of �gure 19.2.

We can gain additional insight if we expand dT . In accordance with basic principles, we can expand
any exterior derivative along the following lines:

dT = ∂T
∂x|Sdx+ ∂T

∂S|xdS (19.5)

and plugging into equation 19.4 we obtain

dT ∧ dS = ∂T
∂x|Sdx ∧ dS + ∂T

∂S|xdS ∧ dS (19.6)

The second term on the RHS is obviously zero, so equation 19.4 holds if and only if
∂T
∂x|Sdx ∧ dS = 0 (19.7)



19�6 Modern Thermodynamics

This equation could hold if dx∧dS = 0, which is the easy way to create a cramped system. However,
things are more interesting if we assume this factor is not zero. In that case equation 19.7

∂T
∂x|S = 0 (19.8)

This equation says in mathematical terms what we said in words back in section 19.1 when we
de�ned the Slinktato�. This is how we arranged for it to have a well-de�ned heat content.

Now we refer back to the de�nition of temperature, i.e. equation 7.7, which can be rewritten (subject
to mild restrictions) as

T = ∂E
∂S|x (19.9)

which means (subject to the assumptions made above) that the system is cramped if and only if
∂2E
∂x∂S = 0 (19.10)

Note that if you re-did the calculation to �nd the conditions under which the integral of work
(around a cycle) was zero, you would get

∂2E
∂S∂x = 0 (19.11)

which is the same thing, because of the equivalence of mixed partials. We knew in advance that it
had to work out this way, because of equation 19.1. The integral of the LHS is zero, so on the RHS,
if one term is zero the other must be zero also.

The dichotomy between cramped and uncramped is an endless source of misconceptions.

People tend to have a great deal of hands-
on experience with cramped systems such as
the heating and cooling of a potato, or the
heating and cooling of a baby bottle. The
concepts of energy, temperature, entropy, and
heat-content are well de�ned for such a sys-
tem.

People have relatively little experience with
heat engines. If you generalize from cramped
to uncramped thermodynamics, you get to
keep the ideas of energy, temperature, and en-
tropy ... but you do not get to keep any notion
of heat content or thermal energy content.

19.3 Real-World Compound Cramped Systems

The Slinktato� is an ultra-simpli�ed example of a compound cramped system.

The ocean is a real-world example. It makes sense to speak of the �thermal energy content� of the
ocean. There is also mechanical energy in the ocean, in the form of tides and waves and huge currents
such as the Gulf Stream. The mechanical variables are decoupled from the thermal variables to
a good approxmation, albeit not exactly. There is a thermodynamic process that drives the Gulf
Stream, but virtually none of this energy leaves the ocean in mechanical form, so this doesn't count
as much of a heat engine. There exist tidal stream generators that extract energy from the ocean,
but this is a negligible part of the overall energy budget of the ocean. Most of the budget involves
purely thermal processes, such as sunlight in and evaporation out.

A lot of people have a knee-jerk response that says �there is no such thing as heat content� but we
have to make an exception for compound cramped systems. There is nothing wrong with talking
about the �heat content� of the ocean (on an appropriate timescale).
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19.4 Heat Content, or Not

Here is yet another way of looking at the distinction between cramped and uncramped thermody-
namics. Consider the elementary example of so-called �heat content� or �thermal energy content�
that might arise in connection with a measurement of the heat capacity of a cylinder of compressed
gas. We have a problem already, because there are two heat capacities: the heat capacity at constant
pressure, and the heat capacity at constant volume. So it is unclear whether the heat content should
be CP T or CV T . Now we get to play whack-a-mole: You can remove the ambiguity by rigorously
restricting attention to either constant volume or constant pressure . . . but that restriction makes
it impossible to analyze a Carnot-type heat engine.

To repeat: It may at �rst be tempting to think that the gas cylinder has a so-called �thermal energy�
related to T and S, plus a �nonthermal energy� related to P and V , but if you try to build a theory
of thermodynamics on this basis you are guaranteed to fail. The sooner you give up, the happier
you will be.

Cramped thermodynamics is a legitimate topic. It is only a small subset of thermodynamics, but
it's not crazy. Almost everyone learns about cramped thermodynamics before they learn about
uncramped thermodynamics. Consider for example warming the milk in a baby-bottle. This is
almost always carried out under conditions of constant pressure. You're not trying to build a steam
engine (or any other kind of engine) out of the thing. In this case, for this narrow purpose, there is
a valid notion of the �heat content� of the system.

Within limits, the choice is yours: If you want to do cramped thermodynamics, you can do cramped
thermodynamics. Just please don't imagine your results apply to thermodynamics in general.
Cramped thermodynamics by de�nition is restricted to situations where the state-space is so low-
dimensional that there is no hope of building a heat engine or a refrigerator or anything like that.
There are no Carnot cycles, nor indeed any other kind of nontrivial cycles.

Long ago, there was a fairly elaborate theory of caloric. This was superseded by thermodynamics
during the 19th century.

To repeat, it is OK to talk about �heat content� in the context of warming up a baby bottle. It is
OK to talk about �caloric� in connection with a swimming pool as it warms up in the spring and
cools down in the fall. It is OK to talk about �thermal energy� in connection with the heat capacity
of a chunk of copper in a high-school lab experiment.

However, just because it works in cramped situations doesn't mean it works in uncramped situations.

It is not OK to talk about �heat content� or �thermal versus nonthermal energy� or �caloric� in the
context of uncramped thermodynamics, i.e. in any situation where it is possible to build a heat
engine.

Energy is energy. Energy doesn't recognize the distinction between thermal and nonthermal, and
thermodynamics allows us to convert between the two (in any situation where it is possible to have
a nontrivial thermodynamic cycle, i.e. in any situation where it is possible in principle to build a
heat engine).

The problem is that the Q that appears in equation 19.2 simply cannot exist in the context of
uncramped thermodynamics.
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� Writing dQ doesn't make the problem go away.

� Writing ðQ with a slash through the derivative operator doesn't make the problem go away.

� Writing DQ doesn't make the problem go away.

� Writing ∆Q doesn't make the problem go away.

� Writing it inside an integral such as
∫
· · ·dQ doesn't make the problem go away.

� Writing dQrev and restricting attention to reversible paths doesn't make the problem go away;
see section 19.5.

� Restricting attention to �chemical� situations doesn't make the problem go away.

� Permutations and combinations of the above don't make the problem go away.

The problem still is that Q exists as a state function only within cramped thermodynamics, not
more generally, not in any situation where a heat engine is possible. In uncramped thermodynamics,
Q may exist as a functional of some path, but not as a function of state.

For a list of constructive suggestions about things that actually do exist as functions of state, see
section 8.2.

You can visualize the situation by reference to �gure 19.2.

On the LHS, if we restrict attention to the
subspace de�ne by the red line, there is only
one path from A to Z.

On the RHS, there are many ways of getting
from A to Z, including A → Z, or A → Y →
Z, or even paths that include cycles, such as
A→ X → Y → A→ X → Y → A→ Z, and
so forth.

Within the subspace de�ned by the red line
in �gure 19.2, you can represent Q as height,
and this Q is well de�ned everywhere in this
small, cramped subspace.

You cannot de�ne a Q value as a function of
position in a way that is consistent through-
out the (T, S) space. The peculiar thing is
that you can take almost any simple one-
dimensional subspace in the plane and de�ne
a consistent Q function there, but you can-
not extend this to cover the entire space. You
can't pin down the location of the problem,
because it is nowhere in particular, yet it is
everywhere: you cannot assign a consistent
height to points in this space.

Pedagogical remarks: Virtually everyone begins the study of thermodynamics by considering
cramped situations. This is traditional . . . but it is a pedagogical disaster for anyone trying to learn
uncramped thermodynamics. Cramped thermodynamics is a not a good foundation for learning
uncramped thermodynamics; it is aggressively deceptive.

Virtually every newcomer to thermodynamics tries to extend the �heat content� idea from cramped
thermodynamics to uncramped thermodynamics. It always almost works . . . but it never really

works.
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The next time you feel the need for a measure of �heat content� in the context of uncramped
thermodynamics, lie down until the feeling goes away.

19.5 No Unique Reversible Path

Sometimes you hear people talking about �the� reversible from A to B. This makes no sense
whatsoever.

The existence of the Carnot cycle A → X → Y → Z → A implies that there are (at least!) two
inequivalent paths from A to Z, including the simple path A → Z along a contour of constant
entropy, and the more complex path A→ X → Y → Z

Furthermore, not all cycles are Carnot cycles. The path A → Y → Z → A is a another perfectly
legitimate thermodynamic cycle. Compared to a Carnot-cycle engine, a reversible heat engine that
uses the A→ Y → Z → A cycle is more complex and harder to analyze, but only slightly so.

Within uncramped thermodynamics, you are allowed to build things that aren't heat engines. That
is, you can have cycles that don't convert any heat-bath energy into useful work. The various
possibilities are summarized in the Venn diagram in �gure 19.3, which can be considered a less-
detailed version of �gure 19.2.

19.6 Vectors: Direction and Magnitude

We now focus attention on the immediate neighborhood of point A in �gure 19.2. It must be
emphasized that paths can depart from point A in innumerably many directions. The Carnot cycle
uses only two of these directions (namely the contour of constant T during one part of the cycle,
and the contour of constant S during another part of the cycle). However, there are in�nitely many
non-Carnot cycles, and in�nitely many ways in which a reversible path can depart from point A
such that neither T nor S is constant. The blue line in �gure 19.2 is just one of many such paths.

In the immediate neighborhood of point A, we can distinguish these paths by their direction. The
red line in �gure 19.2 represents a change in T in the direction of constant S, while the blue line
represents a change in T along some other direction.

Therefore, uncramped thermodynamics requires us to treat dT as a vector. If you think of dT as
representing some kind of �change in T � you need to specify the direction of the change (as well as
the magnitude). Whenever something has a direction and a magnitude, you should suspect that it
is a vector.

For large excursions, we would need to specify the entire path, but in the immediate neighborhood
of a given point, it su�ces to know the magnitude and direction. Therefore a vector such as dT
can be considered a function of state. It depends on the local state, not on the entire path. It is a
vector-valued function of state.
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Cramped
(trivial cycles, or
no cycles at all)

Uncramped

Heat
Engines

(cycles)

Thermodynamics

Figure 19.3: Cramped versus Uncramped Thermodynamics : Venn Diagram
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19.7 Reversibility

The existence of reversible heat engines is suf-
�cient to guarantee the existence of innumer-
ably many inequivalent paths from A to Z,
and also to guarantee the existence of innu-
merably many directions for the vectors lo-
cated at point A.

In this chapter, for simplicity, we have not
mentioned any irreversible processes.

Irreversibility is not the cause of the the multi-
ple paths and multiple directions. Conversely,
multiple paths and multiple directions are not
the cause of irreversibility.



19�12 Modern Thermodynamics



Chapter 20

Ambiguous Terminology

20.1 Background

As always, ideas are primary and fundamental. Terminology is important only insofar as it helps
us formulate and communicate the ideas.

By way of analogy, consider the relationship between organic vegetables and organic chemistry.
There is nothing wrong with either of those two ideas. Neither one � by itself � is a misconception.
However, we have a problem with the terminology. The word �organic� is being used with two
di�erent de�nitions. You can create a misconception by using one de�nition in a situation where
the other is appropriate, but that is a secondary, arti�cial, and needless problem. The primary
problem is the terminology.

Sometimes a word has two de�nitions that are so di�erent that no confusion arises, for example
�dove� (the past-tense verb) and �dove� (the bird). In contrast, you can easily get into trouble if
a word has two meanings are similar enough to be deceptive, yet not so similar that the di�erence
can be ignored.

Many of the most-important terms in thermodynamic can be highly deceptive if you're not careful.

In such a situation, good learning and good critical thinking demand that you learn each concept in
its proper context, and then learn to reconcile them all. That requires learning how to distinguish
one context from the other, so that each concept can be used appropriately. The goal should be to
understand the whole situation. To say the same thing the other way: You'll never really understand
the subject if you learn one concept and ignore the other. Studying one part of the elephant in
great detail will not make the rest of the elephant go away.

I don't mind struggling with something if it is intrinsically hard and complicated. In contrast, it's
painful to see people struggling with things that are complicated for no good reason, for instance
because the terminology is messed up. That's a wanton waste of resources. We should be able to
�x the terminology, so that nobody has to struggle with it!
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20.2 Overview

In physics, there is only meaning of �energy�, but the physics meaning con�icts with the plebeian
meaning, as discussed in section 1.8.1 and section 20.3.

In physics, there is almost only one meaning of �conservation�, but the physics meaning con�icts
with the plebeian meaning, as discussed in section 1.8.2 and section 20.4.

There are multiple inconsistent technical meanings for �heat�, not to mention innumerable nontech-
nical meanings, as discussed in chapter 17.

There are multiple inconsistent technical meanings for �work� as discussed in chapter 18.

There are multiple inconsistent technical meanings for �adiabatic� as discussed in chapter 16.

In the literature, the term �state� is used inconsistently. It can either mean microstate or macrostate,
as discussed in section 2.7 and section 12.1.

Similarly, �phase space� is ambiguous:

Phase-space means one thing in classical
canonical mechanics; it corresponds to what
we have been calling state-space, as discussed
in section 12.3.

Phase space means something else in classi-
cal thermodynamics; it has to do with macro-
scopic phases such as the liquid phase and the
solid phase.

(Ironically, Gibbs has his name associated with both of these notions.)

I'm not even talking about quantum mechanical phase φ, as in exp(iφ); that's a third notion, which
is not terribly troublesome because you can usually �gure out the meaning based on context.

Given how messed-up our language is, it's a miracle anybody ever communicates anything.

20.3 Energy

As mentioned in section 1.8.1, the plebeian notion of energy corresponds roughly to �available�
energy or �useful� energy. This is important, but very hard to quantify.

The �available energy� is not equal to the physics energy E, and also not equal to the Helmholtz free
energy F or the Gibbs free enthalpy G (as de�ned in chapter 15). The simple way to understand
this is to realize that E, F , and G are functions of state, whereas the plebeian notion of �useful
energy� is not. The physics energy of a particular parcel depends only on the properties of the parcel
itself, whereas the usefulness of that energy depends on properties of the parcel and properties of
the surrounding world.

By way of analogy: A grocery store in Iowa sells a lot more bags of ice in mid-summer than it does
in mid-winter. The thermodynamic state of the ice is the same in either case, but its usefulness is
wildly di�erent.

In relative terms, F and G are �closer� to capturing the idea of �available� energy, but in absolute
terms they are not close enough. They are not viable contenders for quantifying the �useful" or
�available" energy.
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� In some cases, the di�erence between �useful� and �non-useful� energy has almost nothing
to do with entropy. For example, sometimes people spend several billion dollars and incur
enormous risk to build a nuclear power plant. The plant does not increase the amount of
energy in the uranium. Indeed the plant wastes most of the theoretically-available energy
of the uranium. In some sense, the purpose of the plant is to concentrate the energy. The
fraction of the energy that is not wasted is made vastly more concentrated in space and time,
and this makes it more useful.

� In other cases, the di�erence between �useful� and �non-useful� energy depends much more
directly on entropy. For example, if you have a hot potato and a cold potato, you can use them
to run a heat engine and do useful work. In contrast, if you have two tepid potatoes with the
same total energy, the energy is not useful, in the sense that you cannot run a heat engine and
do useful work. This can be understood in terms of entropy, namely the entropy and energy
of the two potatoes together. (The available energy cannot be written as a state-function
pertaining to either potato separately.)

Any proper theory of �useful energy� would involve a great deal of microeconomics, not just physics.
There is an elaborate theory of microeconomic utility.

20.4 Conservation

1. In physics, the main meaning of conservation refers to continuity of �ow, as expressed in
equation 1.1.

2. Unfortunately, even within physics the word �conservative� has been given a second meaning,
as we now discuss. Sometimes a vector �eld is the gradient of some scalar potential, in which
case we say the vector �eld is grady. Mathematicians would call it an exact di�erential, or an
exact one-form. This math terminology is not recommended, because it con�icts too strongly
with the common-sense concept of �exact� as in strictly true, not an approximation. Also, to
my way of thinking, there is no such thing as an inexact di�erential; if it's not exact, it's not
a di�erential at all. You could call it an inexact non-di�erential, or an inexact one-form, or
(preferably) a non-grady one-form.

Sometimes in physics, a grady force-�eld is called a �conservative� force, and by the same token
a non-grady force-�eld is called a �non-conservative� force. This terminology is emphatically
not recommended, because it con�icts with the de�nition of conservative �ow as expressed in
equation 1.1.

Whenever you want to describe a force �eld that is not the gradient of any potential, I
strongly recommend calling it a non-grady force �eld. Similarly, if you ever see the term
�non-conservative force�, cross it out and substitute �non-grady force�. A non-grady force, such
as you �nd in a transformer or in a betatron, does not violate any conservation laws.

3. We now consider a third de�nition of �conservation�, namely the plebeian de�nition, i.e. the
non-physics de�nition. The key idea here has to do with saving, preserving, not wasting, not
dissipating. For example, we speak of conservation of endangered wildlife.
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This is an important concept, but very di�cult to quantify.

Wasting something, almost by de�nition, is irreversible, which suggests that the plebeian
notion of conservation is loosely related to the idea of entropy � but only loosely.

20.5 Other Ambiguities

Numerous other con�icts are discussed in reference 45. This includes a great many basic terms used
in math, physics, and thermodynamics ... including force, acceleration, gravity, closed system, et
cetera.
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Thermodynamics, Restricted or Not

There are various ways of restricting the applicability of thermodynamics, including
• microcanonical only (i.e. constant energy)
• equilibrium only
• reversible only
• ideal gases only
• vertical size small compared to kT/mg.
• et cetera.

Indeed, there are some people who seem to think that thermodynamics applies only to microcanon-
ical reversible processes in a fully-equilibrated ideal gas.

To make progress, we need to carefully distinguish two ideas:

a) Simplifying assumptions made in the context of a particular scenario. Depending on details,
these may be entirely appropriate. Sometimes the gases involved are ideal, to an excellent
approximation . . . but not always. Sometimes a process is reversible, to an excellent approxi-
mation . . . but not always.

b) Restrictions applied to the foundations of thermodynamics. We must be very careful with
this. There must not be too many restrictions, nor too few. Some restrictions are necessary,
while other restrictions are worse than useless.

Some thermodynamic concepts and/or formulas necessarily have restricted validity.
• As discussed in section 11.4, there are situations where it is impossible to de�ne a temperature.
• The Boltzmann distribution law (equation 9.1 and �gure 9.1) is valid only in equilibrium.
• The notion of equiprobable states (equation 9.8) applies exactly only in microcanonical equi-
librium, although it may be a worthwhile approximation in other situations.
• Deciding how many macroscopic variables are needed to describe the macrostate requires some
judgment, and depends on knowing the context. For example, equation 7.8 and similarly
equation 15.14 are restricted to cases where advection of energy is insigni�cant, changes in
the number of particles are insigni�cant, changes in magnetic �elds or other applied �elds
have no signi�cant e�ect, et cetera. If you want to lift these restrictions, you have to add
additional terms to the equations.
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In contrast, very importantly, the law of conservation of energy applies without restriction. Similarly,
the law of paraconservation of entropy applies without restriction. You must not think of E and/or
S as being unde�ned in regions where �non-ideal� processes are occurring. Otherwise, it would be
possible for some energy and/or entropy to �ow into the �non-ideal� region, become unde�ned, and
never come out again, thereby undermining the entire notion of conservation.

The ideas in the previous paragraph should not be overstated, because an approximate
conservation law is not necessarily useless. For example, ordinary chemistry is based
on the assumption that each of the chemical elements is separately conserved. But we
know that's only approximately true; if we wait long enough uranium will decay into
thorium. Still, on the timescale of ordinary chemical reactions, we can say that uranium
is conserved, to an excellent approximation.

When a law has small exceptions, you shouldn't give up on the law entirely. You shouldn't think
that just because a process is slightly non-ideal, it becomes a free-for-all, where all the important
quantities are unde�ned and none of the laws apply.

If you want to make simplifying assumptions in the context of a speci�c scenario, go ahead . . . but
don't confuse that with restrictions on the fundamental laws.

Also, in an elementary course, it might be necessary, for pedagogical reasons, to use simpli�ed ver-
sions of the fundamental laws . . . but you need to be careful with this, lest it create misconceptions.
• As an example: an imperfect notion of entropy in terms of multiplicity (equation 9.8) is better
than no notion of entropy at all. However sooner or later (preferably sooner) you need to
understand that entropy is really de�ned in terms of statistics (equation 2.2 or equation 27.6),
not multiplicity.
• As another example: In an elementary course, it might be appropriate to start by applying
thermo to ideal gases. However, sooner or later (preferably sooner) it is very important to
consider other systems; otherwise you risk horri�c misconceptions, as discussed in section 9.3.3.

Finally, it must be emphasized that one should not ask whether thermodynamics �is� or �is not�
applicable to a particular situation, as if it were an all-or-nothing proposition. Some concepts (such
as energy and entropy) are always valid, while other concepts (such as equilibrium and temperature)
might or might not be valid, depending on the situation.
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The Relevance of Entropy

The concept of entropy is important in the following areas, among others:
1) cryptography and cryptanalysis, i.e. secret codes
2) communications, data storage, and information theory, including error-correcting codes and

data-compression codes
3) computer science, including machine learning, etc.
4) pattern recognition, including speech recognition, optical character recognition, face recogni-

tion, etc.
5) librarianship
6) the design of experiments (reference 13)
7) physics in general, including the physics of computation, cosmology, and astrophysics
8) the design of thermal machinery, including refrigerators, heat pumps, piston engines, turbine

engines, rocket engines, etc.
9) nuclear engineering, including reactors and weapons
10) �uid dynamics
11) chemistry and chemical engineering

Very roughly speaking, the items higher on the list can be assigned to the �information theory�
camp, while the items lower on the list can be assigned to the �thermodynamics� camp. However,
there is tremendous overlap between the two camps. The approach of understanding the micro-
scopic quantum states and using that to explain macroscopic observables such as energy, entropy,
temperature, etc. is called statistical mechanics; see e.g. reference 28 and reference 49. Examples of
this include

a) The physics of computation is squarely in both camps; see reference 36, reference 37, and
reference 50.

b) Things like Maxwell demons and Szilárd engines are squarely in both camps; see refer-
ence 51 and reference 52.

c) Demagnetization refrigerators (as described in section 11.10) are in both camps, because
you can quantify the entropy either by microscopic state-counting or by macroscopic thermal
measurements. The macroscopic molar heat capacity of copper nuclei is R ln 4, where the 4 is
the number of microscopic states per nucleon.
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d) When you have a three-dimensional gas phase in equilibrium with a two-dimensional gas
phase (i.e. adsorbed particles freely moving along a surface), the equilibrium between the two
phases depends partly on a Boltzmann factor (involving the surface binding energy), but also
depends on a state-counting factor. There are more states in the bulk than there are on
the surface. This involves a Boltzmann factor (which gives the probability per microstate)
as well as state-counting factors that scale like volume/Λ3 and area/Λ2. This allows us to
calculate the entropy via

∑
i Pi log(1/Pi) . . . and the result agrees with the entropy associated

with macroscopic measurements of energy and temperature. In particular it gives us a very
simple and useful way of calculating the surface density as a function of bulk density and
temperature.

e) Similar microstate-counting factors appear in the Saha equation, which uses statistical
mechanics to make a quantitative prediction of ionization levels as a function of density. See
reference 53 for a discussion of how such things scale as a function of the temperature and
volume of the system.

f) Similar microstate-counting factors permit an understanding of the scaling (with respect to
density or concentration) of the equilibrium quotient and equilibrium �constant� in chemical
reactions. The state-counting and the scaling are de�nitely nontrivial in the case of reactions
such as F2 ↔ 2F, where the number of reactant particles is di�erent from the number of
product particles. This is discussed in some detail in reference 53. Once again, microscopic
state-counting is key to understanding macroscopic observations such as densities and reaction
rates.

So: we have multiple lines of evidence telling us that entropy is entropy. It is the same entropy, no
matter whether you measure it in bits or in joules per kelvin (section 9.5).

As mentioned in chapter 2, you can't do thermodynamics without entropy.

Also: entropy is one of the great elegant ideas of all time. C.P. Snow compared not knowing about
the second law to never having read a work by Shakespeare.
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Equilibrium, Equiprobability, Boltzmann
Factors, and Temperature

23.1 Background and Preview

In this chapter we investigate the following propositions. They are often assumed to be true, and
sometimes even �proved� to be true, but we shall see that there are exceptions.

Understanding these propositions, and their limitations, is central to any real understanding of
thermodynamics.

For any system with a constant number of particles, in thermal equilibrium:

1) For any two accessible microstates that have the same energy, their probabilities are equal.
That is,

Pi = Pj if Ei = Ej (23.1)

for any two microstates i and j.

2) Supposedly, for any two accessible microstates that di�er in energy, their probabilities are
related by a Boltzmann factor. Speci�cally:

Pi
Pj

= exp(
Ej−Ei
kT ) (23.2)

for some value of T . This T is called the temperature. In the numerator on the RHS, the sign
is such that the microstate with the greater energy has the lesser probability (assuming the
temperature is positive and �nite).

3) Supposedly, equilibrium is symmetric: If A is in equilibrium with B, then B is in equilibrium
with A, and has the same temperature. Also, equilibrium is transitive: if A is in equilibrium
with B, and B is in equilibrium with C, then A is in equilibrium with C.

As a corollary, equilibrium is weakly re�exive. That is, if a system is in equilibrium with
anything else, it is in equilibrium with itself.
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We postpone until section 23.5 any discussion of proposition (3).

It is widely believed and often �proved� that proposition (1) is equivalent to proposition (2), i.e.
that each one follows from the other. We shall see that in fact, the two propositions are almost
but not exactly equivalent. The discussion will shed light on some quite fundamental issues, such as
what we mean by �thermal equilibrium� and �temperature�.

It is trivial to show that proposition (1) follows from proposition (2), since the former is just a
special case of the latter, namely the case where Ei = Ej .

The converse is quite a bit more of a challenge. The rest of this section is devoted to �guring out
under what conditions we might be able to derive equation 23.2 from equation 23.1. The derivation
requires many steps, each of which is simple enough, but the cumulative e�ect is rather complicated,
so it is sometimes hard to see the whole picture at once. Complicating factors include:

� We will be considering the heat bath B, the special subsystem S, and the overall system
B + S.

� We will be considering individual sites, microstates (each a collection ofN sites) and macrostates
(each a set of many, many microstates).

� We will be considering conditional probabilities as well as unconditional probabilities.

� When the energy of S goes up, the energy of B goes down, so it is misleading to talk of a
�high energy� state or a �low energy� state.

� We need to carefully de�ne what we mean by �heat bath�, because otherwise what we are
trying to prove is not necessarily true.

� We will use what we know about the constant-energy case to tell us what happens in the
constant-temperature case.

We begin by considering some numerical examples.

23.2 Example: N = 1001

Our �rst example consists of the system shown in �gure 23.1. The system is divided into two
subsystems: Subsystem �B� is shown in blue, and will sometimes serve as �bath� (i.e. heat bath).
Subsystem �S� is shown in scarlet, and will sometimes be referred to as the �small� or �special�
subsystem.

In general there are NS sites in the scarlet subsystem, NB sites in the blue subsystem, for a total
of N = NS + NB sites overall. We start by considering the case where NS = 1, NB = 1000, and
N = 1001.

For clarity, there are only NB = 24 blue sites shown in the �gure, so you will have to use your
imagination to extrapolate to NB = 1000.
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Bath

Special

Figure 23.1: Heat Bath + Special Subsystem (x = 0)

The overall system B + S is isolated so that its energy is constant. The various sites within the
overall system are weakly interacting, so that they can exchange energy with each other. In our �rst
example, all N sites in the overall system are equivalent. That is, we have arbitrarily designated
one of the sites as �special� but this designation has no e�ect on the physics of the overall system.

Each of the N sites can be in one of two states, either up or down. The energy of the up state is
higher than the energy of the down state by one unit.

We have arranged that m of the N sites are in the up state. We choose the zero of energy such that
E = m. We shall be particularly interested in the case where m = 250 and N = 1001.

The overall system has only one macrostate, namely the set of all microstates consistent with the
given (constant) values of total N and total energy E. There are W microstates in the given
macrostate, where W is called the multiplicity.

Figure 23.1 is a snapshot, showing only one microstate of the overall system. By conservation of
energy we have constant m, so we can �nd all the other microstates by simply �nding all permuta-
tions, i.e. all ways of assigningm up labels to N sites. That means the multiplicity can be computed
in terms of the binomial coe�cient:

W =
(
N
m

)
= N !

(N−m)!m!

(23.3)

Note that the binomial coe�cient
(
N
m

)
is generally pronounced �N choose m�.

It is implemented in typical spreadsheet programs by the combin(N,m) function.
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For the present example, the numerical values are:
N = 1001
m = 250
W = 6.43 × 10242

log2(W ) = 806.6bits

(23.4)

The microstates are all equivalent, so the probability of the ith microstate is Pi = 1/W for all i.

Let's think about the symmetry of the situation. All N sites are equivalent, so we expect that
anything that happens at one site is equally likely to happen at any other site.

Because (by construction) m is very nearly one fourth of N , if we pick any site at random, it is
very nearly three times as likely to be in the down state as in the up state. Since we imagine that
the sites are freely exchanging energy, we can replace the average over sites by a time average at a
single site, whereupon we see that the scarlet site (or any other site) is three times as likely to be
found in the down state as in the up state. In symbols:

PS(up)
PS(down) = m

N−m
≈ 1

3

(23.5)

We can de�ne two categories of microstates: one where the special site is in the down state (which
we call x = 0, as in �gure 23.1), and another where the special site is in the up state (which we call
x = 1, as in �gure 23.2).

Bath

Special

Figure 23.2: Heat Bath + Special Site (x = 1)

These categories are in some ways just like macrostates, in the sense that they are sets of microstates.
However, for clarity we choose to call them categories not macrostates. We can calculate the
multiplicity of each category separately. As before, all we need to do is count permutations. Within
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each category, however, we only consider permutations of the blue sites because the state of the
scarlet site is �xed.

We can streamline the discussion by borrowing some notation that is commonly applied to chemical
reactions. Here x is the reaction coordinate. The reaction of interest involves the transfer of one
unit of energy to the special site from the heat bath. That is:

x = 0 → 1 reaction coordinate
WB =

(
N−1
m

)
→

(
N−1
m−1

)
multiplicity of the bath

=
(

1000
250

)
→

(
1000
249

)
= 4.82 × 10242 → 1.61 × 10242

ratio = 3 : 1
log2(WB) = 806.18bits → 804.59bits

ln(WB) = 558.80nats → 557.70nats

(23.6)

The multiplicity of the x = 1 category is less, because when we do the permutations, there is one
fewer �up� state to play with.

Whether or not we assign these microstates to categories, they are still microstates of the overall
system. Therefore they all have the same energy, since the system is isolated. Therefore the
microstates are all equally probable, in accordance with proposition (1) as set forth at the beginning
of section 23.1.

If you look at the numbers in equation 23.6, you see that the x = 0 microstates are very nearly
threefold more numerous than the x = 1 microstates. We can calculate this exactly in terms of m
and N :

PS(up)
PS(down) =

(N−1
m−1)

(N−1
m )

= m
N−m

≈ 1
3

(23.7)

You can verify algebraically that the ratio of multiplicities is exactly equal to m/(N − m). This
factor shows up in both equation 23.5 and equation 23.7, which means the probability we get by
counting microstates is provably identical to the probability we get from symmetry arguments.

Consistency is always nice, but in this case it doesn't tell us much beyond what we already knew.
(Things will get much more exciting in a moment.)

Feel free to skip the following tangential remark. It is just another consistency check.
The rest of the development does not depend on it.

Let's check that the multiplicity values for the categories are consistent with the multi-
plicity of the overall system.

Each category has a certain multiplicity. If we add these two numbers together, the sum
should equal the multiplicity of the overall system.

We know this �should� be true, because we have exhausted all the possibilities.

We can verify that it is in fact true by using the mathematical properties of the binomial
coe�cients, especially the fact that each entry in Pascal's triangle is the sum of the two
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entries above it on the previous row. To say the same thing more formally, you can
easily verify the following algebraic identity:(

N

m

)
=

(
N − 1

m

)
+

(
N − 1

m− 1

)
(23.8)

23.3 Example: N = 1002

To obtain a clearer picture of what is going on, and to obtain a much stricter check on the correctness
of what we have done, we now increase the number of scarlet sites to NS = 2. To keep things simple
we increase the total N to 1002 and increase m to 251. The reaction coordinate can now take on
the values x = 0, x = 1, and x = 2. I'm not going to bother redrawing the pictures.

The trick of calculating the scarlet-subsystem probabilities by appeal to symmetry still works (al-
though it isn't guaranteed to work for more complicated systems). More importantly, we can
always calculate the probability by looking at the microstates; that always works. Indeed, since the
microstates of the overall system are equiprobable, all we need to do is count them.

x = 0 → 1 → 2 rxn coord
WB =

(
N−2
m

)
→

(
N−2
m−1

)
→

(
N−2
m−2

)
multiplicity

=
(

1000
251

)
→

(
1000
250

)
→

(
1000
249

)
= 1.44 × 10243 → 4.82 × 10242 → 1.61 × 10242

ratio = 3 : 1 3 : 1
log2(WB) = 807.76bits → 806.18bits → 804.59bits

ln(WB) = 559.89nats → 558.80nats → 557.70nats
(23.9)

The situation is shown in �gure 23.3. We see that every time the scarlet subsystem energy goes up
(additively), the bath energy goes down (additively), the multiplicity goes down (multiplicatively),
and therefore the log multiplicity goes down (additively). Speci�cally, the log multiplicity is very
nearly linear in the energy, as you can see from the fact that (to an excellent approximation) the
points fall on a straight line in �gure 23.3.

If we de�ne temperature to be the negative reciprocal of the slope of this line, then this example
upholds proposition (2). This de�nition is consistent with the previous de�nition, equation 7.7.

Our example is imperfect in the sense that the three points in �gure 23.3 do not fall exactly on a
straight line. Therefore our example does not exactly uphold proposition (2). On the other hand, it
is quite a good approximation. The points fall so nearly on a straight line that you probably can't
see any discrepancy by looking at the �gure. We shall demonstrate in a moment that there is some
nonzero discrepancy. This is not tragic; we can rationalize it by saying that a bath consisting of
1000 sites is a slightly imperfect heat bath. In the limit as N and m go to in�nity, the bath becomes
perfect.

We can quantify the imperfection as follows: The probability ratio between the upper two points is:

W (x = 1)

W (x = 0)
=

m

N − 1−m
(23.10)
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Figure 23.3: Log Multiplicity versus Energy

Meanwhile, the ratio between the lower two points is:

W (x = 2)

W (x = 1)
=

m− 1

N −m
(23.11)

which is obviously not the same number. On the other hand, if you pass to the limit of large N and
large m, these two ratios converge as closely as you like. (Also note that these two ratios bracket
the ratio given in equation 23.7.)

23.4 Example: N = 4

We have just seen that the advantages of having a heat bath with a large number of sites.

To emphasize this point, let's see what happens when NB is small. In particular, consider the case
where NB = 2, NS = 2, and m = 2. Then the ratios in equation 23.10 and equation 23.11 are 2:1
and 1:2 respectively ... which are spectacularly di�erent from each other. The situation is shown in
�gure 23.4.

Obviously these points do not lie on a straight line. The probabilities do not follow a Boltzmann
distribution, not even approximately. A major part of the problem is that the blue subsystem,
consisting of NB = 2 sites, is not a good heat bath, not even approximately.

In this situation, temperature is unde�ned and unde�nable, even though the system satis�es Feyn-
man's de�nition of thermal equilibrium, i.e. when all the fast things have happened and the slow
things have not. This is the maximum entropy macrostate, the most entropy the system can have
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Figure 23.4: Log Multiplicity versus Energy � No Temperature

subject to the stipulated constraints (constant N and constant m). This is a very peculiar state,
but as far as I can tell it deserves to be labeled the equilibrium state. Certainly there is no other
state with a stronger claim to the label.

Note that the 1:2:1 ratio we are discussing, as shown in �gure 23.4, gives the probability per
microstate for each of the four microstates. If you are interested in the probability of the three
energy levels, the answer is 1:4:1, because the x = 1 energy level has twice the multiplicity of the
others. Always remember that the probability of a macrostate depends on the number of microstates
as well as the probability per microstate.

23.5 Role Reversal: N = 1002; TM versus Tµ

The situation shown in �gure 23.4 may seem slightly contrived, since it applies to thermal equilibrium
in the absence of any well-behaved heat bath. However, the same considerations sometimes come
into play even when there is a heat bath involved, if we use it bath-backwards. In particular, we
now return to the case where N = 1002 and NS = 2. We saw in section 23.3 that in this situation,
the scarlet subsystem exhibits a Boltzmann distribution, in accordance with proposition (2). But
what about the blue subsystem?

It turns out that each and every microstate of the blue subsystem in the x = 0 and x = 2 categories
has the same probability, even though they do not all have the same energy. This means that the
blue microstate probabilities do not follow a Boltzmann distribution.

Furthermore, each blue microstate in the x = 1 category has twice as much probability as any
x = 0 or x = 2 microstate, because there are two ways it can happen, based on the multiplicity
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of the corresponding microstates of the overall subsystem. That is, when x = 1, there are two
microstates of the overall system for each microstate of the blue subsystem (due to the multiplicity
of the scarlet subsystem), and the microstates of the overall system are equiprobable. The result is
closely analogous to the situation shown in �gure 23.4.

The way to understand this is to recognize that when NS = 2, the scarlet subsystem is too small
to serve as a proper heat bath for the blue subsystem.

At this point, things are rather complicated. To help clarify the ideas, we rearrange the Boltzmann
distribution law (equation 23.2) as follows:

Tµ :=
−1

k

Ei − Ej
ln(Pi)− ln(Pj)

(23.12)

for any two microstates i and j. We take this as the de�nition of Tµ, where µ refers to microstate.

We contrast this with the conventional de�nition of temperature

TM :=
−1

k

Ei − Ej
ln(Wi)− ln(Wj)

(23.13)

We take this as the de�nition of TM , where M refers to macrostate. As far as I can tell, this TM is
what most people mean by �the� temperature T . It more-or-less agrees with the classical de�nition
given in equation 7.7.

It must be emphasized that when two subsystems are in contact, the Boltzmann property of one
system depends on the bath-like behavior of the other. The Tµ of one subsystem is equal to the TM
of the other. That is, S is Boltzmann-distributed if B is a well-behaved heat bath; meanwhile S is
Boltzmann-distributed if B is a well-behaved heat bath.

To say the same thing the other way, you cannot think of a subsystem as serving as a bath for
itself. In the present example, for the blue subsystem TM is well de�ned but Tµ is unde�ned
and unde�nable, while for the scarlet subsystem the reverse is true: Tµ is well de�ned but TM is
unde�ned and unde�nable.

Among other things, we have just disproved proposition (3).

If you think that is confusing, you can for homework consider the following situation,
which is in some ways even more confusing. It serves to even more dramatically discredit
the idea that two subsystems in equilibrium must have the same temperature.

We have just considered the case where the scarlet subsystem consisted of two spin-1/2
particles, so that it had four microstates and three energy levels. Now replace that by a
single spin-1 particle, so that it has only three microstates (and three energy levels).

In this scenario, there are three macrostates of the blue subsystem, corresponding to
three di�erent energies. The odd thing is that each and every microstate of the blue
subsystem has exactly the same probability, even though they do not all have the same
energy.
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In some perverse sense these blue microstates can be considered consistent with a Boltz-
mann distribution, if you take the inverse temperature β to be zero (i.e. in�nite temper-
ature).

This situation arises because each energy level of the scarlet system has the same mul-
tiplicity, WS = 1. Therefore the log multiplicity is zero, and β = (d/dE)ln(W ) = 0.

This situation is mighty peculiar, because we have two subsystems in equilibrium with
each other both of which are Boltzmann-distributed, but which do not have the same
temperature. We are attributing an in�nite temperature to one subsystem and a non-
in�nite temperature to the other. This can't be good.

Note that in all previous scenarios we were able to calculate the probability in two dif-
ferent ways, by symmetry and by counting the microstates. However, in the present
scenario, where we have a spin-1 particle in equilibrium with a bunch of spin-1/2 par-
ticles, we cannot use the symmetry argument. We can still count the microstates; that
always works.

23.6 Example: Light Blue

We can deepen our understanding by considering yet another example.

At each of the blue sites, we replace what was there with something where the energy splitting is
only half a unit. Call these �light blue� sites if you want. Meanwhile, the scarlet sites are the same
as before; their energy splitting remains one full unit.

In this situation, m is no longer a conserved quantity. Whenever the reaction coordinate x increases
by one, it annihilates two units ofmB and creates one unit ofmS . Energy is of course still conserved:
E = mS +mB/2.

We wish the scarlet subsystem to remain at the same temperature as in previous examples, which
means we want its up/down ratio to remain at 1/3. To do this, we must drastically change the
up/down ratio of the blue subsystem. Previously it was 1/3 but we shall see that now it must be√

1/3.

In our numerical model, we represent this by NB = 1000 and mB = 368− 2x.

Now, whenever we increase x by one, we now have two fewer up states to play with in the blue
subsystem, so the multiplicity changes by two factors, each of which is very nearly mB/(NB −mB

i.e. very nearly
√

3. The two factors together mean that the multiplicity changes by a factor of 3,
which means the probability of the S microstates changes by a factor of 3, as desired.

23.7 Discussion

One reason for working through the �light blue� scenario is to emphasize that the RHS of equa-
tion 23.13 is indeed properly written in terms of W and E ... in contrast to various other quantities
that you might have thought would be more directly important.
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There is a long list of things that might seem directly important, but are not. When two systems
are in equilibrium:

� That does not mean they have the same degree of polarization or the same up/down ratio
per site.

� That does not mean they have the same energy, or the same energy per site.

� That does not mean they have the same entropy or the same multiplicity.

� That does not mean that they have the same heat capacity or the same heat capacity per site.

The list of things that do matter is much shorter: When two subsystems are in thermal equilibrium:

� The microstate probability of one subsystem is determined by the macrostate multiplicity of
the other subsystem.

� For a well-behaved heat bath, the change in log multiplicity is proportional to the change in
energy. The constant of proportionality is β, the inverse temperature.

These points are particularly clear in the �light blue� scenario (section 23.6). When setting up the
problem, we needed to supply �just enough� energy to achieve the desired temperature, i.e. the
desired TM , i.e. the desired ∆ ln(W )/∆E. The amount of energy required to do this, 183 units,
might not have been obvious a priori.

Suppose you have one heat bath in contact with another.

If they start out at di�erent temperatures, energy will �ow from one to the other. This will continue
until the TM of one lines up with the ∆ ln(W )/∆E of the other.

This depends on ln(W ) being a convex function of E. This is not an entirely trivial assumption.
For one thing, it means that in two dimensions, a single particle in a box would not be a good heat
bath, since its density of states is independent of E. Multiple particles in a box works �ne, even in
two dimensions, because the combinatorial factors come to the rescue.

23.8 Relevance

Sometimes it is suggested that the discrepancies and limitations discussed in this chapter are irrel-
evant, because they go away in the large-N limit, and thermodynamics only applies in the large-N
limit.

Well, they do go away in the large-N limit, but that does not make them irrelevant. Vast parts of
thermodynamics do make sense even for small-N systems. It is therefore important to know which
parts we can rely on and which parts break down when stressed. Important small-N applications
include reversible computing and quantum computing. Also, the standard textbook derivation of
the Boltzmann factor uses a small-NS argument. If we are going to make such an argument, we
ought to do it correctly.
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Chapter 24

Partition Function

24.1 Basic Properties

In thermal equilibrium, the probability of each microstate is proportional to its Boltzmann factor:

Pi ∝ exp(−Êi/kT ) (24.1)

where Pi is the probability of the ith microstate, and Êi is the energy of the ith microstate. You
can think of the Boltzmann factor exp(−Êi/kT ) as an unnormalized probability. In some cases an
unnormalized probability is satisfactory, or even desirable, but in other cases you really want the
normalized probability, normalized so that

∑
Pi = 1. That is easily arranged:

Pi =
exp(−Êi/kT )∑
j exp(−Êj/kT )

(24.2)

The normalization denominator in equation 24.2 is something we are going to encounter again and
again, so we might as well give it a name. It is called the partition function and is denoted Z. That
is:

Z :=
∑
j

exp(−Êj/kT ) (24.3)

Actually there is more to the story; we shall see that Z serves in many roles, not just as a normal-
ization denominator. However, that is more than we need to know at the moment. For the time
being, it su�ces to think of Z as the normalization denominator. Additional motivation for caring
about Z will accumulate in the next few sections.

Before continuing, we need to take care of some housekeeping details.

We will �nd it convenient to express some things in terms of inverse temperature. Fol-
lowing convention, we de�ne

β :=
1

kT
(24.4)
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The factor of k means that 1/β is measured in units of energy (per particle). This means
we don't need to bother with units of temperature; all we need are units of energy.

In this section, we assume constant N , i.e. constant number of particles. We also assume
that the system is fully in equilibrium. That is, this analysis applies only to the Locrian
modes, and any non-Locrian modes will have to be handled by other means.

Remark: The partition function is almost universally denoted Z, which is traceable to
the German word Zustandsumme, meaning literally �sum over states�. This etymological
remark seems somewhat glib because although equation 24.3 truly is a sum over all
microstates, there are innumerable other expressions that also take the form of a sum
over states. Still, the fact remains that Z is so important that whenever anybody talks
about �the� sum over states, you can assume they mean equation 24.3 or equivalently
equation 24.6.

Here are some basic facts about probabilities and Boltzmann factors:

The probability of the ith state is Pi. The Boltzmann factor for state i is
exp(−β Êi), where Êi is the energy of
the state.

The probabilities are normalized such that∑
Pi = 1 (24.5)

The sum of the Boltzmann factors is called the
partition function:

Z :=
∑
i

e−β Êi (24.6)

Knowing the probability Pi for every state
somewhat useful, but as we shall see, it is
not nearly as useful as knowing the Boltzmann
factors exp(−β Êi).

If you know the Boltzmann factors, you can
calculate all the probabilities in accordance
with equation 24.7, but the converse does not
hold: knowing all the probabilities does not
su�ce to calculate the Boltzmann factors.

In fact, we shall see that if you know the partition function, you can calculate everything there is
to know about Locrian thermodynamics.

Among its many uses, the partition function can be used to write:

Pi = exp(−β Êi)
Z

(24.7)

24.2 Calculations Using the Partition Function

A direct application of basic probability ideas is:
〈X〉 =

∑
i xiPi for any probability distribution

=
1

Z

∑
i

xi e
−β Êi for a Boltzmann distribution (24.8)

where 〈· · ·〉 denotes the expectation value of some property. The idea of expectation value applies
to the macrostate. Here xi is the value of the X-property in the ith microstate. So we see that
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equation 24.8 is a weighted average, such that each xi is weighted by the probability of state i. This
averaging process relates a macroscopic property X to the corresponding microscopic property xi.

As a sanity check, you should verify that 〈1〉 = 1 by plugging into equation 24.8.

We now begin to explore the real power of the partition function, using it for much more than just
a normalization factor.

We can start from the observation that Z, as de�ned by equation 24.6, is a perfectly good state
function, just as P , V , T , S, et cetera are state functions. We will soon have more to say about the
physical signi�cance of this state function.

We now illustrate what Z is good for. Here is a justly-famous calculation that starts with ln(Z)
and di�erentiates with respect to β:

∂ ln(Z)

∂β|{Êi}
= 1

Z

∑
i(−Êi)e−β Êi

= −〈Ê〉
= −E

(24.9)

Recall that Êi is the energy of the ith microstate, while E is the energy of the macrostate.

Equation 24.9 tells us that one of the directional derivatives of the partition function is related to
the energy. For a particle in a box, or for an ideal gas, all the energy levels are determined by the
volume of the box, in which case we can write E = −∂ ln(Z) / ∂β at constant volume.

You have to pay attention to understand what is happening here. How can the macroscopic energy
〈E〉 be changing when we require all the Êi to be constant? The answer is that the expectation
value 〈· · ·〉 is a weighted average, weighted according to the probability of �nding the system in the
ith microstate, and by changing the inverse temperature β we change the weighting.

As another example calculation using the partition function, it is amusing to express the entropy in
terms of the partition function. We start with the workhorse expression for entropy, equation 2.2
or equation 9.3, and substitute the probability from equation 24.7.

S[P ] = −k
∑

i Pi ln(Pi) (24.10a)

= −k
∑

i
e−β Êi
Z ln( e

−β Êi
Z ) (24.10b)

= −k
∑

i
e−β Êi
Z [−β Êi − ln(Z)] (24.10c)

= kβ
∑

i
Êie
−β Êi
Z + k ln(Z)

∑
i
e−β Êi
Z (24.10d)

= kβ〈Ê〉+ k ln(Z)〈1〉 (24.10e)
= kβE + k ln(Z) (24.10f)

= −k ∂ ln(Z)

∂ ln(β)|{Êi}
+ k ln(Z) (24.10g)

We obtained the last line by plugging in the value of E obtained from equation 24.9. This gives us
a handy formula for calculating the entropy directly from the partition function.

Here we have used the fact that 〈ln(Z)〉 ≡ ln(Z), as it must be since Z is not a function of the
dummy index i. Also, in the last line we have used equation 24.9.

The next-to-last line of equation 24.10 tells us that E − TS = −kT ln(Z) . . . and equation 15.13
tells us that the free energy is F := E − TS. Combining these expressions yields a surprisingly
simple expression for the free energy:

F = −kT ln(Z) (24.11)
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As an exercise in algebra, you �nd the entropy in terms of the free energy, namely

S[P ] = − ∂F

∂T |{Êi}
(24.12)

by carrying out the derivative in equation 24.12 and comparing with equation 24.10.

We have just established a connection between the free energy F , the temperature T , and the
partition function Z. If at any point you know two of the three, you can immediately calculate the
third.

As another example, consider the case where the microstate energy depends linearly on some pa-
rameter B:

Êi(B) = Êi(0) +BMi for all i (24.13)

From there, it is straightforward to show that

〈M〉 = − 1

β

∂ ln(Z)

∂B

∣∣∣∣
β,{Êi(0)}

(24.14)

The notation was chosen to suggest that B might be an overall applied magnetic �eld, and Mi

might be the magnetization of the ith state . . . but this interpretation is not mandatory. The
idea applies for any parameter that a�ects the energy linearly as in equation 24.13. Remember
Feynman's proverb: the same equations have the same solutions.

24.3 Example: Harmonic Oscillator

The partition function Z is de�ned in terms of a series, but sometimes it is possible to sum the
series analytically to obtain a closed-form expression for Z. The partition function of a quantum
harmonic oscillator is a simple example of this. As discussed in reference 54, it involves a summing
a geometric series, which is about as easy as anything could be. The result is

Z = 1/2 csch(1/2β~ω) (24.15)

where csch is the hyperbolic cosecant, i.e. the reciprocal of the hyperbolic sine.

Using methods described in section 24.2 we can easily the energy of the harmonic oscillator in
thermal equilibrium. The result is given by equation 24.16 and diagrammed in �gure 24.1.

E = 1/2~ω coth(1/2β~ω) (24.16)

The entropy of a harmonic oscillator is:
S = kβE + k ln(Z)
S/k = 1/2β~ω coth(1/2β~ω) + ln[1/2 csch(1/2β~ω)]

= β~ω e−β~ω

1−e−β~ω − ln(1− e−β~ω)

(24.17)

In the high temperature limit (β → 0) this reduces to:
S = 1− ln(β~ω)

= 1 + ln(kT~ω )
(24.18)
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Figure 24.1: Energy vs Temperature for a Harmonic Oscillator
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The microstates of a harmonic oscillator are de�nitely not equally populated, but we remark that
the entropy in equation 24.18 is the same as what we would get for a system with e kT/~ω equally-
populated microstates. In particular it does not correspond to a picture where every microstate with
energy Ê < kT is occupied and others are not; the probability is spread out over approximately e
times that many states.

In the low-temperature limit, when kT is small, the entropy is very very small:

S/k = ~ω
kT exp(− ~ω

kT ) (24.19)

This is most easily understood by reference to the de�nition of entropy, as expressed by e.g. equa-
tion 2.3. At low temperature, all of the probability is in the ground state, except for a very very
small bit of probability in the �rst excited state.

For details on all this, see reference 54.

24.4 Example: Two-State System

Suppose we have a two-state system. Speci�cally, consider a particle such as an electron or proton,
which has two spin states, up and down, or equivalently | ↑〉 and | ↓〉. Let's apply a magnetic �eld
B, so that the two states have energy

Ê(up) = +µB

Ê(down) = −µB
(24.20)

where µ is called the magnetic moment. For a single particle, the partition function is simply:

Z1 =
∑

i e
−βÊ(i)

= e−βµB + e+βµB

= 2 cosh(βµB)

(24.21)

Next let us consider N such particles, and assume that they are very weakly interacting, so that
when we calculate the energy we can pretend they are non-interacting. Then the overall partition
function is

Z = ZN1 (24.22)

Using equation 24.9 we �nd that the energy of this system is

E = − ∂ ln(Z)

∂β|{Êi}
= −NµB tanh(βµB)

(24.23)

We can calculate the entropy directly from the workhorse equation, equation 2.2, or from equa-
tion 24.10, or from equation 24.12. The latter is perhaps easiest:

S = kβE + k ln(Z)
= −NkβµB tanh(βµB) +Nk ln(2 cosh(βµB))

(24.24)

You can easily verify that at high temperature (β = 0), this reduces to S/N = k ln(2) i.e. one bit
per spin, as it should. Meanwhile, at low temperatures (β →∞), it reduces to S = 0.

It is interesting to plot the entropy as a function of entropy, as in �gure 24.2.
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In this �gure, the slope of the curve is β, i.e. the inverse temperature. It may not be obvious from
the �gure, but the slope of the curve is in�nite at both ends. That is, at the low-energy end the
temperature is positive but only slightly above zero, whereas at the high-energy end the temperature
is negative but only slightly below zero. Meanwhile, the peak of the curve corresponds to in�nite
temperature, i.e. β = 0. The temperature is shown in �gure 24.3.
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Figure 24.3: Temperature versus Energy � Two State System

In this system, the curve of T as a function of E has in�nite slope when E = Emin. You can prove
that by considering the inverse function, E as a function of T , and expanding to �rst order in T .
To get a fuller understanding of what is happening in the neighborhood of this point, we can de�ne
a new variable b := exp(−µB/kT ) and develop a Taylor series as a function of b. That gives us

E−Emin
N = 2µB e−2µB/kT for T near zero

kT = 2µB
ln(2NµB)−ln(E−Emin)

(24.25)

which is what we would expect from basic principles: The energy of the excited state is 2µB above
the ground state, and the probability of the excited state is given by a Boltzmann factor.

Let us brie�y mention the pedestrian notion of �equipartition� (i.e. 1/2kT of energy per degree of
freedom, as suggested by equation 25.7). This notion makes absolutely no sense for our spin system.
We can understand this as follows: The pedestrian result calls for 1/2kT of energy per quadratic
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degree of freedom in the classical limit, whereas (a) this system is not classical, and (b) it doesn't
have any quadratic degrees of freedom.

For more about the advantages and limitations of the idea of equipartiation, see chapter 25.

Indeed, one could well ask the opposite question: Given that we are de�ning temperature via
equation 7.7, how could �equipartition� ever work at all? Partly the answer has to do with �the
art of the possible�. That is, people learned to apply classical thermodynamics to problems where it
worked, and learned to stay away from systems where it didn't work. If you hunt around, you can
�nd systems that are both harmonic and non-quantized, such as the classical ideal gas, the phonon
gas in a solid (well below the melting point), and the rigid rotor (in the high temperature limit).
Such systems will have 1/2kT of energy in each quadratic degree of freedom. On the other hand,
if you get the solid too hot, it becomes anharmonic, and if you get the rotor too cold, it becomes
quantized. Furthermore, the two-state system is always anharmonic and always quantized. Bottom
line: Sometimes equipartition works, and sometimes it doesn't.

24.5 Rescaling the Partition Function

This section is a bit of a digression. Feel free to skip it if you're in a hurry.

We started out by saying that the probability Pi is �proportional� to the Boltzmann factor exp(−βÊi).

If Pi is proportional to one thing, it is proportional to lots of other things. So the question arises,
what reason do we have to prefer exp(−βÊi) over other expressions, such as the pseudo-Boltzmann
factor α exp(−βÊi).

We assume the fudge factor α is the same for every microstate, i.e. for every term in the partition
function. That means that the probability P †i we calculate based on the pseudo-Boltzmann factor
is the same as what we would calculate based on the regular Boltzmann factor:

P †i = α exp(−βÊi)∑
jα exp(−βÊj)

= Pi
(24.26)

All the microstate probabilities are the same, so anything � such as entropy � that depends directly
on microstate probabilities will be the same, whether or not we rescale the Boltzmann factors.

Our next steps depend on whether α depends on β or not. If α is a constant, independent of β, then
rescaling the Boltzmann factors by a factor of α has no e�ect on the entropy, energy, or anything
else. You should verify that any factor of α would drop out of equation 24.9 on the �rst line.

We now consider the case where α depends on β. (We are still assuming that α is the same for
every microstate, i.e. independent of i, but it can depend on β.)

If we were only using Z as a normalization denominator, having a fudge factor that depends on β
would not matter. We could just pull the factor out front in the numerator and denominator of
equation 24.26 whereupon it would drop out.

In contrast, if we are interested in derivatives, the derivatives of Z ′ := β Z are di�erent from
the derivatives of plain Z. You can easily verify this by plugging Z ′ into equation 24.9. The β-
dependence matters in equation 24.9 even though it doesn't matter in equation 24.10. We summarize
this by saying that Z is not just a normalization factor.
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A particularly interesting type of fudge factor is exp(−βφ) for some constant φ. You can easily verify
that this corresponds to shifting all the energies in the problem by φ. This can be considered a type
of gauge invariance. In situations where relativity is not involved, such as the present situation,
you can shift all the energies in the problem by some constant without changing the observable
physics. The numerical value of the energy is changed, but this has no observable consequences. In
particular, shifting the energy does not shift the entropy.
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Equipartition

25.1 Generalized Equipartition Theorem

In this chapter we temporarily lower our standards and derive some results that apply only in the
classical limit, speci�cally in the �energy continuum� limit. That is, we assume that the temperature
is high compared to the spacing between energy levels, so that when evaluating the partition function
we can approximate the sum by an integral. We further assume that the system occupies a bounded
region in phase space. That is, we assume there is zero probability that any of the position variables
or momentum variables will ever take on super-large values.

Subject to these provisos, we1 can write the partition function as:
Z ≡

∑
i exp[−βEi]

≈
∫ ∫

exp[−βE(x, v)]dx dv
(25.1)

Here we intend x and v to represent, somewhat abstractly, whatever variables contribute to the
energy. (We imagine that x represents the variable or variables that contribute to the potential
energy, while v represents the variable or variables that contribute to the kinetic energy, but this
distinction is not important.)

Using 20/20 hindsight, we anticipate that it will be interesting to evaluate the expectation value of
∂E/∂ ln(x)|v. We can evaluate this in the usual way, in terms of the partition function:

〈 ∂E
∂ ln(x)|v 〉 =

∑
i Pi

∂Ei
∂ ln(x)|v

= 1
Z

∑
i

∂Ei
∂ ln(x)|v exp[−βEi]

= 1
Z

∫ ∫
∂Ei

∂ ln(x)|v exp[−βE(x, v)]dx dv

= −1
βZ

∫ ∫ ∂exp[−βE(x,v)]
∂ ln(x)|v dx dv

(25.2)

We now integrate by parts. The boundary terms vanish, because we have assumed the system
occupies a bounded region in phase space.

〈 ∂E
∂ ln(x)|v 〉 =

∑
i Pi

∂Ei
∂ ln(x)|v

= 1
βZ

∫ ∫
exp[−βE(x, v)]dx dv

= 1
β

= kT

(25.3)

1This calculation in this section parallels Appendix G in M.D. Sturge, Statistical and Thermal Physics (2003)
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We can of course write a corresponding result for the v-dependence at constant x:
〈 ∂E
∂ ln(v)|x〉 = kT (25.4)

and if there are multiple variables {xi} and {vi} we can write a corresponding result for each of
them. This is called the generalized equipartition theorem.

25.2 Corollaries: Power-Law Equipartition

An interesting corollary is obtained in the case where the energy contains a power-law term of the
form Ej = |x|M :

〈 ∂Ej
∂ ln(x)|v 〉 = kT

〈MEj〉 = kT
〈Ej〉 = kT/M

(25.5)

In the very common case where M = 2, this reduces to

〈Ej〉 = 1/2kT (25.6)

and if the total energy consists of a sum of D such terms, the total energy is

〈E〉 = 1/2D kT (25.7)

This result is the quadratic corollary to the equipartition theorem. The symbol D (pronounced �D
quad�) is the number of quadratic degrees of freedom of the system. Here we are assuming every
degree of freedom appears in the Hamiltonian either quadratically or not at all.

All too often, equation 25.7 is called simply �the� equipartition theorem. However, we should beware
that it it is only a pedestrian corollary. It only applies when every degree of freedom contributes to
the energy either quadratically or not at all. This includes a remarkably large number of situations,
including the harmonic oscillator, the particle in a box, and the rigid rotor ... but certainly not all
situations, as discussed in section 25.3.

Also keep in mind that all the results in this chapter are based on the assumption that the system
is classical, so that in the de�nition of the partition function we can approximate the sum by an
integral.

25.3 Harmonic Oscillator, Particle in a Box, and Other Potentials

Let us consider a particle moving in one dimension in a power-law potential well. The energy is
therefore

E = v2 + |x|M (25.8)

where the �rst term represents the usual kinetic energy (in some units) and the second term rep-
resents the potential energy. The case M = 2 corresponds to a harmonic oscillator, as shown in
�gure 25.2.

As M becomes larger and larger, the situation begins to more and more closely resemble a square-
well potential, i.e. a particle in a box, as you can see in �gure 25.3 and �gure 25.4.
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Figure 25.1: M = 1 i.e. Linear Power-Law
Potential Well

Figure 25.2: M = 2 i.e. Quadratic Power-Law
Potential Well
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Figure 25.3: M = 10 Power-Law Potential
Well

Figure 25.4: M = 100 Power-Law Potential
Well

Let us apply the generalized equipartition theorem, namely equation 25.3 and equation 25.4, to
each of these situations.

M : 〈E〉/kT
1 : 0.5 + 1.0 = 1.5 gravitational �eld in 1D
1 : 1.5 + 1.0 = 2.5 gravitational �eld in 3D
2 : 0.5 + 0.5 = 1 harmonic oscillator
10 : 0.5 + 0.1 = 0.6
100 : 0.5 + 0.01 = 0.51
∞ : 0.5 + 0 = 0.5 square well

(25.9)

25.4 Remarks

It must be emphasized that every degree of freedom counts as a degree of freedom, whether or not
it contributes to the heat capacity. For example, consider a free particle in three dimensions:

There are six degrees of freedom. There are only three quadratic degrees of free-
dom.
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All six of the degrees of freedom contribute to
the entropy. This should be obvious from the
fact that the phase space of such a particle is
six dimensional.

Only three of the degrees of freedom con-
tribute to the heat capacity.

� For a one-dimensional harmonic oscillator, there are two quadratic degrees of freedom. Both
contribute to the entropy, and both contribute to the energy.

� For the square well, there is only one quadratic degree of freedom, namely the one that gives
rise to the kinetic energy. In contrast, the position is a non-quadratic degree of freedom, and
contributes nothing to the average energy; there is no relevant potential energy.

� In the general case, you are not allowed to simply ignore non-quadratic degrees of freedom. In
the example de�ned by equation 25.8, varying the exponent M from M = 2 on up allows us
to interpolate between the harmonic oscillator and the square well. At one extreme (M = 2)
the potential energy is quadratic, and at the other extreme (M =∞) the potential energy is
irrelevant ... but in between, it is both relevant and non-quadratic.

� The M = 1 case is easy to analyze, interesting, and reasonably common. For example, it
applies to the m|g|h term in a tall column of gas in a gravitational �eld, as shown in �gure 9.6.

� For any degree of freedom where the spacing between energy levels is large compared to kT ,
that degree of freedom contributes nothing very interesting to the average energy. (This is
the polar opposite of the �energy continuum� limit.) We say that such a degree of freedom is
�frozen out� by the laws of quantum mechanics.

� The idea of equipartion fails miserably for the spin system discussed in section 24.4, because
the system does not have any quadratic degrees of freedom, and more importantly because
the �energy continuum� approximation does not apply.

� Pedestrian ideas of equipartition can be applied to the ratio of speci�c heats of common gases,
but only very imperfectly, as shown in table 26.1. This is because the �energy continuum�
approximation applies to some of the degrees of freedom but not others. That is, some of the
degrees of freedom have a moderately large spacing, so that they are quantum-mechanically
�frozen out� at some temperatures but not others. For additional discussion of this point, see
section 26.7.



Chapter 26

Partition Function: Some Examples

In this chapter, we consider the partition function for various interesting systems. We start with
a single particle in a box (section 26.1. We then consider an ideal gas of N particles in a box
(section 26.2), including a pure monatomic gas and mixtures of monatomic gases. We then consider
the rigid rotor, as a model of a lightweight diatomic model (section 26.3). We use the partition
function to derive some classic macroscopic thermodynamic formulas.

26.1 Preview: Single Particle in a Box

As discussed in section 26.9, the canonical partition function for a single high-temperature nonrel-
ativistic pointlike particle in a box is:

Zppb = V
Λ3 (26.1)

where V is the volume of the container. The subscript �ppb� stands for �point particle in a box�
. The RHS is temperature-dependent because Λ scales like

√
β. Here Λ is the thermal de Broglie

length

Λ :=
√

(
2π~2

mkT
) (26.2)

which is the same as equation 12.2.

In general, the partition function is de�ned in terms of an in�nite series, but in many cases it is
possible to sum the series. In this case the result is a compact, closed-form expression, namely
equation 26.1.

Using partition functions is more fun than deriving them, so let's start by doing some examples
using equation 26.1, and postpone the derivation to section 26.9.

There's a lot more we could say about this, but it's easier to do the more-general case of the ideal
gas (section 26.2) and treat the single particle in a box as a special case thereof, i.e. the N = 1 case.
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26.2 Ideal Gas of Point Particles

In this section, we generalize the single-particle partition function to a gas of multiple particles. We
continue to assume all the particles are pointlike. At not-to-high temperatures, this is a good model
for a monatomic gas.

26.2.1 Distinguishable Particles

We start by considering a single gas particle, and model it as a six-sided die. Since there are six
possible states, the single-particle partition function has six terms:

Q = Q1+Q2+Q3+Q4+Q5+Q6 (26.3)

We do not assume the die is fair, so the terms are not necessarily equal.

We now proceed to the case of N = 2 dice. The partition function will have 62 = 36 terms. We
can calculate the probability of each two-particle state in terms of the corresponding one-particle
states. In fact, since the gas is ideal, each particle is independent of the other, so the single-particle
probabilities are statistically independent, so each two-particle probability is just a simple product,
as shown in the following equation:

Z = Q1R1+Q1R2+Q1R3+Q1R4+Q1R5+Q1R6

+ Q2R1+Q2R2+Q2R3+Q2R4+Q2R5+Q2R6

+ Q3R1+Q3R2+Q3R3+Q3R4+Q3R5+Q3R6

+ Q4R1+Q4R2+Q4R3+Q4R4+Q4R5+Q4R6

+ Q5R1+Q5R2+Q5R3+Q5R4+Q5R5+Q5R6

+ Q6R1+Q6R2+Q6R3+Q6R4+Q6R5+Q6R6

(26.4)

where Q is the partition function for the �rst die, R is the partition function for the second die, and
subscripts on Q and R identify terms within each single-particle partition function.

Using the distributive rule, we can simplify equation 26.4 quite a bit: we �nd simply Z = QR. If
we now assume that the two dice are statistically the same (to a good approximation), then we
can further simplify this to Z = Q2 (to the same good approximation). In the case of N dice, the
general result is:

Zdice|D = (
V

Λ3
)N (26.5)

This is the correct result for the case where each particle has (almost) the same single-particle parti-
tion function, provided the particles remain enough di�erent to be distinguishable in the quantum-
mechanical sense ... and provided we know in advance which particles are going to appear in the
mixture, so that there is no entropy of the deal (as de�ned in section 12.10).
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26.2.2 Indistinguishable Particles; Delabeling

We now consider a situation that is the same as above, except that the particles are all identical in the
quantum-mechanical sense. (We will consider mixtures in section 26.2.3.) If we apply equation 26.4
to this situation, every term below the diagonal has a mirror-image term above the diagonal the
describes exactly the same state. For example, Q2R6 is the exact same state as Q6R2. Therefore
if we include all the terms in equation 26.4 in our sum over states, we have overcounted these o�-
diagonal states by a factor of two. So to a �rst approximation, neglecting the diagonal terms, we
can correct for this by writing Z = QR/2. Generalizing from N = 2 to general N , we have:

Z = 1
N !(

V
Λ3 )N (nondegenerate pure gas) (26.6)

At the next level of detail, we should think a little more carefully about the diagonal terms in
equation 26.4. There are two possibilities:

� For Fermi particles, such states do not exist, and we should not count the diagonal terms at
all. (This is one manifestation of the Pauli exclusion principle.) Alas equation 26.6 overcounts
these diagonal states; it counts them even though it shouldn't.

� For Bose particles, we should count all the diagonal terms. They should not be divided by
the delabeling factor (N !) because each state is correctly represented by exactly one term in
equation 26.4. Alas equation 26.6 undercounts these diagonal states; it discounts them by a
factor of N ! even though it shouldn't.

On the other hand, by hypothesis we are restricting attention to nondegenerate gases; therefore the
chance of any particular slot being occupied is small, and the chance of any particular slot being
occupied more than once is small squared, or smaller. That means there must be many, many terms
in the sum over states, and the diagonal terms must be a small fraction of the total. Therefore we
don't much care what we do with the diagonal terms. We could keep them all, discard them all,
or whatever; it doesn't much matter. As N becomes larger, the diagonal terms become even less
of a problem. The simplest thing is to arbitrarily use equation 26.6, which will be slightly too high
for fermions and slightly too low for bosons, but close enough for most applications, provided the
system really is nondegenerate.

26.2.3 Mixtures

Things get even more interesting when we consider mixtures.

Figure 26.1 shows three particles that are very very nearly identical. In particular, this could
represent three atoms of 3He, where arrows in the diagram represent the nuclear spins. There are
six ways of labeling these three particles, of which three ways are shown in the �gure.

In fact diagram A and diagram B depict exactly the same state. Particle #1 and particle #2 are
quantum-mechanically identical, so the physics doesn't care which is which. That is, these two
labels are di�erent only in our imagination.
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Figure 26.1: Three (of Six) Ways of Labeling the Particles
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Tangential technical remark: In a snapshot such as we see in �gure 26.1, it could be
argued that particle #1 and particle #2 are distinguishable by their positions, even
though they are �identical� particles. Note that we are using some subtle terminology:
identical is not the same as indistinguishable. The idea of �distinguishable by posi-
tion" is valid at not-too-low temperatures, where the thermal de Broglie length is small
compared to the spacing between particles. However, even in the best case it is only
valid temporarily, because of the uncertainty principle: The more precisely we know the
position at the present time, the less precisely we will know it at future times. For a
minimum-uncertainty wave packet, the formula is

∆t =
2m∆x2

~
(26.7)

which for atoms at ordinary atmospheric density is on the order of a nanosecond. This is
much shorter than the timescale for carrying out a typical Gibbs-type mixing experiment,
so under these conditions we should not think of the atoms as being distinguishable by
position. (For a very dilute gas of massive particles on very fast timescales, the story
might be di�erent.)

The notion of �distinguishable by position� is sometimes important. Without it, classical
physics would not exist. In particular, we would never be able to talk about an individual
electron; we would be required to antisymmetrize the wavefunction with respect to every
electron in the universe.

When we evaluate the partition function, each state needs to appear once and only once in the sum
over states. In �gure 26.1, we need to include A or B but not both, since they are two ways of
describing the exact same state.

As is so often the case, we may �nd it convenient to count the states as if the particles were labeled,
and then apply the appropriate delabeling factors.

For the gas shown in �gure 26.1, we have N = 3. The delabeling factor will be 2! for the spin-up
component of the mixture, because there are 2 particles in this component. The delabeling factor
will be 1! for the spin-down component, because there is only one particle in this component. For
general N , if we assume that all the particles have the same single-particle partition function �
which is what happens when the Hamiltonian is spin-independent � then the partition function for
the gas as a whole is

Zmix|D =
∏
j

1
Nj !

( V
Λ3 )Nj

= ( V
Λ3 )N

∏
j

1
Nj !

(26.8)

where the index j runs over all components in the mixture. To derive the second line we have used
the obvious sum rule for the total number of particles:∑

j

Nj = N (26.9)

The last line of equation 26.8 is very similar to equation 26.6, in the sense that both contain a factor
of (V/Λ3) to the Nth power. Only the delabeling factors are di�erent.
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26.2.4 Energy, Heat Capacity, and Entropy for a Pure Gas

We can use equation 26.6 to �nd the energy for the pure gas, with the help of equation 24.9.
Plugging in, we �nd

E = − ∂ ln(Z)

∂β|{Êi}
= 3

2
N
β

= 3
2 N kT

(26.10)

as expected for the ideal monatomic nondegenerate nonrelativistic pure gas in three dimensions.
(See equation 26.42 for a more general expression, applicable to a polytropic gas. See section 26.2.3
for a discussion of mixtures, including mixtures of isotopes, mixtures of spin-states, et cetera.)

If you're clever, you can do this calculation in your head, because the RHS of equation 26.6 depends
on β to the −3N/2 power, and all the other factors drop out when you take the logarithmic
derivative.

Note that equation 26.10 naturally expresses the energy as a function of temperature, in contrast
to (say) equation 7.8 which treats the energy as a function of entropy. There is nothing wrong with
either way of doing it. Indeed, it is best to think in topological terms, i.e. to think of energy at each
point in thermodynamic state-space. We can describe this point in terms of its temperature, or in
terms of its entropy, or in innumerable other ways.

This expression for the energy is independent of V . On the other hand, we are free to treat it a
function of V (as well as T ). We could multiply the RHS by V 0, which is, formally speaking, a
function of V , even though it isn't a very interesting function. We mention this because we want to
take the partial derivative along a contour of constant V , to �nd the heat capacity in accordance
with equation 7.13.

CV :=
∂E

∂T

∣∣∣∣
V

always

=
3

2
N k for our gas

cV = 3
2 R

(26.11)

where CV with a capital C denotes the extensive heat capacity, while cV with a small c denotes
the molar heat capacity. Here R is the universal gas constant, R = NA k, where NA is Avogadro's
number (aka Loschmidt's number).

Recall that our gas is a monatomic tabletop nondegenerate nonrelativistic ideal gas in three dimen-
sions.

It is also worthwhile to calculate the heat capacity at constant pressure. Using the de�nition of
enthalpy (equation 15.5) and the ideal gas law (equation 26.40) we can write H = E + PV =
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E +N kT and plug that into the de�nition of CP :

CP :=
∂H

∂T

∣∣∣∣
P

always

=
∂E

∂T

∣∣∣∣
P

+N k for our gas

= 3
2 N k +N k

= 5
2 N k

cP = 5
2 R

(26.12)

See the discussion leading up to equation 26.48 and equation 26.49 for a more general expression.

Let's calculate the entropy. We start with equation 24.10f, plug in equation 26.10 for the energy,
and then plug in equation 26.6 for the partition function. That gives us

Spure = kβE + k ln(Z)

= 3
2 kN + k ln( 1

N !
V N

Λ3N )
(26.13)

As discussed in reference 55 and references therein, the �rst Stirling approximation for factorials is:

ln(N !) ≈ (N + 1/2) ln(N)−N + 1/2 ln(2π) + (terms of order 1/N) (26.14)

Plugging that into equation 26.13 gives us:
S = 3

2 kN + k ln( 1
N !

V N

Λ3N )

= N k 3
2 − k[N ln(N)−N + 1/2 ln(N) + 1/2 ln(2π)] +N k ln( V

Λ3 )
(26.15)

We can make this easier to understand if we write the molar entropy S/N in terms of the molar
volume V/N , which is logical since we expect both S and V to more-or-less scale like N . That gives
us:

S/N

k
= ln(

V/N

Λ3
) +

5

2
−

1/2 ln(N)

N
−

1/2 ln(2π)

N
(26.16)

For large enough N we can ignore the last two terms on the RHS, which gives us the celebrated
Sackur-Tetrode formula:

S/N

k
= ln(

V/N

Λ3
) +

5

2
(26.17)

This expresses the molar entropy S/N in terms of the molar volume V/N and the thermal de Broglie
length Λ. Note that the RHS depends on temperature via Λ, in accordance with equation 26.2. The
temperature dependence is shown explicitly in equation 26.18:

S/N

k
= ln(

V

N
) +

3

2
ln(T ) + constants (26.18)

Note that validity of all these results is restricted to monatomic gases. It is also restricted to
nondegenerate gases, which requires the molar volume to be large. Speci�cally, (V/N)/Λ3 must be
large compared to 1. As an additional restriction, equation 26.16 requires N to be somewhat large
compared to 1, so that the �rst Stirling approximation can be used. For systems with more than a
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few particles this is not much of a restriction, since the �rst Stirling approximation is good to better
than 1% when N = 4 and gets better from there. (The second Stirling approximation is good to
144 parts per million even at N = 2, and gets rapidly better from there, so you can use that if you
ever care about small-N systems. And for that matter, equation 26.13 is valid for all N whatsoever,
from N = 0 on up.) In contrast, equation 26.17 requires that N be very large compared to 1, since
that is the only way we can justify throwing away the last two terms in equation 26.16.

For a more general formula, see equation 26.58.

Before we go on, it is worth noting that equation 26.16 is more accurate than equation 26.17. In
many thermodynamic situations, it is safe to assume that N is very large ... but we are not required
to assume that if we don't want to. The basic laws of thermodynamics apply just �ne to systems
with only a few particles.

This is interesting because equation 26.16 tells us that the entropy S is not really an extensive
quantity. If you increase V in proportion to N while keeping the temperature constant, S does not
increase in equal proportion. This is because of the last two terms in equation 26.16. These terms
have N in the denominator without any corresponding extensive quantity in the numerator.

When we have 1023 particles, these non-extensive terms are utterly negligible, but when we have
only a few particles, that's a di�erent story.

This should not come as any big surprise. The energy of a liquid or solid is not really extensive
either, because of things like surface tension and surface reconstruction. For more about non-
extensive entropy, see section 12.8 and especially section 12.11.

26.2.5 Entropy of a Mixture

Equation 26.13 assumed a pure gas. We rewrite it here for convenience:
Spure = kβE + k ln(Z)

= 3
2 kN + k ln( 1

N !
V N

Λ3N )

= 3
2 kN + k ln( V

N

Λ3N ) + k ln( 1
N !)

(26.19)

We can easily �nd the corresponding formula for a mixture, using the same methods as section 26.2.4,
except that we start from equation 26.8 (instead of equation 26.6). That gives us:

Smix|D = kβE + k ln(Z)

= 3
2 kN + k ln( V

N

Λ3N ) + k ln( 1∏
j Nj !

)

= Spure + k ln( N !∏
j Nj !

)

(26.20)

The subscript �|D� is a reminder that this is the conditional entropy, conditioned on the deal, i.e.
conditioned on knowing in advancewhich particles are in the mixture, i.e. not including the entropy
of the deal.

The last term on the RHS of equation 26.20 is commonly called the spin entropy. More generally,
the particles could be labeled by lots of things, not just spin. Commonly we �nd a natural mixture
of isotopes, and arti�cial mixtures are also useful. Air is a mixture of di�erent chemical species.
Therefore the last term on the RHS should be called the label entropy or something like that. In
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all cases, you can think of this term as representing the entropy of mixing the various components
in the mixture. The argument to the logarithm � namely N !/

∏
j Nj ! � is just the number of ways

you could add physically-meaningful labels to a previously-unlabeled gas.

When we speak of physically-meaningful labels, the laws of physics take an expansive,
inclusive view of what is a meaningful di�erence. Atomic number Z is relevant: oxygen
is di�erent from nitrogen. Baryon number A is relevant: 14C is di�erent from 12C.
Electron spin is relevant. Nuclear spin is relevant. Molecular rotational and vibrational
excitations are relevant. Nuclear excited states are relevant (while they last). All these
things contribute to the entropy. Sometimes they are just spectator entropy and can be
ignored for some purposes, but sometimes not.

It is remarkable that if we carry out any process that does not change the labels, the entropy of
mixing is just an additive constant. For example, in a heat-capacity experiment, the spin entropy
would be considered �spectator entropy� and would not a�ect the result at all, since heat capacity
depends only on derivatives of the entropy (in accordance with equation 7.24).

To say the same thing another way: Very often people use the expression for a pure one-component
gas, equation 26.13, even when they shouldn't, but they get away with it (for some purposes)
because it is only o� by an additive constant.

Beware: In some books, including all-too-many chemistry books, it is fashionable to ignore the spin
entropy. Sometimes they go so far as to rede�ne �the� entropy so as to not include this contribution
... which is a very bad idea. It's true that you can ignore the spin entropy under some conditions ...
but not all conditions. For example, in the case of spin-aligned hydrogen, if you want it to form a
super�uid, the super�uid phase necessarily contains no entropy whatsoever, including nuclear spin
entropy. Spin entropy and other types of label entropy are entirely real, even if some people choose
not to pay attention to them.

As a point of terminology: On the RHS of equation 26.20 some people choose to associate Spure with
the �external� coordinates of the gas particles, and associate the spin-entropy with the �internal�
coordinates (i.e. spin state).

If we use the �rst Stirling approximation, we �nd that the molar entropy is given by

S/N

k
= ln(

V/N

Λ3
) +

5

2
+
∑
j

xj ln(1/xj) (26.21)

which can be compared with the Sackur-Tetrode formula for the pure gas, equation 26.17. We
see that once again the entropy is �almost� extensive. There is however an extra constant term,
representing the entropy of mixing. Here xj is the mole fraction of the jth component of the mixture,
i.e.

xj := Nj/N (26.22)
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26.2.6 Extreme Mixtures

We now consider the extreme case where all of the gas particles are di�erent. I call this �snow�
, based on the proverbial notion that no two snow�akes are alike.

Ssnow|D = kβE + k ln(Z)

= 3
2 kN + k ln( V

N

Λ3N )
(26.23)

If we rearrange this equation to put molar entropy on the LHS, we get:
Ssnow|D/N

k = 3
2 + ln( V

Λ3 ) (26.24)

where the RHS is blatantly not intensive (because it depends directly on V ) ... in contrast to
the Sackur-Tetrode formula (equation 26.17) which is �almost� intensive in the sense that the RHS
depends on the intensive molar volume V/N (rather than the extensive volume V ).

To make sense of this result, consider the following experiment, which can be considered a version
of the Gibbs experiment. Start with a box with a partition. Place some snow to the left of the
partition, and some more snow to the right of the partition. We now make the dubious assumption
that we can tell the di�erence. If you want, imagine blue snow on one side and red snow on the
other. This is not the usual case, and we would not expect random dealing to deal all the blue
snow to one side and all the red snow to the other. On the other hand, we could engineer such an
arrangement if we wanted to.

In other words, equation 26.24 may be slightly misleading, insofar as we are neglecting the entropy
of the deal. This stands in contrast to equation 26.28, which may be more relevant to the usual
situation.

When we pull out the partition, the snow on one side mixes with the snow on the other side,
increasing the entropy. It's all snow, but the combined sample of snow is more mixed than the two
original samples, and has greater entropy. For more about non-extensive entropy, see section 12.8
and especially section 12.11.

Just to be clear: When talking about whether �the� entropy is extensive, I am assuming
we measure �the� entropy long after the partition has been pulled out, after things have
settled down ... and compare it to the situation before the partition was pulled out.
Without this assumption, the whole question would be hopelessly ill-de�ned, because
the entropy is changing over time.

26.2.7 Entropy of the Deal

Let's now consider the entropy of the deal. As a simple example, consider two almost-identical
scenarios involving a deck of cards.

Start with a deck in a known state. The en-
tropy is zero.

Start with a deck in a known state. The en-
tropy is zero.

Shu�e the deck. The entropy is now 226 bits.
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Divide the deck in half, forming two hands of
26 cards apiece. The entropy is still zero.

Divide the deck in half, forming two hands of
26 cards apiece. The entropy is still 226 bits.
The entropy of each hand separately is about
881⁄2 bits, so we have a total 177 bits for the
entropy of permutation within each hand, plus
another 49 bits for the entropy of the deal, i.e.
not knowing which cards got dealt into which
hand.

Shu�e each hand separately. The entropy
goes up to 881⁄2 bits per hand, giving a total
of 177 bits.

Shu�e each hand separately. The entropy re-
mains 226 bits.

Put the two hands together and shu�e them
together. The entropy goes up from 177 to
226 bits.

Put the two hands together and shu�e them
together. The entropy remains 226 bits.

Note: This is analogous to pulling out the
partition in a Gibbs experiment, allowing the
gases to mix.

Divide the deck into hands again, with 26
cards per hand. The entropy is still 226 bits.

Divide the deck into hands again, with 26
cards per hand. The entropy is still 226 bits.

Note: This is analogous to re-inserting the
partition in a Gibbs experiment. Re-insertion
leaves the entropy unchanged. For distin-
guishable particles, the entropy includes a
large contribution from the entropy of the
deal.

Peek at the cards. This zeros the entropy, in-
cluding the entropy of the deal.

Don't peek. The entropy remains 226 bits.

Shu�e each hand separately. The entropy
goes back up to 177 bits.

Shu�e each hand separately. The entropy is
unchanged, namely 226 bits.

We can apply the same idea � the entropy of the deal � to other systems. Let's do it more formally,
with algebraic symbols rather than raw numbers. To keep the number of terms manageable, let's
use a two-state system (coins) rather than dice, playing cards, or snow�akes.

Let's extend equation 26.4 to cover the case where there is a large set (the universal set) of M
distinguishable particles, and our sample of N particles is drawn from that. We choose the case of
M = 3 (penny, nickel, and dime) with single-particle partition functions Q, R, and S respectively.
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We choose N = 2 of them and toss them randomly.

Z = Q1R1+Q1R2

+ Q2R1+Q2R2

+ Q1 S1+Q1 S2

+ Q2 S1+Q2 S2

+ R1 S1 +R1 S2

+ R2 S1 +R2 S2

= QR+QS +RS

(26.25)

We interpret this as three copies of the �generic� N -particle partition function that we would get if
we knew in advance which N of the M possible particles would appear in our sample.

Assuming all the particles behave very nearly the same, and generalizing from M = 3, N = 2 to
general M and N , we obtain:

Zsnow =
(
M
N

)
( V

Λ3 )N

= M !
(M−N)!N !(

V
Λ3 )N

(26.26)

where the �rst factor on the RHS is the binomial coe�cient, pronounced �M choose N �.

Equation 26.26 can be seen as an extension of equation 26.5 and/or equation 26.8, extended to
account for the entropy of the deal. For large M , large compared to N ,

Zsnow ≈ MN

N ! (V
Λ3 )N for M � N (26.27)

Tangential remark: The factor of N ! in the denominator is necessary to uphold the rule
that each state is represented once and only once in the sum over states. This factor may
�look like� a delabeling factor, but it is not. All the particles here are distinguishable,
which means essentially that they have built-in physically-signi�cant labels. This factor
of N ! is related to the fact that in equation 26.25 the letters P , Q, and R are in
alphabetical order in every term where they appear. This �normal ordering� accounts
for the fact that once we have considered the state where the dime is heads-up and the
penny is heads-down, we must not consider the state where the penny is heads-down and
the penny is heads-up, because that is just another way of saying the same thing. This
is a purely classical counting job, having nothing to do with the delabeling of identical
particles.

Ssnow = kβE + k ln(Z)

= 3
2 kN + k ln( V

N

Λ3N ) + k ln(M
N

N ! )

= Spure +N k ln(M)

(26.28)

where Spure is de�ned in equation 26.13. The last term on the RHS of equation 26.28 is a remarkably
simple expression for the entropy of the deal, assuming M � N . The equation as a whole can be
considered a modi�cation of equation 26.24, modi�ed to account for the entropy of the deal.
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Equation 26.28 tells us that the entropy for an extreme mixture is the same as the entropy for a
pure, monatomic gas ... plus an additive term that is extensive (i.e. proportional to N) and possibly
very large. At constant N , it is independent of temperature, pressure, and volume.

In particular, if we perform a Gibbs-type mixing experiment involving extreme mixtures, starting
with N1 particles on one side and N2 particles on the other side, there will be no entropy of mixing.
The entropy of the deal will be simply additive, namely (N1 +N2)k ln(M), before and after mixing.

It is remarkable how this result �ts in with other things we know about Gibbs-type mixing experi-
ments:

� Helium on one side and helium on the other→ no entropy of mixing, because the two samples
are the same.

� Helium on one side and neon on the other → considerable entropy of mixing, because the two
samples are di�erent.

� Snow on one side and some di�erent snow on the other side → no entropy of mixing, even
though the two samples are as di�erent as they possibly could be.

The total entropy Ssnow (including the entropy of the deal) behaves wildly di�erently from the
conditional entropy Ssnow|D (not including the entropy of the deal).

Using the same approximations that led to the Sackur-Tetrode equation (equation 26.17), we obtain:

Ssnow/N
k

= ln(
V/N

Λ3
) +

5

2
+ ln(M) (26.29)

26.3 Rigid Rotor

We now turn to the case of a particles that have some structure. That is, they are not pointlike.
Let's start with a heteronuclear diatomic molecule such as CO. There is a range of temperatures
that are high enough to excite rotations of such a molecule, yet not high enough to excite vibrations.
This is particularly relevant because room temperature sits in the middle of this �rigid rotor regime�
for CO.

The energy of a rigid rotor is:

ε(J,mJ) = ~2J(J+1)
2I◦

(26.30)

where J and mJ are the quantum numbers for the angular momentum associated with the ordinary
rotation (not including the �internal� degrees of freedom, i.e. nuclear spin, if any). The moment of
inertia is (as always) given by

I◦ =
∫
r2dm◦ (26.31)

where r is the radius (measured from the center of mass), m◦ is the mass. We write m◦ and I◦

� with a little circle suggesting rotation � to avoid a collision with the magnetic quantum number
(m) and the nuclear spin (I), which we will encounter in a moment.
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The partition function is, as always, a sum over states:
Z =

∑
J,mJ

exp[−βε(J,mJ)] (26.32a)
=

∑
J(2J + 1) exp[−βJ(J + 1)(~2/2I◦)] (26.32b)

in equation 26.32b, we have replaced the sum over states with a sum over energy levels. This makes
use of the fact that the RHS of equation 26.30 is independent of mJ , and the fact that for each J ,
there are (2J + 1) allowed mJ values. In other words, each energy level has a multiplicity of

ω = 2J + 1 (states per energy level) (26.33)

There is no known way to get a closed-form expression for rigid-rotor partition function, equa-
tion 26.32. (This stands in contrast to the harmonic oscillator and the particle in a box, which do
have nice closed-form expressions.)

At low temperatures, we can approximate equation 26.32 by grinding out the �rst few terms of the
sum. That gives us a power series:

Z = 1 + 3x2 + 5x6 + 7x12 + · · ·
x := exp(−θr/T )

θr := ~2
2kI◦ (rotational temperature-scale)

(26.34)

At high temperatures, we need a di�erent approximation:
Zwarm_rotor = T

θr

[
1 + 1

3b+ 1
15b

2 + 4
315b

3 + · · ·
]

b := βkθr
(26.35)

At high enough temperatures, the partition function converges to T/θr. This asymptote is shown
by the dashed line in �gure 26.2.

The low-temperature approximation is shown by the blue curve in �gure 26.2. It is good for all
T/θr ≤ 2.

The high-temperature approximation is shown by the red curve in �gure 26.2. It is good for all
T/θr ≥ 2.
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Figure 26.2: Rigid Rotor : Approximations to the Partition Function
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We can rewrite the high-temperature limit in an interesting form:

Zhot_rotor = T
θr

= 4π
r2g
λ2

(26.36)

where rg is the radius of gyration, de�ned as r2
g := Icirc/m◦. This is a well-known quantity in

mechanics. It is a measure of the �e�ective� size of the rotor. The thermal de Broglie length λ is
de�ned in equation 26.2.

It is interesting to contrast equation 26.1 with equation 26.35. Both involve the thermal de Broglie
length, λ. However, the former compares λ to the size of the box, while the latter compares λ to
the size of the molecule � quite independent of the size of the box.

26.4 Isentropic Processes

Scaling arguments are always fun. Let's see what happens when we scale a box containing an ideal
gas. We restrict attention to a tabletop nonrelativistic monatomic nondegenerate ideal gas in three
dimensions except where otherwise stated). In particular, in this section we do not consider the
rotational degrees of freedom mentioned in section 26.3.

Consider the case where our gas starts out in a three-dimensional box of volume V . Then we increase
each of the linear dimensions by a factor of α. Then the volume increases by a factor of α3. The
energy of each microstate decreases by a factor of α2 in accordance with the usual nonrelativistic
kinetic energy formula p2/(2m) where p = ~k. (Because the gas is monatomic and ideal, this kinetic
energy is the total energy.)

This is interesting because if we also scale β by a factor of α2, then every term in equation 26.69
is left unchanged, i.e. every term scales like the zeroth power of α. That implies that the partition
function itself is unchanged, which in turn implies that the entropy is unchanged. We can summarize
this as:

β V −2/3 = f(S) for some function f()

β V −2/3 = const for any isentropic process
(26.37)

where the RHS of this equation is some as-yet-unknown function of entropy, but is not a function
of β or V . (We continue to assume constant N , i.e. constant number of particles.)

Equation 26.37 is useful in a number of ways. For starters, we can use it to eliminate temperature
in favor of entropy in equation 26.10. Plugging in, we get

E =
3

2

N V −2/3

f(S)
(26.38)

That's useful because pressure is de�ned as a derivative of the energy at constant entropy in accor-
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dance with equation 7.6. Applying the de�nition to the present case, we get

P := − ∂E

∂V

∣∣∣∣
S

=
3

2

N (2/3)V −5/3

f(S)

=
2

3

E

V

(26.39)

Plugging the last line of equation 26.39 into equation 26.10, we �nd
P V = N kT

P V =
N

β

(26.40)

which is the celebrated ideal gas law. It is quite useful. However, it is not, by itself, a complete
description of the ideal gas; we need another equation (such as equation 26.37) to get a reasonably
complete picture. All this can be derived from the partition function, subject to suitable restrictions.

It is worthwhile to use equation 26.40 to eliminate the β dependence from equation 26.37. That
gives us, after some rearranging,

P V 5/3 = N/f(S) for some function f()

P V 5/3 = const for any canonical isentropic process
(26.41)

See equation 26.45 for a more general expression.

26.5 Polytropic Processes · · · Gamma etc.

In this section we generalize the results of section 26.4 to cover polyatomic gases. We continue to
restrict attention to a tabletop nonrelativistic nondegenerate ideal gas in three dimensions ... except
where otherwise stated.

We need to be careful, because the energy-versus-temperature relationship will no longer be given
by equation 26.10. That equation only accounts for the kinetic energy of the gas particles, whereas
the polyatomic gas will have rotational and vibrational modes that make additional contributions
to the energy.

We now hypothesize that the energy in these additional modes will scale in proportion to the kinetic
energy, at least approximately. This hypothesis seems somewhat plausible, since we have seen that
the total energy of a particle in a box is proportional to temperature, and the total energy of a
harmonic oscillator is proportional to temperature except at the very lowest temperatures. So if it
turns out that other things are also proportional to temperature, we won't be too surprised. On
the other hand, a plausible hypothesis is not at all the same as a proof, and we shall see that the
total energy is not always proportional to temperature.

To make progress, we say that any gas that upholds equation 26.42, where the RHS is constant, or
at worst a slowly-varying function of temperature, is (by de�nition) a polytropic gas.

E
N kT = more-or-less constant

= 1
γ−1

(26.42)
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We write the RHS as a peculiar function of γ in accordance with tradition, and to simplify results
such as equation 26.50. There are lots of physical systems that more-or-less �t this pattern. In
particular, given a system of N particles, each with D quadratic degrees of freedom, equipartition
tells us that

E
N kT =

D

2
(26.43)

as discussed in section 25.2. Of course, not everything is quadratic, so equation 26.42 is more general
than equation 26.43.

When non-quadratic degrees of freedom can be ignored, we can write:

γ = D+2
D (26.44)

You can see that γ = 5/3 for a monatomic gas in three dimensions. See table 26.1 for other
examples. Because of its role in equation 26.50, γ is conventionally called the ratio of speci�c heats.
This same quantity γ is also called the adiabatic exponent, because of its role in equation 26.45. It
is also very commonly called simply the �gamma� of the gas, since it is almost universally denoted
by the symbol γ.

Using the same sort of arguments used in section 26.4, we �nd that equation 26.37 still holds, since
it the main requirement is a total energy that scales like α−2.

Continuing down the same road, we �nd:
P V γ = N/f(S) for some function f()
P V γ = const for any canonical isentropic process

kT V γ−1 = 1/f(S)
kT V γ−1 = const for any isentropic process

(26.45)

Some typical values for γ are given in table 26.1. As we shall see, theory predicts γ = 5/3 for a
monatomic nonrelativistic nondegenerate ideal gas in three dimensions. For polyatomic gases, the
gamma will be less. This is related to the number of �quadratic degrees of freedom� as discussed in
section 26.7.

Terminology: We de�ne a polytropic process (not to be confused with polytropic gas) as any process
that follows a law of the form PV n = c, This includes but is not limited to the case where the
exponent n is the adiabatic exponent γ. Interesting cases include

� n = 0 implies constant pressure,

� n = 1 for an ideal gas implies constant temperature,

� n = γ implies constant entropy, and

� n =∞ implies constant volume.

Let's calculate the energy content of a polytropic gas. Speci�cally, we calculate the amount of
energy you could extract by letting the gas push against a piston as it expands isentropically from
volume V to in�nity, as you can con�rm by doing the integral of PdV :

E =
∫∞
V P dV

=
P V

γ − 1

(26.46)
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Gas θr/K T/K γ 2/(γ − 1)
He 293.15 1.66 3
H2 85.3 92.15 1.597 3.35
.. .. 293.15 1.41 4.87
N2 2.88 293.15 1.4 5
O2 2.07 293.15 1.4 5
Dry air 273.15 1.403 4.96
.. 293.15 1.402 4.98
.. 373.15 1.401 4.99
.. 473.15 1.398 5.03
.. 673.15 1.393 5.09
.. 1273.15 1.365 5.48
.. 2273.15 1.088 22.7
CO 2.77 293.15 1.4 5
Cl2 .351 293.15 1.34 5.88
H2O 293.15 1.33 6
CO2 293.15 1.30 6.66

Table 26.1: Values of θr and γ for common gases

This means the ideal gas law (equation 26.40) can be extended to say:

P V = N kT = (γ − 1)E (26.47)

This is interesting because PV has the dimensions of energy, and it is a common mistake to think
of it as �the� energy of the gas. However we see from equation 26.47 and table 26.1 that PV is only
66% of the energy for helium, and only 40% of the energy for air.

You shouldn't ask where the �missing� energy went. There is no missing energy here. There
was never a valid reason to think that PV was �the� energy. The integral of PdV has the same
dimensions as PV , but is not equal to PV . There's more to physics than dimensional analysis.

Let's calculate the heat capacities for a polytropic ideal gas. We retrace the steps used in section 26.2.
Rather than starting from equation 26.10 to derive equation 26.11 and equation 26.11, we now start
from equation 26.47 to derive the following for constant volume:

Cv = Nk 1
γ−1

cv = R 1
γ−1

(26.48)

And similarly, for constant pressure:
Cp = Nk γ

γ−1

cp = R γ
γ−1

(26.49)

The ratio of speci�c heats is
Cp
Cv

= γ
cp
cv

= γ
(26.50)

This is why γ deserves the name �ratio of speci�c heats� or �speci�c heat ratio�.
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We can use equation 26.48 and equation 26.49 to get a useful expression for the entropy of a
polytropic gas. We invoke the general de�nition of heat capacity � aka the entropy capacity, loosely
speaking � namely equation 7.24.

Cv = ∂ S
∂ ln(T )

∣∣∣
V

= Nk 1
γ−1

(26.51)

We can integrate that along a contour of constant V to obtain:

S = Nk ln(T )
γ−1 + f(V ) (26.52)

where f() is some as-yet-unspeci�ed function. As a check, note that for the ideal monatomic gas,
γ = 5/3, so equation 26.52 has the same temperature-dependence as equation 26.18, as it should.

Similarly:

Cp = ∂ S
∂ ln(T )

∣∣∣
P

= Nk γ
γ−1

(26.53)

S = Nkγ ln(T )
γ−1 + f(P ) (26.54)

Let's try to derive the entropy of a polytropic gas. We start by rewriting the partition function for
a particle in a box (equation 26.1) as:

Zppb = V
Λ3 (26.55)

We then replace the 3 by

b := 2
γ−1 (26.56)

and turn the crank. As a generalization of equation 26.6 we have:

ZN = 1
N !

(
V Lb−3

Λb

)N
(26.57)

where L is some length I threw in to make the dimensions come out right.

Then in analogy to equation 26.13 we have

Spolytropic = kβE + k ln(Z)

= kN
γ−1 + k ln( 1

N !) + (b− 3)N k ln(L) +N k ln(V )− 2N k
γ−1 ln(Λ)

= f(N) +N k ln(V ) + N k
γ−1 ln(T )

(26.58)

for some unspeci�ed f(N). All of the temperature dependence is in the last term. You can check
that this term is plausible, insofar as it agrees with equation 26.52. Similarly, all the volume
dependence is in the next-to-last term. You can check that this is plausible, by considering an
adiabatic process such that PV γ is constant, and PV = NkT . For such a process, equation 26.58
predicts zero change in entropy, as it should.
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Figure 26.3: Particle in a Box : Energy at Low Temperature
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26.6 Low Temperature

In this section we consider low temperatures, not just the high-temperature limit. For a single
particle in a one-dimensional box, the partition function is given by equation 26.63. We calculate
the energy from the partition function in the usual way, via equation 24.9.

Here the energy and temperature are measured in units of the ground-state energy (which depends
on the size of the box). The blue curve shows the actual energy of the system; the magenta curve
shows the high-temperature asymptote, namely E = 0.5T .

The famous zero-point energy is clearly visible in this plot.

As you can see in the diagram, the slope of the E-versus-T curve starts out at zero and then
increases. It actually becomes larger than 0.5. At higher temperatures (not shown in this diagram)
it turns over, converging to 0.5 from above.

26.7 Degrees of Freedom, or Not

In this section we will temporarily lower our standards. We will do some things in the manner of
�classical thermodynamics� i.e. the way they were done in the 19th century, before people knew
about quantum mechanics.

Also in this section, we restrict attention to ideal gases, so that PV = NkT . This is quite a good
approximation for typical gases under ordinary table-top conditions. We further assume that the
gas is non-relativistic.

We now attempt to apply the pedestrian notion of equipartition, as expressed by equation 25.7. It
tells us that for a classical system at temperature T , there is 1/2kT of energy (on average) for each
quadratic degree of freedom. In particular, if there are N particles in the system and D classical
quadratic degrees of freedom per particle, the energy of the system is:

E =
D

2 N kT

=
D

2
N
β

(26.59)

We assert that a box of monatomic gas has D = 3 quadratic degrees of freedom per atom. That is,
each atom is free to move in the X, Y , and Z directions, but has no other degrees of freedom that
contribute to the average energy. (To understand why the potential energy does not contribute, see
section 25.3.) This means that equation 26.59 is consistent with equation 26.10. However, remember
that equation 26.10 was carefully calculated, based on little more than the energy-versus-momentum
relationship for a free particle ... whereas equation 26.59 is based on a number of bold assumptions.

Things get more interesting when we assert that for a small linear molecule such as N2 or CO, there
are D = 5 degrees of freedom. The story here is that in addition to the aforementioned freedom to
move in the X, Y , and Z directions, the molecule is also free to rotate in two directions. We assert
that the molecule is not able to rotate around its axis of symmetry, because that degree of freedom
is frozen out ... but it is free to tumble around two independent axes perpendicular to the axis of
symmetry.
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Going back to equation 26.59 and comparing it to equation 26.47, we �nd the two expressions are
equivalent if and only if

D = 2/(γ − 1)

γ = (2 +D )/D

= 1 + 2/D

(26.60)

You can now appreciate why the rightmost column of table 26.1 tabulates the quantity 2/(γ − 1).
The hope is that an experimental measurement of γ for some gas might tell us how many classical
quadratic degrees of freedom there are for each particle in the gas, by means of the formula D =
2/(γ − 1). This hope is obviously unful�lled in cases where formula gives a non-integer result.
However, there are quite a few cases where we do get an integer result. This is understandable,
because some of the degrees of freedom are not classical. In particular the �continuum energy�
approximation is not valid. When the spacing between energy levels is comparable to kT , that
degree of freedom is partiall frozen out and partially not. For details on this, see chapter 25.

You have to be a little bit careful even when 2/(γ − 1) is an integer. For instance, as you might
guess from table 26.1, there is a point near T = 160K where the γ of molecular hydrogen passes
through the value γ = 1.5, corresponding to D = 4, but this is absolutely not because hydrogen
has four degrees of freedom. There are more than four degrees of freedom, but some of them are
partially frozen out, and it is merely fortuitous if/when γ comes out to be an integer.

The γ values for Cl2 and CO2 are lower than you would expect for small linear molecules. This is
because vibrational degrees of freedom are starting to come into play.

For an even more spectacular example of where classical ideas break down, including the idea of
�degrees of freedom�, and the idea of �equipartition of energy� (i.e. 1/2kT of energy per degree of
freedom), look at the two-state system discussed in section 24.4.

26.8 Discussion

Except for section 26.7, we derived everything we needed more-or-less from �rst principles: We used
quantum mechanics to enumerate the microstates (�gure 26.4), we calculated the microstate energy
as p2/(2m), then constructed the partition function. The rest was just turning the crank, since there
are well-known formulas for calculating the thermodynamic observables (energy, entropy, pressure,
et cetera) in terms of the partition function.

26.9 Derivation: Particle in a Box

This section shows how to derive the canonical partition function for a single particle in a box.

The three lowest-lying energy eigenstates for a one-dimensional particle in a box are illustrated in
�gure 26.4.
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Figure 26.4: Eigenfunctions for a Particle in a Box
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The wavevector of the nth state is denoted kn, and can be determined as follows: Observe that the
ground-state wavefunction (n = 1) picks up π (not 2π) units of phase from one end of the box to
the other, and the nth state has n times as many wiggles as the ground state. That is,

kn L = nπ (26.61)

where L is the length of the box.

As always, the momentum is p = ~ k, so for a non-relativistic particle the the energy of the nth
state is

En =
p2

2m

=
n2 π2 ~2

2mL2

(26.62)

and the partition function is therefore

Z =
∞∑
n=1

exp(−βn
2 π2 ~2

2mL2
)

=

∞∑
n=1

exp(−π
4
n2 Λ2

L2
)

=
∞∑
n=1

Xn2

(26.63)

where (as always) Λ denotes the thermal de Broglie length (equation 26.2), and where the �rst term
in the partition function is:

X := exp(−π
4

Λ2

L2 )

= exp(−E1
kT )

= exp(
−p21/2m
kT )

(26.64)

and conversely
Λ
L =

√
( 4
π
E1
kT ) (26.65)

where E1 and p1 are the kinetic energy and the momentum of the n = 1 state of the particle in a
box.

In the low temperature limit, X is small, so only the �rst few terms are important in the sum on
the RHS of equation 26.63. When X is less than 0.5, we can approximate Z to better than 1ppm
accuracy as:

Z = X +X4 +X9 +X16 (26.66)

The probability of occupation of the two lowest-lying states are then:
P1 = 1 − X3 ±O(X6)
P2 = X3 ±O(X6)

(26.67)
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We now move away from the low temperature limit consider moderate and high temperatures. In
this case, the sum in equation 26.63 can be approximated by an integral, to high accuracy.1

The integral is in fact a Gaussian integral, which makes things easy for us, since Gaussian integrals
show up quite often in physics, and there are routine procedures for handling them. (See reference 56
for a review.) In fact, you can almost do this integral in your head, by making a scaling argument.
The summand in equation 26.63 (which is also our integrand) is a Gaussian with a peak height
essentially equal to unity, and with a width (along the n axis) that scales like L/Λ. So the area
under the curve scales like L/Λ. If you do the math, the factors of 2 and factors of π drop out and
you �nd that the area of a half-Gaussian is just L/Λ.

Figure 26.5: Gaussian Approximation to the Partition Function for a Particle in a Box

Figure 26.5 shows why we care about only half of the Gaussian. Also, if we want the area under the
Gaussian curve to be a good approximation, it pays to account for the red shaded region that does
not contribute to the partition function. Most textbooks overlook this, but it makes a dramatic
improvement at the low end of the temperature range. Equation 26.68 gives much better than 1ppm
accuracy all the way down to X = .5, where it mates up with equation 26.66 as shown in �gure 26.6.

Z = L
Λ − 1/2 (Moderate or High Temperature) (26.68)

At su�ciently high temperature and/or low density, you can drop the 1/2.

Figure 26.6: Gaussian versus Four-Term Approximation

We can use the partition function to derive anything we need to know about the thermodynamics
of a particle in a box.

1This is similar to (but not exactly equivalent to) the Thomas-Fermi approximation. Also beware that there is
something else called Thomas-Fermi theory, which is considerably more elaborate than the Thomas-Fermi approxi-
mation.
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Let us now pass from one dimension to three dimensions. The partition function for a particle in a
three-dimensional box can be derived using the same methods that led to equation 26.68. We won't
bother to display all the steps here. The exact expression for Z can be written in various ways,
including:

Z =
∞∑

nx=1

∞∑
ny=1

∞∑
nz=1

exp(−βn
2
x π

2 ~2

2mL2
x

) exp(−β
n2
y π

2 ~2

2mL2
y

) exp(−βn
2
z π

2 ~2

2mL2
z

) (26.69)

In the high-temperature limit this reduces to:

Z =
V

Λ3
(26.70)

where V is the volume of the box. The relationship between equation 26.68 and equation 26.70 is
well-nigh unforgettable, based on dimensional analysis.

26.10 Area per State in Phase Space

It turns out that Planck used h in connection with thermodynamics many years before anything
resembling modern quantum mechanics was invented. Thermodynamics did not inherit h from
quantum mechanics; it was actually the other way around. More importantly, you shouldn't imagine
that there is any dividing line between thermodynamics and quantum mechanics anyway. All the
branches of physics are highly interconnected.

26.10.1 Particle in a Box

If we (temporarily) con�ne attention to the positive k axis, for a particle in a box, equation 26.61 the
wavenumber of the nth basis state is kn = nπ/L. The momentum is therefore pn = ~kn = nπ~/L.
Therefore, the spacing between states (along the the positive momentum axis) is π~/L. Meanwhile,
there is no spacing along the position axis; the particle is within the box, but cannot be localized
any more precisely than that. Therefore each state is (temporarily) associated with an area in phase
space of π~ or equivalently h/2. The states themselves do not have any extent in the p direction;
area in phase space is the area between two states, the area bounded by the states.

For a particle in a box, running-wave states are not a solution to the equation of motion. Therefore,
when we consider the k axis as a whole, we �nd that the area between one state and the next consists
of two patches of area, one at positive k and another at negative k. Both values of k, positive and
negative, correspond to the same physical state. Taking these two contributions together, the actual
area per state is simply h.

Figure 26.7 shows the phase space for a particle in a box, with the lowest three areas color-coded.
The area �associated� with a state is the area between that state and the preceding one.



Partition Function: Some Examples 26�27

0

1

2

3

L

n 
= 

k 
/ (
π

/L
)

Figure 26.7: Phase Space : Particle in a Box



26�28 Modern Thermodynamics

26.10.2 Periodic Boundary Conditions

We now consider a particle subject to periodic boundary conditions with period L. This is analogous
to water in a circular trough with circumference L. Running-wave states are allowed. The calculation
is nearly the same as for a particle in a box, except that the wavenumber of the nth basis state is
kn = 2nπ/L, which di�ers by a factor of 2 from the particle-in-a-box expression. Also, there is a
n = 0 state that we didn't have in the box.

In this case, positive k corresponds to a rightward running wave, while negative k corresponds to
a leftward running wave. These states are physically distinct, so each state has only one patch of
area in phase space. The area is 2π~ or simply h.

Figure 26.8 shows the phase space for this case, with the three lowest-energy basis states color
coded. This is much simpler than the particle-in-a-box case (�gure 26.7).

26.10.3 Harmonic Oscillator

Figure 26.9 shows the analogous situation for a harmonic oscilator. Once again, the states themselves
occupy zero area in phase space. When we talk about area in phase space, we talk about the area
bounded between two states. In the �gure, the states are represented by the boundary between one
color and the next. The boundary has zero thickness.

For the harmonic oscillator (unlike a particle in a box) each state has nontrivial exent in the
position-direction, not just the momentum-direction.

26.10.4 Non-Basis States

Any state of the system can be expressed as a linear combination of basis states. For example, if you
want to create a state that is spatially localized somewhere within the box, this can be expressed
as a linear combination of basis states.

Now it turns out that the process of taking linear combinations always preserve area in phase space.
So each and every state, including any spatially-localized state, will occupy an area h in phase space.
This fact is used in section 12.3.

Actually it has been known since the 1800s that any physically-realizable transformation preserves
area in phase space; this is known as Liouville's theorem. Any violation of this theorem would
immediately violate many laws of physics, including the second law of thermodynamics, the Heisen-
berg uncertainty principle, the optical brightness theorem, the �uctuation/dissipation theorem, et
cetera.

Phase space is conserved.
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Figure 26.9: States of De�nite Energy : Harmonic Oscillator
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Density Matrices

For the sake of completeness, this section makes explicit the limits of validity for equation 2.2, and
explains how to handle the unusual situations where it is not valid.

Equation 2.2 is almost the most general for-
mulation of the entropy idea.

Equation 27.6 is truly the most general formu-
lation.

If you are using an ordinary computer and an
ordinary communication channel, measuring
bits and the probability of bits, equation 2.2
serves just �ne.

If you are using a quantum computer and/or
a quantum communication channel, measur-
ing qubits and the amplitude of qubits, you
presumably didn't get into that situation by
accident, and you will be well aware of the
need to use equation 27.6.

If you are dealing with a nondegenerate
macroscopic system, equation 2.2 should serve
just �ne.

If you are dealing with (say) the heat capac-
ity of a super�uid, superconductor, or other
system that exhibits macroscopic quantum co-
herence, you will presumably be aware of the
need to use equation 27.6.
Most commonly, equation 27.6 is used in con-
junction with ultramicroscopic systems. As
an example, consider the sp3 atomic orbitals,
which are a coherent superposition of the
{s,px,py,py} orbitals.

It is more-or-less impossible to formulate a theory of thermodynamics without a concept of mi-
crostate. Microstates are best understood in terms of quantum states, which is the approach taken
throughout this document.

There is, of course, more to quantum mechanics than the notion of state. There is also the notion of
probability amplitude (or simply amplitude); the absolute square of the amplitude is the probability.
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For many purposes, the probability tells us ev-
erything we need to know, so we don't directly
care about the amplitude.

However there are situations where the sys-
tem exhibits coherence between the quantum
states. We sometimes say the system is in an
entangled state. Schrödinger's Cat is a well-
known example, perhaps an unnecessarily-
complicated example.

When a system exhibits both coherent superposition and incoherent (thermal) mixing, the best way
to represent it is in terms of a density matrix.

Any pure quantum state |ψ〉 is represented by a density matrix ρ which can be expressed as an
outer product:

ρ = |ψ〉〈ψ| (27.1)

That means that for an N -dimensional state space, the density matrix will be an N ×N matrix.

Let's look at some examples. Suppose the state-space of the system is spanned by two basis states,
|1〉 and |2〉. Each of these states can be represented by a state vector, or by the corresponding
density matrix.

ρ1 = |1〉〈1| =
[
1 0
0 0

]

ρ2 = |2〉〈2| =
[
0 0
0 1

] (27.2)

Things get more interesting when we consider a state that is a coherent superposition of the two
basis states:

|a〉 =
|1〉 − |2〉√

2

ρa = |a〉〈a| =
[

1/2 -1/2
-1/2 1/2

] (27.3)

Note that the diagonal elements of the density matrix can be interpreted as the probability of
the basis states, and they necessarily sum to unity, as you can see in each of the examples. The
o�-diagonal elements represent correlations between the the basis states.

Things get even more interesting if we allow an arbitrary phase, as follows:

|b〉 =
|1〉+ ei φ|2〉√

2

ρb = |b〉〈b| = 1/2

[
1 ei φ

e−i φ 1

] (27.4)

It turns out that in many situations, especially macroscopic situations, there are physical processes
that perturb the phase of a superposition such as this. If we take the average over all phases, we
get:

〈ρb〉 =

[
1/2 0
0 1/2

]
(27.5)
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which for the �rst time shows us the power of the density-matrix formalism. The object in equa-
tion 27.5 does not represent a pure quantum state, but rather the incoherent (thermal) mixing of
states. This stands in contrast to previous equations such as equation 27.4 which did represent pure
quantum states.

Note that equation 27.5 could have been obtained by taking a 50/50 mixture of ρ1 and ρ2 as given
in equation 27.2. This is an example of the general rule that thermal mixtures can be computed by
averaging the density matrices of the ingredients.

Notice the great power of the density matrix: Whereas a quantum state vector |a〉 represents a
microstate, a suitable density matrix ρ can fully represent a macrostate.

Reference 35 contains many more examples of density matrices.

There is a wonderfully simple test to detect pure states, by looking at the square of the density
matrix. If and only if ρ2 = ρ, the density matrix represents a pure state; otherwise it represents a
mixture. Pure states have zero entropy; mixtures have entropy greater than zero, as we shall see in
connection with equation 27.6.

Note that equation 27.4 represents a pure state while equation 27.5 does not � even though they
have the same diagonal elements, i.e. the same state-by-state probabilities for the basis states. The
o�-diagonal terms, i.e. the correlations, make a signi�cant contribution to the entropy.

In all generality, for a system characterized by a density matrix ρ, the entropy is given by

S := −Tr ρ log ρ (27.6)

This is the most robust de�nition of entropy. This is the gold standard. For many cases, i.e. when
we can ignore quantum entanglement, it reduces to equation 2.2. Other expressions may be useful in
more-restricted cases (as in section 9.6 for example) but you can never go wrong using equation 27.6.

Since the expectation value of any observable operator O is given by Tr ρO, equation 27.6 can be
interpreted as the expectation value of the surprisal, as discussed in section 2.7.1, where we de�ne
the operator form of the surprisal to be:

$ := − log ρ (27.7)

In case you are wondering how to take the logarithm of a matrix, here's one way to do it: Expand
log(x) in a Taylor series. (It is smarter to expand about x = 1 than about x = 0.) Then you can
evaluate log(x) in terms of powers of x, which requires nothing beyond matrix multiplication, scalar
multiplication, addition, and other well-understood operations. Speci�cally,

log(ρ) = −
∞∑
N=1

(1− ρ)N

N
(27.8)

Furthermore, in any basis where the density matrix is diagonal � i.e. where the o�-diagonal elements
vanish � there is an even easier way to evaluate the logarithm: just take the log of each diagonal
element separately, element by element.

Also: In any basis where the density matrix is diagonal, equation 27.6 is manifestly identical to
equation 2.2. Note that any matrix can be made diagonal by a suitable change of basis. Also
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note that the value of the trace operator is una�ected by a change of basis; this can be seen as an
immediate consequence of the �cyclic property� of the trace.

In a practical sense, what this section is saying is that if your density matrix ρ is not diagonal, it
might be a good idea to perform a change of basis so that ρ becomes diagonal, and then evaluate
equation 27.6 (or equivalently equation 2.2) in that basis. Equation 27.6 is just a compact way of
saying this.
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Summary

� Thermodynamics inherits many results from nonthermal mechanics. Energy, momentum, and
electrical charge are always well de�ned. Each obeys a strict local conservation law.

� Entropy is de�ned in terms of probability. It is always well de�ned. It obeys a strict local
paraconservation law. Entropy is what sets thermodynamics apart from nonthermal mechan-
ics.

� Entropy is not de�ned in terms of energy, nor vice versa. Energy and entropy are well de�ned
even in situations where the temperature is unknown, unde�nable, irrelevant, or zero.

� Entropy is not de�ned in terms of position. It involves probability spread out in state-space,
not necessarily particles spread out in position-space.

� Entropy is not de�ned in terms of multiplicity. It is equal to the log of the multiplicity in the
special case where all accessible states are equiprobable . . . but not in the general case.

� Work su�ers from two inconsistent de�nitions. Heat su�ers from at least three inconsistent
de�nitions. Adiabatic su�ers from two inconsistent de�nitions. At the very least, we need to
coin new words or phrases, so we can talk about the underlying reality with some semblance
of clarity. (This is loosely analogous to the way phlogiston was replaced by two more-modern,
more-precise concepts, namely energy and oxygen.)

� Heat and work are at best merely means for keeping track of certain contributions to the
energy budget and entropy budget. In some situations, your best strategy is to forget about
heat and work and account for energy and entropy directly.

� When properly stated, the �rst law of thermodynamics expresses conservation of energy . . .
nothing more, nothing less. There are several equally-correct ways to state this. There are
also innumerably many ways of misstating it, some of which are appallingly widespread.

� When properly stated, the second law of thermodynamics expresses paraconservation of
entropy . . . nothing more, nothing less. There are several equally-correct ways to state
this. There are also innumerably many ways of misstating it, some of which are appallingly
widespread.
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� Some systems (not all) are in internal equilibrium. They are described by a thermal distribu-
tion. They have a temperature.

� Even more importantly, some systems (not all) are in internal equilibrium with exceptions.
They are described by a thermal distribution with exceptions. They have a temperature.

� Two systems that are each in internal equilibrium may or may not be in equilibrium with each
other. Any attempted theory of thermodynamics based on the assumption that everything is
in equilibrium would be trivial and worthless.

� The idea of distinguishing thermal versus nonthermal energy transfer across a boundary makes
sense in selected situations, but has serious limitations.
• Heat exchangers exist, and provide 100% thermal energy transfer.
• Thermally-insulated pushrods exist, and (if properly used) provide nearly 100% nonther-
mal energy transfer.
• The idea of distinguishing thermal from nonthermal on the basis of transfers across a
boundary goes to pot in dissipative situations such as friction in an oil bearing.

� There is a well-founded way to split the energy-change dE into a thermal part T dS and a
mechanical part P dV (subject to mild restrictions).

� There is a well-founded way to split the overall energy E into a Lochrian (thermal) part and
a non-Locrian (nonthermal) part (subject to mild restrictions).

� Not all kinetic energy contributes to the heat capacity. Not all of the heat capacity comes
from kinetic energy. Not even close.

More generally, none of the following splits is the same as another:
• T dS versus P dV .
• Locrian versus non-Locrian.
• Cramped versus uncramped.
• Kinetic versus potential energy.
• Overall motion of the center-of-mass versus internal motion relative to the center-of-mass.

� There is a simple relationship between force and momentum, for any system, macroscopic or
microscopic.

� For pointlike systems (no internal degrees of freedom), there is a simple relationship between
overall force and total kinetic energy . . . but for more complex systems, the relationship is
much more complicated. There are multiple inequivalent work-like quantities, depending on
what length scale λ you look at.
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About the Book

I have made essentially all of this book available on the World Wide Web. The HTML version is
at www.av8n.com/physics/thermo/. The the PDF version is at www.av8n.com/physics/thermo-
laws.pdf.

The HTML was prepared from the LATEX sources using HeVeA, plus some custom post-processing.

Many readers have provided valuable feedback about the parts they liked and the parts that needed
�xing. Many sections were written in response to readers' requests for more information on certain
topics.
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