
1

Uncertainty

as Applied to
Measurements and Calculations

John Denker

1 Introduction

1.1 How Many Digits Should Be Used?

Here are some simple rules that apply whenever you are writing down a number:

(1) Use many enough digits to avoid unintended loss of information.

(2) Use few enough digits to be reasonably convenient.

Important note: The previous two sentences tell you everything you need to know for most
purposes, including real-life situations as well as academic situations at every level from primary
school up to and including introductory college level. You can probably skip the rest of this
document.

(3) When using a calculator, it is good practice to leave intermediate results in the machine. This is
simultaneously more accurate and more convenient than writing them down and then keying them in
again. For details on this, see section 7.11.

Seriously: The primary rule is to use plenty of digits. You hardly even need to think about it. Too many
is vastly better than too few. To say the same thing the other way: If you ever have more digits than you
need and they are causing major inconvenience, then you can think about reducing the number of digits.

If you want more-detailed guidance, some ultra-simple procedures are outlined in section 2. If you want even
more guidance, the details on how to do things right are discussed in section 8.2. For a discussion of the
e�ect of roundo�, see section 8.6. For a discussion of why using �sig �gs� is insane, see section 1.3. There is
also a complete table of contents at the end of section 2.2.

1.2 What About Uncertainty?

(4) In many cases, when you write down a number, you need not and should not associate it with any
notion of uncertainty.

� One way this can happen is if you have a number with zero uncertainty. If you roll a pair of dice
and observe �ve spots, the number of spots is 5. This is a raw data point, with no uncertainty
whatsoever. So just write down the number. Similarly, the number of centimeters per inch is
2.54, by de�nition, with no uncertainty whatsoever. Again: just write down the number.
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� Another possibility is that there is a cooked data blob, which in principle must have �some�
uncertainty, but the uncertainty is too small to be interesting. It is insigni�cant. It is unimportant.
It is immaterial. There are plenty of situations a moderately rough approximation is su�cient.
There are even some situations where an extremely rough approximation is called for, as in so-
called �Fermi� problems. This point is discussed in reference 1.

Along the same lines, here is a less-extreme example that arises in the introductory chemistry
class. Suppose the assignment is to balance the equation for the combustion of gasoline, namely

aC8H18 + bO2 → xCO2 + yH2O (1)

by �nding numerical values for the coe�cients a, b, x, and y. The conventional answer is
(a, b, x, y) = (2, 25, 16, 18). The outcome of the real reaction must have �some� uncertainty,
because there will generally be some nonidealities, including the presence of other molecules such
as CO or C60, not to mention NO2 or whatever. However, my point is that we don't necessarily
care about these nonidealities. We can perfectly well �nd the idealized solution to the idealized
equation and postpone worrying about the nonidealities and uncertainties until much, much later.

As another example, suppose you use a digital stopwatch to measure some event, and the reading
is 1.234 seconds. We call this number the indicated time, and we distinguish it from the true

time of the event, as discussed in section 5.5. In principle, there is no chance that the indicated
time will be exactly equal to the true time (since true time is a continuous variable, whereas the
indicated time is quantized). However, in many cases you may decide that it is close enough, in
which case you should just write down the indicated reading and not worry about the quantization
error.

(5) The best way to understand uncertainty is in terms of probability distributions. Such things are discussed
in section 3.1 and in more detail in reference 2.

(6) Suppose we wish to describe a probability distribution, and further suppose it is a simple one-
dimensional distribution, such as the one shown in �gure 1. (There's a lot going on in this �gure;
for details, see reference 2.) Any Gaussian distribution (also called a normal distribution, or simply a
Gaussian) can be described in terms of two numbers, namely the nominal value and the uncertainty.
One good notation for this uses an expression of the form 1.234±0.055, where the �rst numeral (in this
case 1.234) represents the nominal value, and the second numeral (in this case 0.055) represents the
width of the distribution, i.e. the absolute uncertainty. (Typically, but not necessarily, the standard

deviation is used to quantify the width. The region spanned by ± one standard deviation, i.e. ±0.055,
is indicated by yellow shading in the diagram.) This notation works for algebraic symbols, too: A±B.

Figure 1: Gaussian Distribution, 1.234± 0.55

For numerical (non-algebraic) values, you can write something of the form 1.234(55), where the number
in parentheses indicates the uncertainty. The place-value is such that the last digit of the uncertainty
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lines up with the last digit of the nominal value. Therefore 1.234(55) is just a more-compact way of
writing 1.234± 0.055.

When a number has been subjected to rounding, the roundo� error is at most a half-count in the last
decimal place. If this is the dominant contribution to the uncertainty, we can denote it by 543.2[1/2].
Beware that the distribution of roundo� errors is nowhere near Gaussian, as discussed in section 8.3.

In cases where you are uncertain about the uncertainty, as sometimes happens, you can write 543.2(x)
which represents a �few� counts of uncertainty in the last place. This stands in contrast to 543.2(?)
which usually means that the entire value is dubious, i.e. some chance of a gross error (such as measuring
the length instead of the width).

If you wish to describe the uncertainty in relative terms (as opposed to absolute terms), it can be
expressed using percentages, parts per thousand, parts per million, or something like that, e.g. 2900±
0.13% or equivalently 2900± 1300ppm.

(Note that in the expression 1.234± 0.055 we have two separate numbers represented by two separate
numerals, which makes sense. This stands in contrast to the �sig �gs� notation, which tries to represent
two numbers using a single numeral, which is a very bad idea.)

(7) Suppose we have a distribution over x and a distribution over y. If the two distributions are known
to be uncorrelated, you can get away with describing each one separately, with one nominal value and
one width apiece. However, that only works in certain special situations. More generally, you need to
talk about the distribution over x and y jointly. Knowing the width in the x-direction and the width
in the y-direction is nowhere near su�cient to give a complete description of the joint distribution,
because correlations can produce an elongated, cockeyed distribution, as in �gure 2. For details, see
section 7.7, section 7.23, and section 9.3.

Figure 2: Correlated Uncertainties

If you have N variables that are statistically in-
dependent and Gaussian distributed, you can
describe the uncertainty in terms of N vari-
ances. (The standard deviation is the square
root of the variance.)

If you have N variables that are correlated, to
describe an N -dimensional Gaussian distribu-
tion requires a covariance matrix which has N2

entries. The plain old variances are the diago-
nal elements of the covariance matrix, and they
don't tell the whole story, especially when N is
large.
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In the real world, there are commonly nontrivial correlations involving several variables � or several
thousand variables. In other words, there are lots of nontrivial o�-diagonal matrix elements in the
covariance matrix.

As a corollary, you should not become too enamored of the notation 1.234±0.055 or 1.234(55), because
that only allows you to keep track of the N variances, not the N2 covariances.

(8) Let us continue with the stopwatch example that was introduced in item 4. Suppose we make two
observations. The �rst reading is 1.234 seconds, and the second reading is just the same, namely 1.234
seconds. Meanwhile, however, you may believe that if you repeated the experiment many times, the
resulting set of readings would have some amount of scatter, namely ±0.01 seconds. The two observa-
tions that we actually have don't show any scatter at all, so your estimate of the uncertainty remains
hypothetical and theoretical. Theoretical information is still information, and should be written down
in the lab book, plain and simple. For example, you might write a sentence that says �Intuition suggests
the timing data is reproducible ±0.01 seconds.� It would be even better to include some explanation
of why you think so. The principle is simple: Write down what you know. Say what you mean, and
mean what you say.

(9) The same principle applies to the indicated values. The recommend practice is to write down each
indicated value, as-is, plain and simple.

You are not trying write down the true values. You don't know the true values (except
insofar as the indicated values represent them, indirectly), as discussed in section 5.5. You
don't need to know the true values, so don't worry about it. The rule is: Write down what

you know. So write down the indicated value.

Also: You are not obliged to attribute any uncertainty to the numbers you write down.
Normal lab-book entries do not express an uncertainty using A ± B notation or otherwise,
and they do not �imply� an uncertainty using sig �gs or otherwise. We are always uncertain
about the true value, but we aren't writing down the true value, so that's not a concern. For
an example of how this works, see table 5 in section 6.4.

Some people say there must be some uncertainty �associated� with the number you write
down, and of course there is, indirectly, in the sense that the indicated value is �associated�
with some range of true values. We are always uncertain about the true value, but that does
not mean we are uncertain about the indicated value. These things are �associated� ... but
they are not the same thing.

In a well-designed experiment, things like readability and quantization error usually do not
make a large contribution to the overall uncertainty anyway, as discussed in section 5.8.
Please do not confuse such things with �the� uncertainty.

(10) There must be some �calibration rule� that connects each indicated value to the corresponding range
of true values. Be sure to write this rule in the lab book somewhere, unless it is super-obvious.

It su�ces to write down the rule just once; you do not need to restate the rule every time you take a
reading. Later, when you are analyzing the data, you can apply the rule to each of the readings.1 As
a familiar example of such a rule, you might say �all readings are uncertain due to Poisson statistics�
. For another familiar example, see section 6.1.

(11) Before you report �the� uncertainty in your results, make sure you have identi�ed all signi�cant con-
tributions to the uncertainty. It does no good to carefully calculate one contribution while overlooking
other contributions. See section 5.8. Also, watch out for correlated uncertainties. See section 7.18.

1Keep in mind that in a well-designed experiment, quantization error and calibration errors will usually not be the dominant
contribution to the overall uncertainty.
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(12) When describing a distribution, state what family of distributions you are talking about, unless this
is obvious from context. Examples include Gaussian, square, triangular, Bernoulli, Poisson, et cetera.
See section 8.5 and section 13.8 for why this is important. See reference 2 for a discussion of some
common distributions, and the relationships between them.

(13) It is usually a good practice to keep all the original data. When reading an instrument, read it as
precisely as the instrument permits, and write down the reading �as is� ... without any conversions, any
roundo�, or anything else. See section 8.4 for details (including the rare and tricky possible exceptions).

1.3 What About Signi�cant Figures?

(14) No matter what you are trying to do, signi�cant �gures are the wrong way to do it.

When writing, do not use the number of digits to imply anything about the uncertainty. If you want to
describe a distribution, describe it explicitly, perhaps using expressions such as 1.234 ± 0.055, as discussed
in section 1.2.

When reading, do not assume the number of digits tells you anything about the overall uncertainty, accuracy,
precision, tolerance, or anything else, unless you are absolutely sure that's what the writer intended ... and
even then, beware that the meaning is very unclear.

People who care about their data don't use sig �gs.

Signi�cant-digit dogma destroys your data and messes up your thinking in many ways, including:
a) Given a distribution that can be described by an expression such as A ± B, such as 1.234 ± 0.055,

converting it to sig �gs gives you an excessively crude and erratic representation of the uncertainty, B.
See section 8.6.3 and especially section 17.5.

b) Converting to sig �gs also causes excessive roundo� error in the nominal value, A. This is a big problem.
See section 7.12 for a concrete example.

c) Sig �gs cause people to misunderstand the distinction between roundo� error and uncertainty. See
section 7.12 and section 6.4.

d) Sig �gs cause people to misunderstand the distinction between uncertainty and signi�cance. See sec-
tion 14, especially section 14.3.

e) Sig �gs cause people to misunderstand the distinction between the indicated value and the corresponding
range of true values. See section 5.5.

f) Sig �gs cause people to misunderstand the distinction between distributions and numbers. Distributions
have width, whereas numbers don't. Uncertainty is necessarily associated with some distribution, not
with any particular point that might have been drawn from the distribution. See section 3.1, section 6.4,
and reference 2.

g) As a consequence, sig �gs make people hesitate to write down numbers. They think they need to know
the amount of supposedly �associated� uncertainty before they can write the number, when in fact they
don't. Very commonly, there simply isn't any �associated� uncertainty anyway, as discussed in item 4.

h) Sig �gs weaken people's understanding of the axioms of the decimal numeral system. See section 17.5.7.
i) Sig �gs provide no guidance as to the appropriate decimal representation for repeating decimals such

as 80 ÷ 81, or irrational numbers such as
√

2 or π.
j) Sig �gs give people the idea that N nominal values should be associated with N uncertainties, which

is just crazy. In fact the number of uncertainties scales like (N2 +N)/2, as discussed in section 9.3.
k) As a related point, sig �gs is predicated on �propagation of error� which in turn assumes that things

are uncorrelated, when in fact there are often lots of correlations. This causes the error-estimates to
fail without warning.
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l) The sig �gs approach cannot possibly apply to algebraic variables such as A± B, so you are going to
have to learn the A±B representation anyway. Having learned it, you might as well use it for decimal
numerals such as 1.234± 0.055. See section 17.5.5.

m) Sig �gs cause people to misunderstand the distinction between representation of uncertainty and prop-

agation of uncertainty. See section 7.1.
n) Et cetera

For a more detailed discussion of why sig �gs are a bad idea, see section 17 and reference 3

2 Pedagogical Digression � Extreme Simpli�cations

2.1 Postponing Uncertainty

In an introductory chemistry class, you should start with some useful chemistry ideas, such as atoms,
molecules, bonds, energy, atomic number, nucleon number, etc. � without worrying about uncertainty in
any form, and double-especially without introducing ideas (such as sig �gs) that are mostly wrong and worse
than useless.

Roundo� procedures are necessary, so learn that. Scienti�c notation is worthwhile, so learn that. The �sig
�gs� rules that you �nd in chemistry books are not necessary and are not worthwhile, so the less said about
them, the better.

In place of the �sig �gs� rules, you can use the following guidelines:

� Keep all the original data. Do not round o� the original data. See item 13 above.

� In the introductory class, the following �house rules� apply:

Basic 3-digit rule: For a number in scienti�c notation, the rule is simple: For present purposes, you
are allowed to round it o� to three digits (i.e. two decimal places).

Example: 1.23456× 108 may be rounded to 1.23× 108

For a number not in scienti�c notation, the rule is almost as simple: convert to scienti�c notation, then
apply the aforementioned 3-digit rule. (Afterwards, you can convert back, or not, as you wish.)

The point of these rules is to limit the amount of roundo� error. As a corollary, you are allowed to keep
more than three digits if you wish, for any reason, or for no reason at all. This is makes sense because
it introduces even less roundo� error. As another corollary, trailing zeros may always be rounded o�,
since that introduces no roundo� error at all.

Example: 1.80 may be rounded to 1.8, since that means the same thing. Conversely 1.8 can be
represented as 1.80, 1.800, 1.8000000, et cetera.

These rules apply to intermediate steps as well as to �nal results.

These �house rules� apply unless/until you hear otherwise. They tell you what is considered signi�cant
at the moment. As such, they have zero portability outside the introductory class, and even within
this class we will encounter some exceptions (as in section 7.8 for example). Still, for now three digits
is enough. There is method to this madness, but now is not the time to worry about it. We have more
important things to worry about.

These rules di�er in several ways from the �sig �gs� rules that you often see in introductory chemistry
textbooks.
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� First of all, these rules are much simpler.

� Secondly, the conceptual basis is di�erent. The �sig �gs� rules in the textbooks are a crude attempt
to keep track of uncertainty. Despite the name, those �sig �gs� rules do not even attempt to express
signi�cance. (See section 14.3 for details on this.) The roundo� rules given here are actually based on
signi�cance, i.e. on the importance of the numbers and how they will be used downstream. They say
nothing about the accuracy, precision, or uncertainty of the numbers. See section 17.5.2.

This is important because of the following contrast:

Every time you write down a number, you
have to write down a de�nite number of dig-
its, and this almost always involves rounding
o�. Therefore you must have a roundo� rule
or some similar guidance as to how many digits
are needed.

There are many cases when you want to write
down a number without any indication of un-
certainty.

A roundo� rule is necessary and harmless (un-
less abused).

A �sig �gs� rule that forces a connection be-
tween the number of digits and the uncertainty
is unnecessary and harmful.

� Thirdly, these rules (unlike the textbook �sig �gs� rules) permit you to get rid of trailing zeros. This is
important because it means these rules are consistent with the axioms of the decimal number system
that we all learned in 3rd grade and reviewed every year since then: 1.80 is a rational number. It is by
de�nition equal to 180/100, which when written in lowest terms is 9/5. Similarly 1.800 is by de�nition
equal to 1800/1000, which is also exactly equal to 9/5.

Remember, these are roundo� rules. Do not confuse roundo� with uncertainty. Roundo� error is just one
contribution to the overall uncertainty. Knowing how much roundo� has occurred gives you a lower bound
on the overall uncertainty, but this lower bound is rarely the whole story. Looking at the number of digits in
a numeral gives you an upper bound on how much roundo� has occurred. (This is not a tight upper bound,
since the number might be exact, i.e. no roundo� at all.) At the end of the day, the number of digits tells
you nothing about the overall uncertainty.

Roundo� error is in the category of things that we generally do not need to know very precisely, so long as
it is small enough. Uncertainty is not in this category, for reasons discussed in section 4.4.

2.2 Range of Numbers (as a Simpli�ed Distribution)

As discussed in section 3.1, an expression such as 1.234 ± 0.055 does not represent a number, but rather
a distribution over numbers, i.e. a probability distribution. Unfortunately, people sometimes use sloppy
shorthand shorthand expressions, perhaps referring to the �random variable� x or the �uncertain quantity�
x, such that x = 1.234 ± 0.055. Beware that this shorthand causes endless confusion. When in doubt, it is
best to think of 1.234± 0.055 as describing a distribution.

As a compromise, in the all-too-common situation where somebody wants to learn about uncertainty but
doesn't have a very strong background in probability, we can simplify things by talking about an interval or
equivalently a range of numbers.

Note: �interval� is an o�cial mathematical term, while �range of numbers� is more likely to be
understood by non-experts.
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Working with intervals is easier than working with distributions. You can draw a range of numbers on the
number line much more easily than you can draw a probability distribution. It is not an ideal solution, but
it is a way to get started. (In contrast, the idea of so-called �random variables� is not good, not as a starting
point or anything else.)

In order of decreasing power, sophistication, and reliability:

probability distributions� intervals� so-called �random variables� (2)

In order of decreasing simplicity:

intervals� probability distributions� so-called �random variables� (3)

In any case, the fundamental point is that some situations cannot be described by a single �number�. Instead,
they are better described by a whole range of numbers that are consistent with our knowledge of the situation.
The extent of the range expresses the uncertainty. One way to explain this is in terms of hedging a bet. If
you roll a pair of dice, the most likely outcome is 7 ... but that outcome occurs less than 17% of the time.
If you want to be right more than half of the time, you can't do it by betting on any single number, but you
can do it by betting on a range of numbers.

So, if you want, you can simplify the following discussion (with only a modest reduction in correctness) by
crossing out every mention of �probability distribution� and replacing it with �range of numbers�.
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3 Foundations and Prerequisites

3.1 What Is Uncertainty?

The best way to understand uncertainty is in terms of probability distributions. The idea of probability is
intimately connected with the idea of randomness.

The make use of this idea, you have to identify the relevant ensemble, i.e. the relevant probability distribution,
i.e. the relevant probability measure. Consider for example the star cluster shown in �gure 3. There are two
ways to proceed:

Distribution (A) You could pick one particular star and re-measure its celestial coordinates again and again.
This would produce a sample with some tiny �error bars�.
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Distribution (B) You could randomly pick various stars from the cluster and measure the coordinates of
each one.

These are both perfectly good distributions; they're just not the same distribution. There are innumerable
other distributions you could de�ne. It is often nontrivial to decide which distribution is most informative
in any given situation. There is no such thing as �the� all-purpose probability distribution.

To calculate the width of the cluster in �gure 3, the conventional and reasonable approach is to measure a
great many individual stars and then let the data speak for itself. Among other things, you could calculate
the mean and standard deviation of the ensemble of star-positions.

In contrast, you cannot use the width of distribution (A) to infer anything about the width of distribution
(B). You could measure each individual star ten times more accurately or ten times less accurately and it
would have no e�ect on your value for the width of the cluster. Therefore the whole idea of �propagation of
uncertainty� is pointless in this situation.

Figure 3: M13 Globular Cluster in Hercules

(Brian McLeod, Harvard-Smithsonian Center for Astrophysics)

The contrast between �gure 4 and �gure 5 o�ers another good way of looking at the same fundamental issue.
In both �gures, the red dashed curve represents the distribution of x in the underlying population, i.e. in
the star cluster as a whole. In �gure 4, the orange-shaded region represents the joint probability that that
x occurs in the population and rounds o� to 5 (rounding to the nearest integer). Similarly, the blue-shaded
region represents the joint probability that that x occurs in the population and rounds o� to 2. This is a
small, not-very-probable region.
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Figure 4: The Population
Figure 5: Two of the Subpopulations

Meanwhile, in �gure 5, the orange-shaded region represents the conditional probability of �nding x in the
population, conditioned on x rounding o� to 5. Roughly speaking, this corresponds to the uncertainty on
the position of a single star, after it has been picked and measured. In a well-designed experiment, this has
almost nothing to do with the width of the distribution as a whole (i.e. the population as a whole). Similarly,
the blue-shaded region represents the conditional probability of �nding x in the population, conditioned on
x rounding o� to 2. In this �gure, the area under the blue curve and orange curve are normalized to unity,
as is appropriate for conditional probabilities. The area under the red curve is also normalized to unity. The
sum of the joint probabilities, summed over all colors, is normalized.

These are all perfectly good distributions, just not the same distribution. This often leads to confusion at the
most basic conceptual level, because the language is ambiguous: When somebody says �the error bars on x are
such-and-such� it is not the least bit obvious whether they are talking about the unconditional distribution
(i.e. the underlying population, i.e. the star cluster as a whole), or about the conditional distribution (i.e.
the precision of a single measurement, after a particular star has been picked and measured).

To summarize, when you write �5� in the lab notebook there are at least three concepts to consider.

� The indicated value is xi = 5, with no uncertainty whatsoever.

� This corresponds to some range of true values, {xt|xi = 5} as represented by the orange-shaded region
in �gure 5. This is often a very peculiar distribution, not a normal Gaussian. However, in a well-
designed experiment the details don't matter much, provided the distribution has a �small enough�
width.

� There is also the unconditional range of true values {x}, as represented by the red dashed curve in the
�gures. This is often an important thing to measure. It usually requires obtaining a great many xi
values and then applying statistical formulas.

There is yet more ambiguity because you don't know how much the error bars contribute to the bias as
opposed to the variance. For example, if you round π to 3.14, it contributes precisely nothing to the
variance, because every time you do that the roundo� error is the same. It does however introduce a bias
into the calculation.

Beware: The fact that the conditional probability has some nonzero width is often used as a pretext for
teaching about �sig �gs�, even though in a well-designed experiment it is irrelevant.

In any case, it is not recommended to describe uncertainty in terms of �random numbers� or �uncertain
quantities�. As John von Neumann and others have pointed out, there is no such thing.



4 THE IMPORTANCE OF UNCERTAINTY 16

There is no such thing as a random number.
If it's a number, it's not random.
If it's random, it's not a number.

People do commonly speak in terms of �random numbers� or �uncertain quantities�, but that doesn't make
it right. These must be considered idiomatic expressions and misnomers. See section 4.3 and section 5.2 for
more on this.

If you have a random distribution over numbers,
the randomness is in the distribution,

not in any particular number
that may have been drawn from such a distribution.

An ultra-simple notion of distribution is presented in section 2.2. A more robust but still intuitive and
informal introduction to the idea of probability distributions and probability measures can be found in
section 4.3 and section 5.2. If you want a cheap and easy experiment that generates data with a nontrivial
distribution, partly random and partly not, consider tack-tossing, as discussed in reference 4. Some tack-
tossing data is presented in �gure 6 and �gure 7. For a more formal, systematic discussion of how to think
about probability, see reference 2.

You need to understand the distinction between a number and a distribution before you do anything with
uncertainty. Otherwise you're just pushing around symbols without understanding what they mean.

Figure 6: Binomial Distribution : Diaspogram
Figure 7: Binomial Distribution : XY Scatter Plot

4 The Importance of Uncertainty

4.1 Sometimes It's Unimportant or Nonexistent

Sometimes there is uncertainty, but it is unimportant, as mentioned in section 2.1 and especially section 5.1.

Moreover, sometimes there is no uncertainty, and it would be quite wrong to pretend there is, especially
when dealing with raw data or when dealing with a particular data point drawn from a distribution, as
discussed in section 5.2.
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4.2 Separate versus Bundled Parameters

Suppose we have a distribution over x � perhaps the distribution shown in �gure 1 � and the distribution is
described by a couple of parameters, the mean A and and the standard deviation B. Consider the contrast:

Separate {A,B} Bundled A±B

Sometimes it is best to think of the mean and
standard deviation as two separate, independent
parameters.

Sometimes you might choose to think of the mean
as the �nominal� value of x and the standard de-
viation as the �uncertainty� on x.

This is more abstract and more formal. It is hard
to go wrong with this. One case where it is partic-
ularly advantageous is di�usion, where the mean
velocity is expected to be zero, and all you care
about is the RMS velocity.

This is less formal and more intuitive. It is advan-
tageous when the average is the primary object of
attention.

4.3 Raw Data Points versus Cooked Data Blobs

We must distinguish between raw data points and cooked data blobs. These are di�erent, as surely as a scalar
is di�erent from a high-dimensional vector. As an example of what I'm talking about, consider the following
contrast:

Good Bad

Figure 8 shows 400 data points, each of which has
zero size. The plotting symbols have nonzero size,
so you can see them, but the data itself is a zero-
sized point in the middle of the circle. The distri-
bution over points has some width. The distribu-
tion is represented by the dashed red line.

In �gure 9 each data point is shown with error
bars, which is a bad idea. It is (at best) begging
to be interpreted wrongly. It accounts for the same
uncertainty twice: Once by the scatter in the po-
sition of the zero-sized points, and again by the
bogus bars attached to the points. Remember,
the width is associated with the distribution, not
with any particular raw data point.

Figure 8: Samples Drawn from a Gaussian
Figure 9: Samples with Misbegotten Error Bars
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See also section 5.2. These two �gures, and the associated ideas, are discussed in more detail in reference 2.

Suppose on Monday we roll a pair of slightly-lopsided dice 400 times, and observe the number of spots each
time. Let xi represent the number of spots on the ith observation. This is the raw data: 400 raw data
points. It must be emphasized that each of these raw data points has no error bars and no uncertainty. The
number of spots is what it is, period. The points are zero-sized pointlike points.

On Tuesday we have the option of histogramming the data as a function of x and calculating the mean (A)
and standard deviation (B) of the distribution.

For some purposes, keeping track of A±B is more
convenient than keeping track of all 400 raw data
points.

For some other purposes, A ± B does not tell us
what we need to know.

For example, if we are getting paid according to
the total number of spots, then we have good rea-
son to be interested in A directly and B almost as
directly.

For example, suppose we are using the dice as in-
put to a random-number generator. We need to
know the entropy of the distribution. It is possi-
ble to construct two distributions with the same
mean and standard deviation, but wildly di�erent
entropy. Because the dice are lopsided, we can-
not reliably determine the entropy from A and B
alone.

As another example: Suppose we are getting paid
whenever snake-eyes comes up, and not otherwise.
Because the dice are lopsided, A and B do not tell
us what we need to know.

Using the raw data to �nd values for A and B can be considered an example of curve �tting. (See section 7.24
for more about curve �tting.) It is also an example of modeling. We are �tting the data to a model and
determining the parameters of the model. (For ideal dice, the model would be a triangular distribution, but
for lopsided dice it could be much messier. Beware that using the measured standard deviation of the set
of raw data points is not the best way to determine the shape or even the width of the model distribution.
This is obvious when there is only a small number of raw data points. See section 11.4 and reference 2 for
details on this.)

If we bundle A and B together (as de�ned in section 4.2), we can consider A± B as a single object, called
a blob, i.e. a cooked data blob. We have the option of trading in 400 raw data points for one cooked data
blob. This cooked data blob represents a model distribution, which is in turn represented by two numbers,
namely the mean and the standard deviation.

So, this is one answer to the question of why uncertainty is important: It is sometimes more convenient to
carry around one cooked data blob, rather than hundreds, thousands, or millions of raw data points. Cooking
the data causes a considerable loss of information, but there is sometimes a valuable gain in convenience.

Note that if somebody gives you a cooked data blob, you can � approximately � uncook it using Monte
Carlo, thereby returning to a representation where the distribution is represented by a cloud of zero-sized
points. That is, you can create a set of arti�cial raw data points, randomly distributed according to the
distribution described by the cooked data blob.

In the early stages of data analysis, one deals with
raw data. None of the raw data points has any
uncertainty associated with it. The raw data is
what it is. The raw data speaks for itself.

In the later stages of data analysis, one deals with
a lot of cooked data. In the simplest case, each
cooked data blob has a nominal value and an un-
certainty.
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If one variable is correlated with some other vari-
able(s), we have to keep track of all the means, all
the standard deviations, and all the correlations.
Any attempt to keep track of separate blobs of the
form A±B is doomed to fail.

The raw data speaks for itself.
See section 7.7 for a simple example of a calcu-
lation involving cooked data, showing what can
go wrong when there are correlations. See sec-
tion 7.15 and section 7.16 for a more elaborate dis-
cussion, including one approach to handling cor-
related cooked data.

Here's a story that illustrates an important conceptual point:

Suppose we are using a voltmeter. The manufacturer (or the calibration lab) has provided a calibration
certi�cate that says anything we measure using this voltmeter will be uncertain plus-or-minus blah-blah
percent. In e�ect, they are telling us that there is an ensemble of voltmeters, and there is some spread to
the distribution of calibration coe�cients.

Note that any uncertainty associated with the ensemble of voltmeters is not associated with any of the raw
data points. This should be obvious from the fact that the ensemble of voltmeters existed before we made
any observations. This ensemble is owned by the manufacturer or the calibration lab, and we don't get to
see more than one or two elements of the ensemble. So we rely on the calibration certi�cate, which contains
a cooked data blob describing the whole ensemble of voltmeters.

Now suppose we make a few measurements. This is the raw data. It must be emphasized that each of these
raw data points has no error bars and no uncertainty. The data is what it is, period.

At the next step, we can use the raw data plus other information including the calibration certi�cate to
construct a model distribution. The ensemble of voltmeters has a certain width. It would be a tremendous
mistake to attribute this width to each of the raw data points, especially considering that the calibration
coe�cient is likely to be very strongly correlated across all of our raw data.

See section 13.6 for more on this.

4.4 Weighing the Evidence

When dealing with a cooked data blob, it is sometimes very important to keep track of the width of the blob,
i.e. the uncertainty. Far and away the most common reason for this has to do with weighing the evidence.
If you are called upon to make a judgment based on a collection of evidence, the task is straightforward if
all of the evidence is equally reliable. On the other hand, if some of the evidence is more uncertain than the
rest, you really need to know how uncertain it is.

Here's a non-numerical example: Suppose you are on a jury. there are ten witnesses who didn't see what
happened, and one who did. It should go without saying that you really, really ought to give less weight to
the uncertain witnesses.

Now let's do a detailed numerical example. Suppose we are trying to diagnose and treat a patient who
has some weird symptoms. We have run 11 lab tests, 10 of which are consistent and suggest we should try
treatment �A� while the 11th test suggests we should try treatment �B�.

In the �rst scenario, all 11 observations have the same uncertainty. This situation is depicted in �gure 10.
Each of the observations is shown as a Gaussian (bell-shaped curve) such that the width of the curve
represents the uncertainty.
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Figure 10: Equally-Weighted Evidence

In a situation like this, where the observations are equally weighted, it makes sense to average them. The
average x-value is shown by the black dot, and the uncertainty associated with the average value is shown
by the error bars sticking out from the sides of the dot. We could have represented this by another Gaussian
curve, but for clarity we represented it as a dot with error bars, which is another way of representing a
probabilistic distribution of observations.

We see that the average is about x = 0.1, which is slightly to the right of x = 0. The outlier (the 11th
observation) has pulled the average to the right somewhat, but only somewhat. The outlier is largely outvoted
by the other 10 observations.

Scenario #2 is the same as scenario #1 except for one detail: The 11th observation was obtained using a
technique that has much less uncertainty. This situation is shown in �gure 11. (We know the 11th curve
must be taller because it is narrower, and we want the area under each of the curves to be the same. For all
these curves, the area corresponds to the total probability of the measurement producing some value, which
must be 100%.)

When we consider the evidence, we must give each observation the appropriate weight. The observation with
the small uncertainty is given greater weight. When we take the appropriately-weighted average, it gives us
x = 0.91. This is represented by the black dot in �gure 11. Once again the uncertainty in the average is
represented by error bars sticking out from the black dot.

It should be obvious that the weighted average (�gure 11) is very, very di�erent from from the unweighted
average (�gure 10).

In particular, suppose the yellow bar in the diagram represents the decision threshold. With unweighted
data, the weight of the evidence is to the left of the threshold, and we should try treatment �A�. With
weighted data, the weight of the evidence is to the right of the threshold, and we should try treatment �B�.

On the third hand, when considering these 11 observations collectively, it could be argued that
the chi-square is so bad that we ought to consider the possibility that all 11 are wrong, but let's
not get into that right now. Properly weighing the evidence would be just as important, just
slightly harder to visualize, if the chi-square were lower.



5 FUNDAMENTAL NOTIONS OF UNCERTAINTY 21

Figure 11: Unequally-Weighted Evidence

This could be a life-or-death decision, so it is important to know the uncertainty, so that we can properly
weigh the evidence.

4.5 Signi�cant Figures, or Not

The �signi�cant �gures� approach is intrinsically and incurably unable to represent uncertainty to better
than the nearest order of magnitude; see section 8.6 for more on this. What's worse, the way that sig �gs
are used in practice is even more out-of-control than that; see section 17.5.1 for details.

Everyone who reports results with uncertainties needs to walk a little ways in the other guy's moccasins,
namely the guy downstream, the guy who will receive those results and do something with them. If the
uncertainty is only reported to the nearest order of magnitude, it makes it impossible for the downstream
guy to collect data from disparate sources and weigh the evidence.

To say the same thing the other way, it is OK to use sig �gs if you are sure that nobody downstream from
you will ever use your data in an intelligent way, i.e. will never want to weigh the evidence.

Tangential remark: Just to rub salt into the wound: In addition to doing a lousy job of repre-
senting the uncertainty ∆X, the sig-�gs rules also do a lousy job of representing the nominal
value 〈X〉 because they introduce excessive roundo� error. However that is not the topic of this
section.

5 Fundamental Notions of Uncertainty

5.1 Some Things are Certain, and Some are Uncertain

Some things are, for all practical purposes, completely certain. For example:
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� Recently I bought a carton of eggs, and counted how many eggs it contained. The answer was 12.
That means 12, exactly, with no uncertainty. I am quite certain that there were 12 ± 0 eggs in that
carton. That's my story, and I'm sticking with it.

� Similarly, I don't know everything there is to know about the moon, and I don't know everything there
is to know about cheese, but I am certain for all practical purposes that the moon is not made of green
cheese.

On the other hand, there is a very wide class of processes that lead to a distribution of possible outcomes,
and these are the main focus of today's discussion. Some introductory examples are discussed in section 5.2.

5.2 Uncertainty ≡ Probability Distribution

The only way to really understand uncertainty is in terms of probability distributions. You learned in grade-
school how to add, subtract, multiply, and divide numbers ... but in order to deal with uncertainties you will
have to add, subtract, multiply and divide probability distributions. This requires a tremendously higher
level of sophistication.

An expression such as 45±1 may seem

to represent a number, but it doesn't.
It represents some kind of probability distribution.

If you want a de�nition of probability, in fundamental and formal terms, please see reference 2. For the
present purposes we can get along without that, using instead some simple intuitive notions of probability,
as set forth in the following examples.

As a �rst example, suppose we roll an ordinary six-sided die and observe the outcome. The �rst time we
do the experiment, we observe six spots, which we denote by x1 = 6. The second time, we observe three
spots, which we denote by x2 = 3. It must be emphasized that each of these observations has no uncertainty
whatsoever. The observation x1 is equal to 6, and that's all there is to it.

If we repeat the experiment many times, ideally we get the probability distribution X shown in �gure 12.
To describe the distribution X, we need to say three things: the outline of the distribution is rectangular,
the distribution is centered at x = 3.5, and the distribution has a half-width at half-maximum (HWHM) of
2.5 units (as shown by the red bar).

Figure 12: Probability Distribution for a Six-Sided Die

The conventional but abusive notation for describing such a situation is to write x = 3.5 ± 2.5, where x
is called a �random variable� or an �uncertain quantity�. I do not recommend this notation or this way
of thinking about things. However, it is sometimes encountered, so we need a way of translating it into
something that makes more sense.

An expression of the form 3.5± 2.5 is a �ne way to describe the distribution X. So far so good. There are
however problems with the x that we encounter in expressions such as x = 3.5± 2.5. In this narrow context
evidently x is being used to represent the distribution X, while in other contexts the same symbol x is used
to represent an outcome drawn from X, or perhaps some sort of abstract �average� outcome, or who-knows-
what. This is an example of form not following function. Remember, there is a profound distinction between
a number and some distribution from which that number might have been randomly drawn. See section 6.4
for more on this.
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When you see the symbol x, it is important to appreciate the distinction between x = 3.5 ± 2.5 (which is
abusive shorthand for the distribution X) and particular outcomes such as x1 = 6 and x2 = 3 (which are
plain old numbers, not distributions):

The so-called random variable x �looks� like it
might be one of the observations xi, but it is not.
The expression x = 3.5± 2.5 does not represent a
number; instead it is a shorthand way of describ-
ing the distribution X from which outcomes such
as x1 and x2 are drawn.

An outcome such as x1 or x2 is not an uncertain
quantity; it's just a number. In our example, x1
has the value x1 = 6 with no uncertainty whatso-
ever.

Now suppose we roll two dice, not just one. The �rst time we do the experiment, we observe 8 spots total,
which we denote by x1 = 8. The second time, we observe 11 spots, which we denote by x2 = 11. If we repeat
the experiment many times, ideally we get the probability distribution X shown in �gure 13. To describe
the distribution X, we need to say that the outline of the distribution is symmetrical and triangular, the
distribution peaks at x = 7, and the distribution has a half-width at half-maximum (HWHM) of 3 units (as
shown by the red bar).

Figure 13: Probability Distribution for a Pair of Dice

Next suppose the outcomes are not restricted to being integers. Let one of the outcomes be x3 = 25.37.
Once again, these outcomes are drawn from some distribution X.

We can round o� each of the original data points xi and thereby create some rounded data, yi. For example,
x3 = 25.37 and y3 = 25.4. We can also calculate the roundo� error qi := yi − xi. In our example, we have
q3 = 0.03. Given a large number of such data points, we can calculate statistical properties such as the
RMS roundo� error. Each xi is drawn from the distribution X, while each yi is drawn from some di�erent
distribution Y , and each qi is drawn from some even-more-di�erent distribution Q.

The uncertainty is in the distribution,
not in any particular point drawn from the distribution.

Consider the probability distribution represented by the colored bands in �gure 14. There is a distribution
over y-values, centered at y = 2. Green represents ±1σ from the centerline, yellow represents ±2σ, and
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magenta represents ±3σ. The distribution exists as an abstraction, as a thing unto itself. The distribution
exists whether or not we draw any points from it.

Figure 14: The Distribution Exists Unto Itself

Meanwhile in �gure 15, the small circles represent data points drawn from the speci�ed distribution. The
distribution is independent of x, and the x-coordinate has no meaning. The points are spread out in the x-
direction just to make them easier to see. The point here is that randomness is a property of the distribution,
not of any particular point drawn from the distribution.

According to the frequentist de�nition of probability, if we had an in�nite number of points, we could use
the points to de�ne what we mean by probability ... but we have neither the need nor the desire to do that.
We already know the distribution. Figure 14 serves quite nicely to to de�ne the distribution of interest.

Figure 15: Randomness = Property of the Distribution

By way of contrast, it is very common practice � but not recommended � to focus attention on the midline
of the distribution, and then pretend that all the uncertainty is attached to the data points, as suggested by
the error bars in �gure 16.

Figure 16: Random Points = Misconception

In particular, consider the red point in these �gures, and consider the contrasting interpretations suggested
by �gure 15 and �gure 16.

Figure 15 does a good job of representing what's
really going on. It tells us that the red point is
drawn from the speci�ed distribution. The distri-
bution has a standard deviation of σ = 0.25 and
is centered at y = 2 (even though the red dot is
sitting at y = 2.5).

Figure 16 incorrectly suggests that the red point
represents a probability distribution unto itself, al-
legedly centered at y = 2.5 and extending sym-
metrically above and below there, with an alleged
standard deviation of σ = 0.25.
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Speci�cally, the red point sits approximately 2σ
from the center of the relevant distribution as de-
picted in �gure 15. If we were to go up another σ
from there, we would be 3σ from the center of the
distribution.

Figure 16 wrongly suggests that the top end of
the red error bar is only 1σ from the center of
�the� distribution i.e. the alleged red distribution
... when in fact it is 3σ from the center of the
relevant distribution. This is a big deal, given that
3σ deviations are quite rare.

Things get more interesting when the model says the uncertainty varies from place to place, as in �gure 17.
The mid-line of the band is a power law, y = x3.5. The uncertainty has two components: an absolute
uncertainty of 0.075, �plus� a relative uncertainty of 0.3 times the y-value. The total uncertainty is found by
adding these two components in quadrature.

This sort of thing is fairly common. For instance, a the calibration certi�cate for a voltmeter might say the
uncertainty is such-and-such percent of the reading plus this-or-that percent of full scale.

Figure 17: Band Plot: Absolute plus Relative Error

Note that on the left side of the diagram, the total uncertainty � the width of the band � is dominated by
the absolute uncertainty, whereas on the right side of the diagram, the total uncertainty is dominated by the
relative uncertainty.

Figure 18 shows the same data, plotted on log/log axes. Note that log/log axes are very helpful for visualizing
some aspects of the data, such as the fact that the power law is a straight line in this space. However, log/log
axes can also get you into a lot of trouble. One source of trouble is the fact that the error bands in �gure 17
extend into negative-y territory. If you take the log of negative number, bad things are going to happen.

In �gure 18, the red downward-pointing triangles hugging the bottom edge of the triangle correspond to
o�-scale points. The abscissa is correct, but the ordinate of such points is unplottable.

The spreadsheet used to create this �gures is given in reference 5.

Band plots (as in �gure 15 or �gure 17) are extremely useful. The technique is not nearly as well known as
it should be. As a related point, it is extremely unfortunate that the commonly-available plotting tools do
not support this technique in any reasonable way.

Tangential remark: This can be seen as reason #437 why sig �gs are a bad idea. In this case,

sig �gs force you to attribute error bars to every data point you write down, even though

that's conceptually wrong.
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Figure 18: Band Plot: Absolute plus Relative Error; Log/Log Axes

Please see reference 2 for a discussion of fundamental notions of probability, including

� The idea that a distribution has width but a point does not.

� Probability density distributions versus cumulative probability distributions.

� Distributions over a continuous variable verus distributions over a discrete variable.

5.3 Analog Measurements

There are lots of analog measurements in the world. For example:

� Every time you draw a scale diagram of the apparatus or draw a graph you are in e�ect recording some
measurements in analog form.

� If you are in the �eld, and you brought your notebook but not your ruler, it might be perfectly sensible
to write down that one beetle was | | long while another was | | long.

� Et cetera.

Analog measurements are perfectly reasonable. There are ways of indicating the uncertainty of an analog
measurement. However, these topics are beyond the scope of the present discussion, and we shall have
nothing more to say about them.

5.4 Digital Measurements

Here are the main cases and sub-cases of interest:

1. Sometimes we make a digital measurement of something that is intrinsically digital and discrete, such
as the number of beans in a jar, or the number of photons received by a photon counter.
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2. Sometimes we make a digital measurement of something that started out as a continuous, analog signal
(such as time, distance, voltage, etc.) but was subsequently digitized.

� Sometimes we use an instrument that accepts an analog input and digitizes it automatically,
providing an explicit digital readout. Examples include electronic digital scales, A-to-D converters
that measure voltage, time-stamp recorders, et cetera.

� Sometimes we use an analog instrument and then digitize the reading by hand. Examples include
analog voltmeters (where the position of the needle is a continuous variable), burettes (where the
position of the meniscus is a continuous variable), et cetera. The point is that when you read
such an instrument, you mentally digitize the result. By the time you write the value into the lab
book, in the form of a decimal numeral, it is entirely digital.

Let's be clear: The incoming signal is analog, and the needle position is analog, but the digits
you write into the lab book are digital.

5.5 Indicated Value versus True Values

It helps to distinguish the indicated value from the true values. Let's consider a couple of scenarios:

Scenario A: We hook a digital voltmeter to a nice steady voltage.

We observe that the meter says 1.23 volts. This is
the indicated voltage. It is known.

There is �some� true voltage at the input. We
will never know the exact voltage, which is OK,
because we don't need to know it.

If the meter is broken, the true voltage could be
wildly di�erent from the indicated voltage.

Since this is a digital instrument, the indicated
values are discrete.

The true voltage is a continuous variable.

In general, each indicated value corresponds to a range of true values, or some similar distribution over true
values. For example, in the case of an ideal voltmeter, the relationship might follow the pattern shown in
table 1.

indicated range of
value true values
1.1 : [1.05, 1.15]
1.2 : [1.15, 1.25]
1.3 : [1.25, 1.35]
1.4 : [1.35, 1.45]
etc. etc.

Table 1: Ideal Voltmeter : True Value versus Indicated Value

Scenario B: Using a couple of comparators, we arrange to show a green light whenever the voltage is greater
than −12 volts and less than +12 volts, and a red light otherwise. That is to say, a �green light� indication
corresponds to a true value in the interval 0± 12 volts.

indicated range of
value true values
Green : [−12, 12]
Red : (−∞, −12) ∪ (12, ∞)
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Table 2: Green/Red Voltage Checker : True Value versus Indicated Value

Instruments with non-numerical outputs are quite common in industry, used for example in connection with
�pass/fail� inspections of incoming or outgoing merchandise. There are many indicators of this kind on the
dashboard of your car, indicating voltage, oil pressure, et cetera.

In both of these scenarios, the indicated value is
discrete.

The true value is a continuous, analog variable.

If the indicated value is not �uctuating, it can
be considered exact, with zero uncertainty, with
100% of the probability.

The true value will always have some nonzero un-
certainty. It will never be equal to this-or-that
number.

Even if the indicated value is �uctuating, there
will be a �nite set of indications that share 100%
of the probability. Each member of the set will
have some discrete, nonzero probability.

No speci�c true value occurs with any nonzero
probability. The best we can do is talk about prob-
ability density, or about the probability of true
values in this-or-that interval.

The indicated value will never be exactly equal to the true value. This is particularly obvious in scenario B,
where the indicated value is not even numerical, but is instead an abstract symbol.

Still, the indicated value does tell us �something� about the true value. It corresponds to a range of true
values, even though it cannot possibly equal the true value.

You should not imagine that things will always be as simple as the examples we have just seen.

� For one thing, in table 1 the true-value intervals are uniformly spaced and non-overlapping, but this
is not the general case. A counterexample is presented in section 6.1, where we see nonuniformity and
lots of overlap. Also in section 19 the intervals are nonuniform.

� In table 1 the indicated values correspond to rounding o� the true values, so the true-value intervals
can be �explained� in terms of roundo� error.

� This is clearly not the case in in table 2, where the interval 0±12 could not possibly have resulted
from rounding o� decimal digits (since that always results in ± half a count in the last decimal
place). We also note that this interval could not possibly be represented by sig �gs. Not even
close.

� It is also not the case in section 6.1, where the uncertainty is dominated by calibration issues,
not by readability or roundo�. (You can always make roundo� the dominant issue, but only by
rounding o� too much, to the point where your data is seriously degraded.)

� It is also not the case with the number of centimeters per inch. Sometimes a decimal such as 2.54
is obtained by rounding o�, and sometimes it isn't.

� Very commonly, computer audio systems use 256 binary levels internally, but the user interface ex-
presses things on a scale of 0 to 100%, in steps of 1%, which means that some indicated values
correspond to an interval of two real values, while other readings correspond to an interval of three
real values. So this is another example of non-uniform intervals.

� Ditto for the RGB color codes in many computer graphic systems.

� You can't use �sig �gs� ideas to determine the size of the true-value ranges. I've seen instruments that
count by twos in the last decimal place, and others that count by �ves in the last decimal place. In
such cases the quantization intervals are much larger than you might guess just by counting digits in
the display.
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Terminology: The true-value intervals (such as we see in table 1) go by various names. In the context of
digital instruments people speak of resolution, quantization error, and/or roundo� error. In the context of
analog instruments they speak of resolution and/or readability.

In a well-designed experiment, these issues are almost never the dominant contribution to the overall uncer-
tainty. This leads to an odd contrast:

When designing apparatus and procedures, you
absolutely must understand these issues well
enough to make sure they will not cause problems.

Later, during the day-to-day operation of a well-
designed procedure, you can almost forget about
these issues. Almost. Maybe.

5.6 Uncertainty ± Error 6= Mistake

Keep in mind that we are using the word uncertainty to refer to the width of a probability distribution ...
nothing more, nothing less.

Sometimes this topic is called �error analysis�, but beware that the word �error� is very widely misunderstood.

In this context, the word �error� should not be
considered pejorative. It comes from a Latin root
meaning travel or journey. The same root shows
up in non-pejorative terms including errand and
knight-errant.

Some people think that an error is Wrong with a
capital W, in the same way that lying and stealing
are Wrong, i.e. sinful. This is absolutely not what
error means in this context.

In this context, error means the same thing as uncertainty. It refers to the width of the distribution, not to
a mistake or blunder. Indeed, we use the concept of uncertainty in order to avoid making mistakes. It would
always be a mistake to say the voltage was exactly equal to 1.23 volts, but we might be con�dent that the
voltage was in the interval 1.23± 0.05 volts.

The proper meaning of uncertainty (aka �error�) is well illustrated by Scenario B in section 5.5. The com-
parator has a wide distribution of true voltages that correspond to the �green light� indication. This means
we are uncertain about the true voltage. This uncertainty is, however, not a blunder. Absolutely not. The
width of the distribution is completely intentional. The width was carefully designed, and serves a useful
purpose.

This point is very widely misunderstood. For example, the cover of Taylor's book on Error Analysis (ref-
erence 6) features a crashed train at the Gare Montparnasse, 22 October 1895. A train crash is clearly an
example of a shameful mistake, rather than a careful and sophisticated analysis of the width of a distribution.
It's a beautiful photograph, but it conveys entirely the wrong idea.

See also section 8.12.

5.7 Probably Almost Correct

Consider the following contrast:

I have zero con�dence that the value of π is in the
interval [3.14± 0.001].

I have 100% con�dence that the value of π is in
the interval [3.14± 0.002].

In this case, we have a tight tolerance but low
con�dence.

Using a wider tolerance gives us a vastly greater
con�dence.

If you demand exact results, you are going to be
bitterly disappointed. Science rarely provides ex-
act results.

If you are willing to accept approximate results
within some reasonable tolerance interval, science
can deliver extremely reliable, trustworthy results.
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Science does not achieve perfection, or even try for
perfection.

What we want is con�dence. Science provides
extremely powerful, high-con�dence methods for
dealing with an imperfect world.

5.8 Identify All Contributions to the Uncertainty

Accounting for uncertainty is not merely an exercise in mathematics. Before you can calculate the uncertainty
in your results, you need to identify all the signi�cant sources of uncertainty. This is a major undertaking,
and requires skill and judgment.

For example: The voltmeter could be miscalibrated. There could be parallax error when reading the ruler.
There could be bubbles in the burette. The burette cannot possibly be a perfectly uniform cylinder. There
could be moisture in the powder you are weighing. And so on and so on.

Four categories of contributions that are almost always present to some degree are �uctuations, biases,
calibration errors, and resolution problems aka roundo� errors, as we now discuss.

� Suppose you are looking at a meter and the needle is wiggling all over the place. It doesn't matter how
well calibrated the meter is or how �nely graduated the scale is. The inherent scatter in the readings
overwhelms other contributions to the uncertainty.

� You can reduce the noise by averaging the signal, but this introduces a bias, insofar as part of the
signal you are supposed to be measuring will be outside the passband of the �lter. In general there
will be noise/bandwidth tradeo�s. Even more generally, there will be variance/bias tradeo�s.

� Now suppose the signal is not �uctuating, and you can read the scale very accurately. In such a case,
it may be that calibration errors are the dominant contribution to the uncertainty.

� Suppose you know that a certain landmark is between 32◦ and 33◦ north latitude, at some well-known
longitude. There is no question of �uctuations, since the landmark is not moving. Also there is no
problem with the calibration, since we know where the lines of latitude are, with an uncertainty of well
less than 1 meter. Yet still we have many kilometers of uncertainty about the location of the landmark,
because our information is too coarsely quantized. We don't have enough resolution. In other words,
we are getting clobbered by roundo� errors.

Remark #1: Remember: Roundo� error is only one contribution to the overall uncertainty. In a well-
designed experiment, it is almost never the dominant contribution. See section 8.6 for a discussion of how
distributions are a�ected by roundo� errors.

Remark #2: It is not safe to assume that roundo� errors are uncorrelated. It is not safe to assume that
calibration errors are uncorrelated. Beware that many textbooks feature techniques that might work for
uncorrelated errors, but fail miserably in practical situations where the errors are correlated.

Remark #3: If one of these three contributions is dominant, it is fairly straightforward to account for it
while ignoring the others. On the other hand, if more than one of these contributions are non-negligible, the
workload goes up signi�cantly. You may want to redesign the experiment.

If you can't redesign the experiment, you might still be able to save the day by �nding some
fancy way to account for the various contributions to the uncertainty. This, however, is going far
beyond the scope of this document



5 FUNDAMENTAL NOTIONS OF UNCERTAINTY 31

Remark #4: More speci�cally: You usually want to design the experiment so that the dominant contribution
to the uncertainty comes from the inherent �uctuations and scatter in the variable(s) of interest. Let's call
this the Good Situation.

It's hard to explain how to think about this. In the Good Situation, many idealizations and simpli�cations
are possible. For example: since calibration errors are negligible and roundo� errors are negligible, you can
more-or-less ignore everything we said in section 5.5 about the distinction between the indicated value and
the range of true values. If you always live in the Good Situation, you might be tempted to reduce the
number of concepts that you need to learn. If you do that, though, and then encounter a Not-So-Good
Situation, you are going to be very confused, and you will suddenly wish you had a better grasp of the
fundamentals.

Possibly helpful suggestion: A null experiment � or at least a di�erential experiment � often improves
the situation twice over, because (a) it reduces your sensitivity to calibration errors, and (b) after you have
subtracted o� the baseline and other common-mode contributions, you can turn up the gain on the remaining
di�erential-mode signal, thereby improving the resolution and readability.

5.9 Empirical Distributions versus Theoretical Distributions

There are many probability distributions in the world, including experimentally-observed distributions as
well as theoretically-constructed distributions.

Any set of experimental observations {xi} can be considered a probability distribution unto itself. In simple
cases, we assign equal weight (i.e. equal measure, to use the technical term) to each of the observations. To
visualize such a distribution, often the �rst thing to do is look a scatter plot. For example, �gure 34 shows a
two-dimensional scatter plot, and �gure 37 shows a one-dimensional scatter plot. We can also make a graph
that shows how often xi falls within a given interval. Such a graph is called a histogram. Examples include
�gure 12, �gure 13, and �gure 22.

Under favorable conditions, given enough observations, the histogram may converge to some well-known
theoretical probability distribution. (Or, more likely, the cumulative distribution will converge, as discussed
in reference 2.) For example, it is very common to encounter a piecewise-�at distribution as shown by the
red curve in �gure 19. This is also known as a square distribution, a rectangular distribution, or the uniform
distribution over a certain interval. Distributions of this form are common in nature: For instance, if you
take a snapshot of an ideal rotating wheel at some random time, all angles between 0 and 360 degrees will be
equally probable. Similarly, in a well-shu�ed deck of cards, all of the 52-factorial permutations are equally
probable. As another example, ordinary decimal roundo� errors are con�ned to the interval [-0.5, 0.5] in
the last decimal place. Sometimes they are uniformly distributed over this interval and sometimes not. See
section 8.3 and section 7.12 for more on this. Other quantization errors (such as discrete drops coming from
a burette) contribute an uncertainty that might be more-or-less uniform over some interval (such as ± half
a drop).

It is also very common to encounter a Gaussian distribution (also sometimes called a �normal� distribution).
In �gure 19, the blue curve is a Gaussian distribution. The standard deviation is 1.0, and is depicted by a
horizontal green bar. The standard deviation of the rectangle is also 1.0, and is depicted by the same green
bar.

Meanwhile, the HWHM of the Gaussian is depicted by a blue bar, while the HWHM of the rectangle is
depicted by a red bar.

Table 3 lists a few well-known families of distributions. See section 13.8 for more on this.
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Figure 19: Gaussian vs. Rectangular; StDev vs. HWHM

Family # of parameters example
Bernoulli 1 coin toss
Poisson 1 counting random events
Gaussian 2 white noise
Rectangular 2 one die; also roundo� (sometimes)
Symmetric triangular 2 two dice
Asymmetric triangular 3

Table 3: Families of Distributions

Each of these distributions is discussed in more detail in reference 2.

Each name in table 3 applies to a family of distributions. Within each such family, to describe a particular
member of the family (i.e. a particular distribution), it su�ces to specify a few parameters. For a symmetrical
two-parameter family, typically one parameter speci�es the center-position and the second parameter has
something to do with the halfwidth of the distribution. The height of the curve is implicitly determined by
the width, via the requirement2 that the area under the curve is always 1.0.

In particular, when we write A±B, that means A tells us the nominal value of the distribution and B tells
us the uncertainty or equivalently the error bar. See section 5.12 for details on the various things we might
mean by nominal value and uncertainty.

5.10 Terminology and Notation

Best current practice is to speak in terms of the uncertainty. We use uncertainty in a broad sense. Other terms
such as accuracy, precision, experimental error, readability, tolerance, etc. are often used as nontechnical
terms ... but sometimes connote various sub-types of uncertainty, i.e. various contributions to the overall
uncertainty, as discussed in section 12. In most of this document, the terms �precise� and �precision� will be
used as generic, not-very-technical antonyms for �uncertain� and �uncertainty�.

2We impose this requirement for simplicity and convenience ... although it is not strictly required by the axiomatic de�nition
of probability measure, and in more-sophisticated applications it may not even be convenient.
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As a related point, see section 13.7 for details on why we avoid the term �experimental error�.

Some guidelines for describing a distribution are given in section 1.2. When writing the nominal value and
the standard deviation, be sure to write them separately, using two separte numerals. For example, NIST
(reference 7) reports the charge of the electron as

1.602176462(63)× 10−19coulombs (4)

which is by de�nition equivalent to(
1.602176462

± 0.000000063

)
× 10−19coulombs (5)

Note that this value departs from the usual �sig-digs rules� by a wide margin. The reported nominal value
ends in not one but two fairly uncertain digits.

For speci�c recommendations on what you should do, see section 8.2. Also, NIST o�ers some prescriptions
on how to analyze and report uncertainties; see reference 8, reference 9, and reference 10.

Additional discussions of how to do things can be found in reference 11 and reference 12.

5.11 How Not to Represent Uncertainty

The �signi�cant �gures� method attempts to use a single decimal numeral to express both the center and
the halfwidth of a distribution: the ordinary value of the numeral encodes the center, while the length of the
string of digits roughly encodes the halfwidth. This is a horribly clumsy way of doing things.

See section 1.3 and section 17.

5.12 Uncertainty, Standard Deviation, Con�dence Limits, etc.

In the expression A±B, we call A the nominal value and B the uncertainty (or, equivalently, the error bar).

We will explicitly avoid giving any quantitative de�nition for the terms nominal value and uncertainty. This
is because there is not complete consensus as how to quantify the expression A±B. When you write such
an expression, it is up to you to specify exactly what you mean by it. When you read such an expression,
you will have to look at the context to �gure out what it means.

� For a mathematically ideal Gaussian distribution, there is a reasonably strong consensus that in the
expression A ± B, the nominal value (A) is the mean. In this case the mean is also the median and
the mode and the center of symmetry, so there is not really much to debate.

Meanwhile, as for B:

� Conventionally the uncertainty (B) is the standard deviation, B = σ. The interval from A− σ to
A+ σ is the 68% con�dence interval.

� In specialized situations, people might be interested in the interval from from A− 2σ to A+ 2σ,
which is the 95% con�dence interval, or even the interval from from A − 3σ to A + 3σ, which is
the 99.73% con�dence interval.

However, if you are going to use two-sigma or three-sigma error bars, you need to warn people,
because this is not what they are expecting. Normally, for a Gaussian, the expression A ± B
communicates the mean plus-or-minus one sigma.
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� For a mathematically ideal symmetrical triangular distribution, again the nominal value A is the mean
and the median and the mode and the center of symmetry.

As for the uncertainty, there are at least two reasonable choices. B could represent the standard
deviation, or it could represent the HWHM.

� The interval from A− σ to A+ σ is the 65% con�dence interval. This has the advantage of using
the A±B symbol the same way for both Gaussian and triangular distributions: it communicates
the mean and standard deviation.

� The interval from A−HWHM to A+HWHM is the 75% con�dence interval. This has the ad-
vantage of being a natural geometrical feature of the triangle.

� For a mathematically ideal rectangular distribution, once again A conventionally represents the mean
and the median and the center of symmetry. The distribution does not have a peak, properly speaking,
so there is no mode.

Again there are reasonable arguments for using the standard deviation to quantify the uncertainty,
and also reasonable arguments for using the HWHM. Both are commonly used:

� The interval from A− σ to A+ σ is the 58% con�dence interval. This has the advantage of using
the A±B symbol the same way for both Gaussian and rectangular distributions: it communicates
the mean and standard deviation.

� The interval from A−HWHM to A+HWHM is the 100% con�dence interval. This has the
advantage of being a natural geometrical feature of the rectangle. Indeed this is the raison d'être

for the rectangular distribution: all of the probability lies within ±1 HWHM of the middle.

In all cases the uncertainty B is more closely related to the halfwidth than to the full width, since the
expression A±B is pronounced A plus-or-minus B, not plus-and-minus. That is to say, B represents the
plus error bar or the minus error bar separately, not both error bars together.

For a distribution de�ned by a collection of data, we need to proceed even more carefully. The data itself
has a perfectly well de�ned mean and standard deviation, and you could certainly compute the mean and
standard deviation, using the de�nition directly. These are called the sample-mean and the sample-
standard-deviation. These quantities are well de�ned, but not necessarily very useful. Usually it is smarter
to assume that the data is a sample drawn from some underlying mathematically-de�ned distribution, �
called the population � and to use the data to estimate the parameters of the population. The mean of
the data might not be the best estimator of the mean of the population. (When the number of data points
is not very large, the standard deviation of the sample is a rather badly biased estimator of the standard
deviation of the population)

Also, remember: An expression of the form A±B only makes sense provided everybody knows what family
of distributions you are talking about, provided it is a well-behaved two-parameter family, and provided
everybody knows what convention you are using to quantify the nominal value and the uncertainty. To say
the same thing the other way: it is horri�cally common for people to violate these provisos, in which case
it A±B doesn't su�ce to tell you what you need to know. For example: in �gure 19, both curves have the
same mean and the same standard deviation, but they are certainly not the same curve. Data that is well
described by the blue curve would not be well described by the red curve, nor vice versa.

6 Reading an Instrument

6.1 Example: Reading a Meter

It is very common to have an analog meter where the calibration certi�cate says the uncertainty is 2% of
the reading plus 2% of full scale. The latter number means there is some uncertainty as to the �zero o�set�
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of the meter.

When dealing with uncertainty, it helps to keep in mind the distinction between the indicated value and the
true value. As discussed in section 5.5, even when the indicated value is known with zero uncertainty, it
usually represents a range of true values with some conspicuously non-zero uncertainty.

This tells us that when the indicated value is at the top of the scale, the distribution of of true values
has a relative uncertainty of 3 or 4 percent (depending on whether you think the various contributions are
independent). More generally, the situation is shown in table 4.

indicated range of absolute relative
value true values uncertainty uncertainty

0 : [-0.02, 0.02] 0.02 ∞
0.05 : [0.03, 0.07] 0.02 40.05%
0.1 : [0.08, 0.12] 0.0201 20.1%
0.2 : [0.18, 0.22] 0.0204 10.2%
0.3 : [0.28, 0.32] 0.0209 6.96%
0.4 : [0.38, 0.42] 0.0215 5.39%
0.5 : [0.48, 0.52] 0.0224 4.47%
0.6 : [0.58, 0.62] 0.0233 3.89%
0.7 : [0.68, 0.72] 0.0244 3.49%
0.8 : [0.77, 0.83] 0.0256 3.2%
0.9 : [0.87, 0.93] 0.0269 2.99%
1 : [0.97, 1.03] 0.0283 2.83%

Table 4: Meter Readings

As you can see in the table, as the readings get closer to the bottom of the scale, the absolute uncertainty
goes down, but the relative uncertainty goes up dramatically. Indeed, if the reading is in the bottom part of
the scale, you should switch ranges if you can ... but for the moment, let's suppose you can't.

Keep in mind that calibration errors are only one of many contributions to the overall uncertainty.

Let's turn now to another contribution, namely readability. Imagine that the meter is readable to ±2% of
full scale. That means it is convenient to express each reading as a two-digit number. You should record
both digits, even in the bottom quarter of the range, where the associated uncertainty is so large that the
sig �gs rules would require you to round o�. You should record both digits because:

� Recording both digits is easier than worrying about whether both digits are necessary.

� Rounding o� is error-prone and should not be done on the �y.

� Rounding o� introduces roundo� error and you don't want to do that if there's no need to.

� Even in the best of circumstances, the sig �gs method gives only a very crude estimate of the uncertainty.
If at some point you switch from two digits to one digit, it would imply that the uncertainty suddenly
went up by a factor of ten. It's silly to do that, given that we have much better information about the
uncertainty. We know that it is 2% of the reading plus 2% of full scale.

You should write a note in the lab book saying what you know about the situation:

Calibration good to 2% of reading plus 2% of full scale.

Scale readable to 2%.
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Then just record each indicated value, as is. Two decimal places su�ce to guarantee that the roundo� error is
not larger than the readability interval. Remember that the indicated value is known with zero uncertainty,
but represents a distribution of true values.

Writing such a note in the lab book, and then writing the indicated values as plain numbers, is incomparably
easier and better than trying to describe the range of true values for every observation on a line-by-line basis.

This upholds the important rule: say what you mean, and mean what you say. Describing the calibration
and readability situation and then writing down the indicated values makes sense, because you are writing
down what you know, nothing more and nothing less.

Also note that this upholds the rule of specifying the uncertainty separately, rather than trying to encode it
using sig �gs. You should never try to use one numeral to represent two numbers.

6.2 Example: Reading a Burette using Simple Interpolation

Figure 20 is a photograph3 of some liquid in a burette. For present purposes, this photograph is our raw
data. Our task is to read the data, so as to arrive at a numerical reading.

Figure 20: Liquid in a Burette

Let's start by taking the simple approach. (See section 6.3 for a fancier approach.

To get a decent accuracy, we divide the smallest graduation in half. Therefore readings will be quantized in
steps of 0.05 mL. More to the point, that gives us a readability of ±0.025 mL, since the indicated value will
di�er from the true value by at most half a step in either direction.

Using this approach, I observe that the meniscus is pretty close to the 39.7 graduation. It is not halfway to
39.8, or even halfway to halfway, so it is clearly closer to 39.7 than to 39.75. Therefore I would record the
indicated value as 39.7 mL (with a readability of ±0.0125 mL.

3Photograph by Oliver Seely. Public Domain. Thanks!
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6.3 Example: Reading a Burette using Fancy Interpolation

We now start over and re-do the interpolation. We work a lot harder this time, so as to obtain a more
accurate result.

It is not always worthwhile to go to this much trouble, but sometimes it is.

� Take a picture using a digital camera. Note that in �gure 20, the camera has been carefully lined up
so as to minimize parallax errors. Also the lighting has been arranged so that the meniscus shows up
clearly.

� Read the picture into a graphics program such as inkscape.

� Magnify it 500% so that squinting is not necessary, as shown in �gure 21.

� Look closely at the picture. In this example, you see the following, in order from top to bottom:
Background; liquid (darker than the background); lower boundary of the liquid (very dark); bright
halo (brighter than the background); background again.

I choose to de�ne �the� position of the meniscus as the boundary between the dark boundary and
the bright halo. Others may choose di�erently. The choice doesn't matter much for typical chem-lab
purposes (so long as the choice is applied consistently), because when using a burette we are almost
always interested in the di�erence between two readings.

� Fit the boundary of the meniscus to the boundary of a drawn object, such as the red object shown
in �gure 21. Note that the red object has a partially-transparent interior. This allows you to slide it
around and still see what's behind it. Also note that it has no boundary line. This makes use of a
profound mathematical fact: the boundary of a boundary is zero. That is to say, the boundary of the
red object has zero width, whereas if you drew a line, you would need to worry about the width of the
line.

It is not hard to position the boundary of the red object against the boundary of the liquid with
sub-pixel accuracy. It may help to reduce the opacity of the red object during this step.

� Add additional graduations, as shown by the thin cyan lines in �gure 21. Up to a point, counting
closely-spaced lines is easier than interpolating between widely-spaced lines ... and interpolation over
short distances is easier than interpolation over long distances.

� Read out the position of the boundary of the red object. Forget about the raw-data pixels at this
point, because they are blurry while the red object is not. It may help to increase the opacity of the
red object during this step.

Figure 21: Liquid in a Burette : Zoomed In

Following this procedure, I decide the indicated value is 39.71, readable to the nearest .01 mL. That is to
say, the readability is ±0.005 ml. Note that this approach gives us �ve times better accuracy, compared to
the simple approach in section 6.2.

It is not be necessary to computer-analyze every burette reading. For one thing, in many cases you don't
need to know the reading to this degree of accuracy. Secondly, with a little bit of practice you can read this
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burette by eye to the nearest 0.01 mL, without the aid of the computer. A detailed analysis is worth the
trouble every once in a while, if only to increase your eyeball skills, and to give you con�dence in those skills.
Interpolating by eye to one tenth of a division is doable, but it is not easy. Nobody was born knowing how
to do this.

At some point readability gets mixed up with quantization error aka roundo� error associated with the
numbers you write down. In this example, I have chosen to quantize the reading in steps of 0.01 ml. This
introduces a roundo� error of ± 0.005 ml ... with a very non-Gaussian distribution.

Remember: In a well-designed experiment, roundo� error is almost never the dominant contribution to the
overall uncertainty. In this case, the roundo� error is less than the uncertainty due to my limited ability to
see where the meniscus actually is, so I'm not going to worry too much about it.

It is hard to know the readability for sure without repeating the measurement N times and doing some sort
of statistical analysis.

For reasons discussed in section 6.1 and section 6.4, you probably do not want to record this in the form
39.71 ± 0.005, because people will interpret that as a statement of �the� uncertainty, whereas readability is
only one contribution to the overall uncertainty. It is better to simply make a note in the lab book, saying
that you read the burette to the nearest 0.01 mL, or words to that e�ect.

On top of all that, the meaning of a burette reading may be subject to uncertainty due to the fact that the
liquid comes out in discrete drops. There are steps you can take to migitate this. If there are droplets inside
the column, or a thin �lm wetting the surface, this is an additional source of uncertainty, including both
scatter and systematic bias.

Last but not least, there will be some uncertainty due to the fact that the burette may not be a perfect
cylinder, and the graduations may not be in exactly the right places. Industry-standard tolerances are:

Capacity / mL Tolerance / ml
Class A Class B

10 0.02 0.04
25 0.03 0.06
50 0.05 0.10
100 0.10 0.20

The tolerances apply to the full capacity of the burette. It is likely (but not guaranteed) that the errors will
be less if a lesser amount is delivered from the burette.

At the time you make a reading, it is quite likely that you don't know the overall uncertainty, in which case
you should just write down the number with plenty of guard digits.4 Make a note of whatever calibration
information you have, and make a note about the readability, but don't say anything about the uncertainty.
Weeks or months later, when you have �gured out the overall uncertainty, you should report it ... and in
most cases you should also report the various things that contributed to it, including things like readability,
quantization errors, systematic biases, et cetera.

6.4 Analyzing an Ensemble of Readings

Suppose we perform an ensemble of measurements, namely 100 repetitions of the experiment described
in section 6.3. The black vertical bars in Figure 22 are a histogram, showing the results of a numerical
simulation.

4The term �guard digits� is explained in section 7.3 and especially section 8.8.
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One thing to notice is that the measurements, as they appear in my lab book, have evidently been rounded
o�. This is of course unavoidable, since the true value is a continuous, analog variable, while the indicated
value that gets written down must be discrete, and must be represented by some �nite number of digits.
See section 8.6 for more about the e�ect of rounding. We can see that in the �gure, by noticing that only
the bins corresponding to round multiples of 0.001 are occupied. The histogram shows data for bins at all
multiples of 0.0002, but only every �fth such bin has any chance of being occupied.

Figure 22: Histogram of Burette Readings

In �gure 22, the magenta line is a Gaussian with the same mean and standard deviation as the ensemble
of measurements. No deep theory is needed here; we just calculate the mean and standard deviation of the
data and plot the Gaussian. You can see that the Gaussian is not a very good �t to the data, but it is not
too horribly bad, either. It is a concise but imperfect way of summarizing the data.

There is a conceptual point to be made here: Suppose we ignore the black bars in the histogram, and consider
only the 100 raw data points plus the cooked data blob. The question arises, how many numbers are we
talking about?

The answer is 102, namely the 100 raw data points plus the mean and standard deviation that constitute
the raw data blob, i.e. the Gaussian model distribution, as indicated in the following table:

Measurement # 1 is 39.37
Measurement # 2 is 39.371
...
Measurement # 99 is 39.373
Measurement # 100 is 39.371
The model is 39.3704 ± 0.0015

Table 5: Raw Measurements, Plus the Model

We emphasize that there is only one ± symbol in this entire table, namely the one on the bottom line, where
we describe the model distribution. In contrast, at the time measurement #1 is made, we could not possibly
know the standard deviation � much less the uncertainty5 � of this set of measurements, so it would be

5For a discussion of the distinction between standard deviation and uncertainty, see section 6.5.
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impossible to write down 39.37 plus-or-minus anything meaningful. Therefore we just write down 39.37 and
move on to the next measurement.

In general, if we have N observations drawn from some Gaussian distribution, we are talking about N + 2
numbers. We are emphatically not talking about 2N + 2 numbers, because it is conceptually not correct to
write down any particular measurement in the form A±B. People do it all the time, but that doesn't make
it right. As mentioned in section 5, a distribution is not a number, and a number is not a distribution.

� Anything you write down in the form x1 = 39.37 represents a plain old number.

� Anything you write down in the form X = 39.3704± 0.0015 represents a distribution, not a number.

In the simplest case, namely N = 1, it requires three numbers to describe the measurement and the distri-
bution from which it was drawn. If we unwisely follow the common practice of recording �the measurement�
in the form A ± B, presumably B represents the standard deviation of the distribution, but A is ambigu-
ous. Does it represent the actual observed reading, or some sort of estimate of the mean of the underlying
distribution? When we have only a single measurement, the ambiguity seems mostly harmless, because the
measurement itself may be our best estimate of the mean of the distribution. Even if it's not a very good
estimate, it's all we have to go on.

Things get much stickier when there are multiple observations, i.e. N ≥ 2. In that case, we really don't
want to have N separate estimates of the mean of the distribution and N separate estimates of the standard
deviation. That is to say, it just doesn't make sense to write down N expressions of the form A ± B. The
only thing that makes any sense is to write down the N measurements as plain numbers, and then separately
write down the estimated mean and standard deviation of the distribution ... as in the table above.

6.5 Standard Deviation versus Uncertainty versus Error

Before leaving the burette example, there is one more issue we must discuss. It turns out that during my
series of simulated experiments, in every experiment I started out with the exact same volume of liquid,
namely 39.3312 mL, known to very high accuracy. Subsequently, during the course of each experiment, the
volume of liquid will of course �uctuate, due to thermal expansion and other factors, which accounts for
some of the scatter we see in the data in �gure 22. Imperfect experimental technique and roundo� error
account for additional spread.

Now we have a little surprise. The distribution of measurements is 39.3704± 0.0015 mL, whereas the actual
amount of liquid was only 39.3312 mL, which is far, far outside the measured distribution. So, how do we
explain this?

It turns out that every one of the experiments was done with the same burette, which was manufactured
in such a way that its cross-sectional area is too small by one part per thousand. Therefore it always reads
high by a factor of 1.001, systematically.

This underlines that point that statistical analysis of your observations will not reveal systematic bias.
Standard deviation is precisely de�ned and easy to calculate, but it is not equivalent to uncertaintly, let
alone error. For more on this, see section 13, especially section 13.5 and section 13.6.

6.6 Example: Decimal Interpolation Between Graduations

Suppose I'm measuring the sizes of some blocks using a ruler. The ruler is graduated in millimeters. If I
look closely, I can measure the blocks more accurately than that, by interpolating between the graduations.
As pointed out by Michael Edmiston, sometimes the situation arises where it is convenient to interpolate to
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40
40.25
40.75
41

Table 6: Length of Blocks, Raw Data

the nearest 1/4th of a millimeter. Imagine that the blocks are slightly misshapen so that it is not possible
to interpolate more accurately than that.

Let's suppose you look in my lab notebook and �nd a column containing the following numbers:

and somewhere beside the column is a notation that all the numbers are rounded to the nearest 1/4th
of a millimeter. That means that each of these numbers has a roundo� error on the order of ±1/8th of a
millimeter. As always, the roundo� errors are not Gaussian-distributed. Roundo� errors are one contribution
to the uncertainty. In favorable situations this contribution is �at-distributed over the interval ±1/8 mm,
but the actual situation may not be nearly so favorable, as discussed in section 7.12, but let's not worry
about that right now.

If we worshipped at the altar of sig digs, we would say that that the �rst number (40) had one �sig dig�
and therefore had an uncertainty of a few dozen units. However, that would be arrant nonsense. The actual
uncertainty is a hundred times smaller than that. The lab book says the uncertainty is 1/8th of a unit, and
it means what it says.

At the other end of the spectrum, the fact that I wrote 40.75 with two digits beyond the decimal point does
not mean that the uncertainty is a few percent of a millimeter (or less). The actual uncertainty is ten times
larger than that. The lab book says that all the numbers are rounded to the nearest 1/4th of a millimeter,
and it means what it says.

The numbers in table 6 are perfectly suitable for typing into a computer for further processing. Other ways
of recording are also suitable, but it is entirely within my discretion to choose among the various suitable
formats that are available.

The usual ridiculous �signi�cant digits rules� would compel me to round o� 40.75 to 40.8. That changes the
nominal value by 0.05mm. That shifts the distribution by 40% of its half-width. Forty percent seems like a
lot. Why did I bother to interpolate to the nearest 1/4th of a unit, if I am immediately forced to introduce a
roundo� error that signi�cantly adds to the uncertainty? In contrast, writing 3/4ths as .75 is harmless and
costs nothing.

Bottom line: Paying attention to the �sig digs rules� is unnecessary at best. Good practice is to record the
nominal value and the uncertainty separately. Keep many enough digits to make sure there is no roundo�
error. Keep few enough digits to be reasonably convenient. Keep all the original data. See section 8.2 for
more details.

Even more-extreme examples can be found. Many rulers are graduated in 1/8ths of an inch. This is similar
to the example just discussed, except that now it is convenient to write things to three decimal places (not
just two). Again the sig �gs rules mess things up.

More generally: Any time your measurements are quantized with a step-size that doesn't divide 10 evenly,
you can expect the �sig digs rules� to cause trouble.

6.7 Readability is Only Part of the Uncertainty

Consider the contrast:
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Sometimes readability is the dominant contribu-
tion to the uncertainty of the instrument, as when
there are only a limited number of digits on a dis-
play, or only a limited number of coarse gradations
on an analog scale.

Sometimes readability is nowhere near being the
dominant contribution, as in the example in sec-
tion 6.1, at the low end of the scale.

And another, separate contrast:

Sometimes the uncertainty associated with the in-
strument is the dominant contribution to the over-
all uncertainty.

Sometimes the instrument is nowhere near being
the dominant contribution, for instance when you
hook a highly accurate meter to a signal that is
�uctuating.

I've seen alleged rules that say you should read instruments by interpolating to 1/10th of the �nest scale
division, and/or that the precision of the instrument is 1/10th of the �nest scale division. In some situations
those rules re�ect reality, but sometimes they are wildly wrong.

When choosing or designing an instrument for maximum accuracy, usually you should arrange it so that the
dominant contribution to the overall uncertainty is is set by some sort of noise, �uctuations, or fuzz. That
makes sense, because if the reading is not fuzzy, you can usually �nd a way to apply some some magni�cation
and get more accuracy very cheaply.

7 Propagation of Uncertainty

7.1 Overview

Consider the following scenario: Suppose we know how to calculate some result xi as a function of some
inputs ai, bi, and ci:

xi = f(ai, bi, ci) (6)

We assume the functional form of f(...) is known. That's �ne as far as it goes. The next step is to
understand the uncertainty. To do that, we need to imagine that the numbers ai, bi, and ci are drawn from
known distributions A, B, and C respectively, and we want to construct a distribution X with the following
special property: Drawing an element xi at random from X is the same as drawing elements from A, B, and
C and calculating xi via equation 6.

This topic is called propagation of uncertainty. The idea is that the uncertainty �propagates� from the input
of f(...) to the output.

If we are lucky, the distribution X will have a simple form that can be described in terms of some nominal
value 〈X〉 plus-or-minus some uncertainty [X]. If we are extra lucky, the nominal value of X will be related to
the nominal values of A, B, and C by direct application of the same function f(...) that we saw in equation 6,
so that

〈X〉 = f(〈A〉, 〈B〉, 〈C〉) (if extra lucky) (7)

Beware that propagation of uncertainty su�ers from three categories of problems, namly Misrep-
resentation, Malexpansion, and Correlation. That is:

1. Misrepresentation: The sig-�gs approach cannot even represent uncertainty to an acceptable
accuracy. Representation issues are discussed in section 8.2. You could �x the representation
using the 〈A〉 ± [A] notation or some such, but then both of the following problems would
remain.
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2. Malexpansion: The step-by-step �rst-order approach fails if the �rst-order Taylor expan-
sion is not a good approximation, i.e. if there is signi�cant nonlinearity. The step-by-step
approach fails even more spectacularly if the Taylor series fails to converge. See e.g. sec-
tion 7.19, section 7.6, and section 7.5.

3. Correlation: The whole idea of a data blob of the form 〈A〉± [A] goes out the window if one
blob is correlated with another. See e.g. section 7.7.

Let's consider how these issue a�ect the various steps in the calculation:

Step 0: We need a way to represent the uncertainty of three input distributions A, B, and C.

Step 1: We need a way to calculate the properties (including the uncertainty) of the new
distribution X.

Step 2: After we know the uncertainty of X, we need a way to represent it.

Steps 0 and 2 are representation issues, while step 1 is a propagation issue. The propagation
rules are distinct from the representation issues, and are very much more complicated. The
propagation rules might fail if the Taylor expansion isn't a good approximation ... and might
also fail if there are correlations in the data.

Beware that the people who believe in sig �gs tend to express both the representation rules
and the propagation rules in terms of sig �gs, and lump them all together, but this is just two
mistakes for the price of one. As a result, when people speak of �the� sig �gs rules, you never know
whether they are talking about the relatively-simple representation rules, or the more complicated
propagation rules.

Sig �gs cause people to misunderstand the
distinction between representation of uncer-
tainty and propagation of uncertainty.

In reality, when dealing with real raw data
points or arti�cial (Monte Carlo) raw data
points, the representation issue does not
arise. The raw data speaks for itself.

In practice, the smart way to propagate uncertainties is:

(1) Use the Crank Three Times� method, as described in section 7.14. This works for a wide range of
simple problems. This contructs three elements of the distribution X. If you are lucky, this is a
representative sample. The best thing is, in cases where it doesn't work, you will almost certainly
know it. That's because (unless you are very unlucky) you will get lopsided error bars, or worse, and
this tells you a more powerful method is needed.

(2) Use the Monte Carlo method, as described in section 7.16. This is very easy to do using the spreadsheet
program on your computer. This constructs a representation of the the distribution X, representing it
as a cloud of zero-sized points.

This is tremendously advantageous, because the uncertainty is now represented by the width of the
cloud. The individual points have no width, so you can use ordinary algebra to calculate whatever
you want, point-by-point, step-by-step. This is very much simpler � and more reliable � than trying
to attach uncertainty to each point and then trying to propagate the uncertainty using calculus-based
�rst-order techniques.

In order to really understand the propagation of uncertainty, we must learn a new type of arithmetic: We
will be performing computations on probability distributions rather than on simple numbers.
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7.2 Simple Example: Multi-Step Arithmetic

This subsection shows the sort of garbage that results if you try to express the propagation rules in terms
of sig �gs.

Let's start with an ultra-simple example

x = (((2 + 0.4) + 0.4) + 0.4) + 0.4 (8)

where each of the addends has an uncertainty of ±10%, normally and independently distributed.

Common sense suggests that the correct answer is x = 3.6 with some uncertainty. You might guess that the
uncertainty is about 10%, but in fact it is less than 6%, as you can verify using the methods of section 7.16
or otherwise.

In contrast, the usual �signi�cant digits rules� give the ludicrous result x = 2. Indeed the �rules� set each of
the parenthesized sub-expressions is equal to 2.

This is a disaster. Not only do the �sig �gs rules� get the answer wrong, they get it wrong by a huge margin.
They miss the target by seven times the radius of the target!

To understand what's going on here, consider the innermost parenthesized sub-expression, namely (2 + 0.4).

Step 1 (propagation): The sum is 2.4, obviously. Let's assume this is the nominal value of the result-
distribution. Let's also assume the uncertainty is calculated in the usual way, so that the uncertainty
on the sum is at least as great as the uncertainty on the addends. Neither of these assumptions is
entirely safe, but let's assume them anyway, so as to construct a best-case scenario.

Step 2 (representation): Since the sum (2.4) has more uncertainty than the �rst addend (2), it should be
represented by at most the same number of sig �gs, so we round it o�. We replace 2.4 with 2. This is
a disaster.

Repeatedly adding 0.4 causes the same disaster to occur repeatedly.

The fundamental issue here is that the sig �gs rules require you to keep rounding o� until roundo� error
becomes the dominant contribution to the uncertainty. This is a representation issue, but it interacts with
the propagation issue as follows: The more often you apply the sig �gs representation rules, the worse o�
you are ... and the whole idea of propagation requires you to do this at every step of the calculation.

Rounding o� always introduces some error. This is called roundo� error or quantization error. Again: One
of the fundamental problems with the sig �gs rules is that in all cases, they demand too much roundo�.

This problem is even worse than you might think, because there is no reason to assume that roundo� errors
are random. Indeed, in equation 8 the roundo� errors are not random at all; the roundo� error is 0.4 at
every step. These errors accumulate linearly. That is, in this multi-step calculation, the overall error grows
linearly with the number of steps. The errors do not average out; they just accumulate. Guard digits are a
good way to solve part of the problem, as discussed in section 7.3 and section 8.8.

7.3 Guard Digits (Preview)

Let's take another look at the multi-step calculation in equation 8. Many people have discovered that they
can perform multi-step calculations with much greater accuracy by using the following approach: At each
intermediate step of the calculation, the use more digits than would be called for by the sig �gs rules. These
extra digits are called guard digits, as discuseed in See section 8.8. Keeping a few guard digits reduces the



7 PROPAGATION OF UNCERTAINTY 45

roundo� error by a few orders of magnitude. When in doubt, keep plenty of guard digits on all numbers you
care about.

Guard digits do not, however, solve all the world's problems. In particular, suppose you were using the sig
�gs rules at every step (as in section 7.2) in an attempt to perform �propagation of error�. (Propagation is,
after all, the topic of this whole section, section 7). The problem is, step-by-step �rst-order propagation is
almost never reliable, even if you use plenty of guard digits. The �rst reason why it is unreliable is that the
�rst-order Taylor approximation often breaks down. Furthermore, even if you could �x that problem, the
approach fails if there are correlations. There's a proverb that says imperfect information is better than no
information, but that proverb doesn't apply here, because we have much better ways of getting information
about the uncertainty, such as the Crank Three Times� method.

When there is noise (i.e. uncertainty) in your raw data, guard digits don't make the raw noise any smaller
... they just make the roundo� errors smaller.

Roundo� error
is just one among many sources

of error and uncertainty.

Experimental error in the raw data
is just one among many sources

of error and uncertainty.

See section 8.8 and section 8.9 for more discussion of guard digits. See section 12 for more discussion of
various contributions to the uncertainty.

7.4 Example: Beyond First Order: 1 to the 40th Power

Exponentials show up in a wide variety of real-life situations. For example, the growth of bacteria over time
is exponential, under favorable conditions.

As a simple example, let x = 1 and consider raising it to the 40th power, so we have y = x40. Then y = 1.
It couldn't be simpler.

Next, consider x that is only �near� 1. We draw x from the rectangular distribution 1.0±0.05. We compute
y = x40, and look at the distribution over y-values. Roughly speaking, this is the distribution over the
number of bacteria in your milk, when there is a distribution over storage temperatures. The results are
diagrammed in �gure 23 and �gure 24. Note that �gure 23 is zoomed in to better portray the red curve, at
the cost of clipping the blue spike; the distribution over x actually peaks at dP/dx = 10.
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Figure 23: y = x40 for x near 1 : Density
Figure 24: y = x40 for x near 1 : Cumulative

As you can see, the y-values are spread over the interval from 0.13 to 7.04. Hint: that's 1/e2 to e2.

What's worse is that the distribution is neither rectangular nor Gaussian, not even close. It is strongly
peaked at the low end. The HWHM is very small, while the overall width is enormous. The mode of the
distribution is not 1, the mean is not 1, and the median is not 1. So the typical abscissa (x = 1) does not
map to the typical ordinate.

This is an example where Crank Three Times gives spectacularly asymmetric error bars, which is a warning.
There are lots of distributions in this world that cannot be described using the notion of �point plus error
bars�.

This is not primarily a �sig �gs� problem. However, as usual, no matter what you are doing, you can always
make it worse by using �sig �gs�. The uncertainty on y is larger than y, so �sig �gs� cannot even represent
this result! If you tried, you would end up with zero signi�cant digits.

Also, the usual propagation rules, as taught in conjunction with �sig �gs�, say that x multiplied by x has
the same number of �sig �gs� as x. Do that 40 times and you've still got the same number. So the �sig
�gs� alleged uncertainty on y is just 0.05 ... but reality begs to di�er.

7.5 Example: Beyond First Order: Momentum and Energy

Suppose we have a bunch of particles in thermal equilibrium. The x component of momentum is Gaussian
distributed, with mean 0 and standard deviation

√
mkT . The distribution is the same for the y and z

components. For simplicity, lets choose units such that m = 1, and momentum is equal to velocity. A
scatter plot of the x and y components is shown in �gure 25.

The kinetic energy of any given particle is p2/(2m). The uncertainty in the mass is negligible in this situation.
This situation is simple enough that the right answer can be found analytically, as some guy named Maxwell
did in the mid-1800s. You can also �nd the right answer using Monte Carlo techniques. If the situation were
even slightly more complicated, Monte Carlo would be the only option.

If you calculate the energy for an ensemble of such particles, the cumulative probability is shown in �gure 26.
Similarly, the probability density distribution is shown in �gure 27. The dashed red line shows the exact
analytic result, i.e. the Maxwell-Boltzmann distribution.
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Figure 25: Thermal Distribution of Velocities

Figure 26: Maxwell-Boltzmann Distribution of
Energy (3D)

Cumulative Probability

Figure 27: Maxwell-Boltzmann Distribution of
Energy (3D)

Probability Density

If you tried to obtain the same result using step-by-step propagation of uncertainty, starting from the thermal
distribution of velocities, things would not go well. Using the procedure given in section 7.20.2, you would
�nd that the relative uncertainty was in�nite. Forging ahead, applying the formula without regard to the
provisos in the rule, this would imply an energy of zero plus-or-minus in�nity. This is nowhere close to the
right answer.

We can discuss the failure of the step-by-step approach in terms of the unholy trinity of Misrepresentation,
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Malexpansion, and Correlation.

� Sig �gs cannot represent the distribution of velocities. It cannot represent 0 ±
√
mkT or anything

remotely like that.

� The �rst-order Taylor expansion fails. There is no �rst-order term in the expansion for E in terms of
p.

� Correlation issues are not a problem in this situation.

This example and the next one were chosen because they are simple, and because they make obvious the
failure of the step-by-step approach. Beware that in situations that are even slightly more complex, the
step-by-step approach will fail and give you wrong answers with little or no warning.

7.6 Example: Non-Di�erentiable: Time = Distance / Rate

Suppose we have a long, narrow conference table. We start a particle in the middle of the table. At time
t = 0 we give it a velocity based on a thermal distribution, zero plus-or-minus

√
kT/m. Thereafter it moves

as a free particle, moving across the table. We want to know how lot it takes before the particle falls o�
the edge of the table. A scatter plot of the velocity is shown in �gure 25. For present purposes, only the x
component matters, because the table is narrow in the x direction and very very long in the y direction.

If we take the Monte Carlo approach, this is an ultra-simple �time = distance / rate� problem. For each
element of the ensemble, the time to fall o� is:

tfall = w/2
|v| (9)

where w is the width of the table, and v is the velocity.

The cumulative probability distribution is shown in �gure 28. A histogram of the probability density is
shown in �gure 29.

Figure 28: Time to Fall O�
Cumulative Probability

Figure 29: Time to Fall O�
Probability Density
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Beware that not all the data is visible in these �gures. Given an ensemble of 1000 points, it would not be
uncommon to �nd the maximum time to be greater than 1000 units, or indeed greater than 2000 units. The
maximum-time point corresponds to the minimum-velocity point, and velocites near zero are not particularly
uncommon. That means that the probability density distribution converges only very slowly toward zero
at large times. As a consequence, the mean of the distribution is large, vastly larger than the mode. The
standard deviation could be in the hundreds, which is vastly larger than the HWHM.

We can contrast the Monte Carlo approach to step-by-step �rst-order propagation. The latter fails miserably.
In the �rst step, we need to take the absolute value of the velocity. To calculate the uncertainty, we need
the derivative of this, evaluated at the origin, but alas absolute value is not a di�erentiable function at the
origin. In the second step, we need to take the reciprocal, which is not even a function at the origin, much
less a di�erentiable function.

This example and the previous one were chosen because they are simple, and because they make obvious
the failure of the step-by-step approach. Beware that in situations that are even slightly more complex, the
step-by-step approach will fail and give you wrong answers with little or no warning.

Extensions: This simple example is part of a larger family. It can be extended and elaborated in various
ways, including:

� Motion in 2 or 3 dimensions, not just one.

� Uncertainty in the initial position, not just velocity. At some level, this is required by the Heisenberg
uncertainty principle.

� Motion in the presence of a nontrivial potential. Example: time to fall over, for the 1D motion of a
thin �at slab balanced on its edge. Example: time to fall over, for the 2D motion of a pencil balanced
on its point.

7.7 Example: Correlated Data: Charge-to-Mass Ratio

Suppose we want to know the charge-to-mass ratio for the electron, i.e. the e/m ratio. This is useful because
it shows up in lots of places, for instance in the formula for the cyclotron frequency (per unit �eld).

We start by looking up the accepted values for e and m, along with the associated uncertainties. Here are
the actual numbers, taken from the NIST website:

e = 1.602176565× 10−19coulomb
with 22 parts per billion relative uncertainty

m = 9.10938291× 10−31kg
with 44 ppb relative uncertainty

(10)

At this point it is amusing to calculate the e/m ratio by following the propagation-of-error rules that you
see in textbooks. Ask yourself, What is the calculated uncertainty for the e/m ratio, when calculated this
way? Choose the nearest answer:

a) 22 ppb

b) 33 ppb

c) 44 ppb

d) 50 ppb

e) 66 ppb
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Note: Ordinarily I play by the rule that says you are expected to use everything you know in
order to get the real-world right answer. Ordinarily I despise questions where knowing the right
answer will get you into trouble. However ... at the moment I'm making a point about the
method, not trying to get the right answer, so this rule is temporarily suspended. You'll see why
shortly.

If we carry out the calculation in the usual naïve way, we assume the uncertainties are uncorrelated, so we
can add the relative uncertainties in quadrature:

relative uncertainty =
√

22 · 22 + 44 · 44
= 49ppb ×◦ (11)

so the full result is
e/m = 1.758820088× 1011C/kg

with 49 ppb uncertainty ×◦ (12)

We can contrast this with the real-world correct value:
1.75882008× 1011C/kg

with only 22 ppb uncertainty
(13)

The real uncertainty is vastly less than the naïvely-calculated uncertainty.

We can understand this as follows: The accepted values for e andm are correlated. Virtually 100% correlated.

Simple recommendation: If you want to calculate e/m, don't just look up the values for e and m separately.
Use the NIST website to look them up jointly along with the correlation coe�cient.

Before we go on, lets try to understand the physics that produces the high correlation between e and m.
It's an interesting story: You could measure the mass of the electron directly, but there's not much point
in doing so, because it turns out that indirect methods work much better. It's a multi-step process. The
details are not super important, but here's a slightly simpli�ed outline of the process.

A) The �ne structure constant is measured to 0.32 ppb relative uncertainty.

B) The Rydberg constant is measured to 0.005 ppb.

C) The Rydberg constant is equal to me4/8ε20h
3c and the �ne-structure constant is

e2/2ε0hc.
Combining α3/Ry gives e2/m to 0.96 ppb. It hardly matters whether they are
correlated or not, since the uncertainty is dominated by the uncertainty in α3.
Note that the speed of light is exact, by de�nition, so it does not contribute to the
uncertainty.

D) The charge on the electron is measured to 22 ppb.

E) If you want the e/m ratio, divide e2/m by e. The uncertainty in e/m is dominated
by the uncertainty in e.

F) To �nd the mass, calculate e2 (using the measured charge directly) then divide by
the e2/m value obtained in item (c) above. The uncertainty is 44 ppb, dominated
by the uncertainty in e2.

Bottom line: Whenever you have two randomly-distributed quantities and you want to combine them � by
adding, subtracting, multiplying, dividing, or whatever � you need to �nd out whether they are correlated.
Otherwise you will have a hard time calculating the combined uncertainty.

http://physics.nist.gov/cgi-bin/cuu/CCValue?me|ShowSecond&First=e
http://physics.nist.gov/cgi-bin/cuu/Value?alph
http://physics.nist.gov/cgi-bin/cuu/Value?ryd
http://physics.nist.gov/cgi-bin/cuu/Value?e
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Figure 30: pH versus Concentration for Various pKa Values

7.8 Example: Solving a Quadratic Polynomial for the pH

Figure 30 shows pH as a function of concentration, for various pKa values, including weak acids and strong
acids, as well as intermediate-strength acids, which are particularly interesting.

This is obviously not a contrived example. There are plenty of good reasons for preparing a plot like this.
For present purposes, however, we are not particularly interested in the meaning of this �gure, but rather
in the process of computing it. (If you are interested in the meaning, please see reference 13.)

For simplicity, we temporarily restrict attention to the parts of �gure 30 that are not too near the top. That
is, we focus attention on solutions that are de�nitely acidic, with a pH well below the pH of water. (This
restriction will be lifted in section 7.9.)

In this regime, the relevant equation is:

[H+]2 +Ka [H+]−Ka CHA = 0 (14)

Equation 14 is a quadratic polynomial, where the coe�cients are:
a = 1
b = Ka

c = −KaCHA
x = [H+]

(15)

It has one positive root and one negative root, as we shall see. For more on where this comes from and what
it means, see reference 13 and references cited therein.

Let's plug in the numbers for our dilute solution of a strong acid:
Ka = 5.666× 104

CHA = 10−6
(16)
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Let's use the numerically stable version of the quadratic formula, as discussed in reference 14:

xbig =
−b− sgn(b)

√
b2 − 4ac

2a
(assuming a 6= 0) (17a)

xsmall =
c/a

xbig
(17b)

where sgnL(x) is the left-handed sign-function, which is de�ned to be −1 whenever x is less than or equal to

zero, and +1 otherwise. In most computer languages it can be implemented as (2*(x>0)-1). (Do not use
the regular sgn() function, which is zero at zero.) The names �small� and �large� are based on the absolute
magnitude of the roots.

That gives us:

{xbig, xsmall} = {−5.666× 104, 10−6} (18)

You can see that this is de�nitely a �big root / small root� situation, so you need to use the smart version
of the quadratic formula, for reasons explained in reference 14.

Only the positive root in equation 18 makes sense. Taking the logarithm, we �nd
pH := − log10([H+])

= − log10(xsmall)
= 6

(19)

Note that the �small root� here is not some minor correction term; it is the entire answer.

For a discussion of the lessons we can learn from this example, see section 7.11.

We revisit this example again in section 7.23, in connection with the rules for step-by-step �rst-order prop-
agation of uncertainty.

7.9 Example: Solving a Cubic Polynomial for the pH

We now consider the full pH versus concentration diagram, without the restrictions on strength and/or
concentration imposed in section 7.9.

The full curves in �gure 30 were computed by solving the following equation.

[H+]3 +Ka [H+]2 − (Kw +Ka CHA) [H+]−KaKw = 0 (20)

That's a cubic, with one positive root and two negative roots. For more on where this comes from and what
it means, see reference 13.

It is easy to solve the equation with an iterative root-�nding algorithm.

In contrast, beware that standard �algebraic� formulas for solving the cubic can give wrong answers in some
cases. Depending on details of the implementation, the formulas can be numerically unstable. That is
to say, the result gets trashed by roundo� errors. Speci�cally: I tried using the standard library routine
gsl_poly_complex_solve_cubic() and it failed spectacularly for certain values of pKa and pCHA. Some
of the alleged results were o� by multiple orders of magnitude. Some of the alleged results were complex
numbers, even though the right answers were real numbers. It might be possible to rewrite the code to make
it behave better, but that's not a job I'm eager to do.

For a discussion of the lessons we can learn from this example, see section 7.11.
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7.10 Another Example: Multi-Step Relativity

7.10.1 Correct Direct Calculation

Once upon a time, at Acme Anvil company, there was an ensemble of particles. The boss wanted a
relativistically-correct calculation of the kinetic energy. He especially wanted the mean and standard devia-
tion of the ensemble of kinetic-energy values.

The boss assigned two sta�ers to the task, Audrey and Alfred. Audrey worked all morning computing the
total energy E(v) and the rest energy E(0) for each particle. Then Alfred worked all afternoon, subtracting
these two quantities to �nd the kinetic energy for each particle.

In all cases, Audrey and Alfred used the relativistically correct formulas, namely

energy: E(v) = mc2 cosh(ρ)
rapidity: ρ = atanh(v/c)
kinetic energy: Ekin = E(v)− E(0)
speed of light: c = 299792458m/s(exactly)

(21)

The following data describes a typical particle in the ensemble:

mass: m = 5/3kg
velocity: v = 4/3m/s

(22)

For this particle, Audrey calculated the following results:
E(0) = 149792529789469606.6666667...joule
E(v) = 149792529789469608.1481482...joule

(23)

where both of those numbers are repeating decimals.

Later, Alfred subtracted those numbers to obtain

Ekin = 1.4814815...joule (24)

which is again a repeating decimal.

After calculating the kinetic energy for all the particles, Alfred calculated the mean and standard deviation,
namely:

Ekin = 1.481joule± 0.5%
= 1.481(7)joule

(25)

which is in fact the correct answer.

7.10.2 Unsuccessful Double-Precision Direct Calculation

Meanwhile, across the street at Delta Doodad Company, they needed to do the exact same calculation. The
boss assigned Darla and Dave to do the calculation.

Darla calculated E(v) and E(0) using a spreadsheet program, which represents all numbers using IEEE
double-precision �oating point. For the typical particle described in equation 22, she obtained:

E(0) = 1.4979252978946960E + 17joule
E(v) = 1.4979252978946960E + 17joule

(26)

These numbers cannot be represented to any greater accuracy using IEEE double precision.

When Dave subtracted these numbers, he found the kinetic energy was zero. In fact the apparent kinetic
energy was zero for all particles. When he calculated the mean and standard deviation, they were both zero.
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Alfred suspected that 0± 0 was not the correct answer, but given what he had to work with, there was no
way for him to compute a better answer.

The problem is that IEEE double precision can only represent about 16 decimal digits, whereas at least 20
digits are needed to obtain a useful answer in this case. If you use less than 20 digits, the roundo� error will
be unacceptably large. (By way of contrast, across the street, Audrey used 25 digits just to be on the safe
side.)

7.10.3 Gross Failure: Sig Figs

Meanwhile, down the street at General Gadget Company, they needed to do the same calculation. The boss
was a big fan of sig �gs. He demanded that everybody adhere to the sig �gs rules.

The boss assigned Gail and Gordon to the task. In the morning, Gail calculated the total energy and rest
energy. She noticed that there was some uncertainty in these numbers. The relative uncertainty was about
0.5%. So for the typical particle described in equation 22, she obtained:

E(0) =

(
1.497925297894696066666667...

± 0.007

)
× 1017joule

E(v) =

(
1.497925297894696081481482...

± 0.007

)
× 1017joule

(27)

In accordance with the usual sig �gs rules, Gail rounded o� these numbers, as follows:
E(0) = 1.50× 1017joule
E(v) = 1.50× 1017joule

(28)

Gail's reasons for rounding o� included:

1. She felt obliged to communicate the uncertainty to Gordon. Writing down a large number of digits (as
Audrey did in section 7.10.1) would �imply� � via the sig-�gs rules � a very small uncertainty, which
in this case would be quite wrong. It would be downright dishonest.

2. Equation 28 �looks nicer� than equation 27.

3. She knew the boss would get angry and call call her �numerically ignorant� if she wrote down a bunch
of trailing digits, i.e. uncertain, irreproducible digits.

All in all, it was �obvious� to Gail that equation 28 was the right way to express things.

In the afternoon, Gordon subtracted these numbers. He found that every particle had zero kinetic energy.

Based on the uncertainty in the numbers he was given, he tried to apply the propagation-of-error rules.
Since Gail did not report any correlations, he assumed all her results were uncorrelated, so that the rules
presented in section 7.20 could be applied. On this basis, he estimated that the uncertainty in the di�erence
was about ±1× 1015. So Gordon could have reported his result as 0± 1× 1015 joule.

That's the wrong answer. Gordon's estimate of the mean is wrong by about 200 standard deviations. That's
a lot. Gordon's estimate of the standard deviation is also o� by about seventeen orders of magnitude. That's
a lot, too.

One problem is that Gail didn't feed Gordon enough digits. She actually calculated enough digits, but she
felt obliged to round o� her results, in accordance with the sig �gs rules. This illustrates a general principle:

No matter what you are doing,
you can always make it worse by using sig �gs.
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Another problem is that for each particle, Gail's numbers for E(v) and E(0) have very highly correlated
uncertainties. Therefore Gordon's application of the propagation-of-error rules was invalid.

Thirdly, just to add insult to injury: The sig-�gs method does not provide any way to represent 0±1×1015,
so Gordon could not �nd any way to report his results at all. The boss wanted a sig-�gs representation, but
no such representation was possible.

7.10.4 Algebraic Simpli�cation

Meanwhile, across town at Western Widget Company, yet another company was faced with the same task.
At this company, they noticed that equation 21 implies that:

Ekin = mc2[cosh(ρ)− 1]

= mc2[
√

1 + v2/c2 − 1]
(29)

where on the second line we have used some trigonometric identities. Both lines in equation 29 share an
important property: the factor in square brackets is a purely mathematical function. The function can be
de�ned in terms of a subtraction that involves no uncertainty of any kind. In contrast, if you were to multiply
through by mc2 before subtracting, you would then face the problem of subtracting two things that not only
have some uncertainties (because of the uncertainty in m) but would have highly correlated uncertainties.

It must be emphasized that equation 29 is relativistically correct; no approximations have been made (yet).

Since the task at hand involves ρ values that are very small compared to 1, the following approximations are
good to very high accuracy:

sinh(ρ) = ρ+ ρ3/6 + · · ·
cosh(ρ) = 1 + ρ2/2 + · · ·
tanh(ρ) = ρ− ρ3/3 + · · ·

(30)

You can check that these approximations are consistent with each other to third order in ρ or better, in the
sense that they uphold the identities tanh = sinh / cosh and cosh2− sinh2 = 1.

Plugging into equation 29 we �nd that, with more than enough accuracy,
Ekin = mc2[ρ2/2] + · · ·

= mv2/2 + · · · (31)

which allows us to calculate the kinetic energy directly. No subtractions are needed, and ordinary �oating-
point arithmetic gives us no roundo�-error problems. The next term in the series is smaller than the Ekin
by a factor of v2/c2, as you can easily verify.

We apply this formula to all the particles, and then calculate the mean and standard deviation of the results.
The answer is Ekin = 1.481(7)joule, which is identical to the result obtained by other means in section 7.10.1.

7.11 Discussion: Loss of Signi�cance

The pH examples in section 7.8 and section 7.9 are obviously real-world examples. They are typical of
examples that come up all the time, in many di�erent situations, ranging from astronomy to zoology.

The relativity example in section 7.10 is a bit more contrived, but it illustrates an important theoretical
point about the relationship between special relativity and classical dynamics. It is representative of a wider
class of problems ... just simpli�ed for pedagogical purposes.

There are a number of lessons we can learn from these examples:



7 PROPAGATION OF UNCERTAINTY 56

1. Something that purports to be an �exact� closed-form solution is not exact at all if you have to evaluate
it using �oating point numbers or other rounded-o� numbers. Ironically, in practice, an approximate
and/or iterative solution might be much more accurate than the purportedly �exact� formula.

2. In section 7.8, even the lame �textbook� version of the quadratic formula would have worked if all of
the calculations had been done using double precision. We only got into real trouble when we copied
down the numbers and rounded them o� to some �common sense� number of digits.

Therefore: When using a calculator or any kind of computer, it is good practice to leave the numbers
in the machine (rather than writing them down and keying them in again later). Learn how to use
the STORE and RECALL functions on your calculator. Most machines use at least 15 digits, which
is usually more than you need, but since keeping them is just as convenient as not keeping them, you
might as well keep them all. (In contrast, writing the numbers down and keying them in again is
laborious and error-prone. You will be tempted to round them o�. Even the e�ort of deciding how
much roundo� is tolerable is more work than simply leaving the numbers in the machine.)

In the spirit of �check the work�, it is reasonable to write down intermediate results, but you should
leave the numbers in the machine also. When you recall a number from storage, you can check to see
that it agrees with what you wrote down.

3. On the other hand, the library function used in section 7.8 fails, even though it is using IEEE double
precision.

Double precision is not in�nite precision.

4. These failures serve as a reminder of the di�erence between uncertainty and signi�cance. The internal
calculations, if they are to have any hope of working, require a large number of digits, out of all
proportion to the uncertainty of the inputs and/or the required tolerance on the outputs.

To put it bluntly: If you see an expression of the form:

X =

(
1.497925297894696...

± 0.01

)
(incomplete) (32)

you should not assume it is safe to round things o�. It may be that such a number already has too
few digits. It may already have been rounded o� too much.

Equation 32 is marked �incomplete� for the following reason: Suppose you need to write down something
to represent the distribution X. The problem is, because of the correlations, it is not su�cient to report
the variance; you need to report the covariances as well. The equation as it stands is not wrong, but
without the covariances it is incomplete and possibly misleading.

Not that the ± notation can only represent the variance (or, rather, the square root thereof), not the
covariances, so it cannot handle the task when there are nontrivial correlations.

5. One way a loss of signi�cance can occur is via accumulation of small errors in a multi-step calculation,
as in section 7.12.

6. Another very common way a loss of signi�cance can occur is via �small di�erences between large
numbers�. More speci�cally:

� If you have a small di�erence between large numbers and the �uctuations are uncorrelated, you
su�er from a noise ampli�er.

In the relativity example considered in section 7.10, E(v) is in fact highly correlated with E(0).
I know (based on how the particles were prepared) that there is some uncertainty in the mass of
the particle. A factor of mass is common to both of the terms that are being subtracted. The
uncertainty in the particle velocity is relatively small, so all in all there is nearly 100% correlation
in the uncertainties. (There is of course no uncertainty in the speed of light, since it is 299792458
m/s by de�nition.)
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� If you have a small di�erence between large numbers and the �uctuations are highly correlated,
then the intrinsic noise is smaller than it looks, but you su�er from a roundo� error ampli�er.

It is all-too-common to �nd expressions for the roots of a polynomial that depend on subtracting
numbers that are highly correlated.

7. The technique of restructuring a calculation so as to avoid a loss of signi�cance falls under the heading
of �numerical methods�. There are entire books devoted to the subject, e.g. reference 15.

The same idea can be applied to experiments, not just calculations. For example, to avoid a problem
with small di�erences between large numbers, you can use null measurements, di�erential measure-
ments, bridge structures (such as a Wheatstone bridge), et cetera.

8. Expanding things to lowest order is one of the most commonly used tools in the scientist's toolbox.

9. It must be emphasized that when Audrey wrote down her numbers for E(v) and E(0), she did not
know the uncertainty. This is typical of a great many real world situations: Often you need to write
down a number when the uncertainty is not known ... and may not be know until weeks or months
later, if at all.

As mentioned in item 4, my advice is: If you have a number that ought to be written down, write
it down. Just write it down already. You can worry about the uncertainty later, if necessary. Write
down plenty of guard digits. The number of digits you write down does not imply anything about the
uncertainty, precision, tolerance, signi�cance, or anything else.

10. Contrary to what what Gail's boss was telling her, you are not obliged to attach an implicit (or explicit)
uncertainty to numbers you write down. If you have an ensemble of numbers, you might be able to
summarize it in terms of a mean and a standard deviation, but you might not ... and even if you are
able to summarize it, you are not obliged to. The ensemble speaks for itself, better than any summary
ever could. Adding the width of the error bars to the width of the ensemble makes things very much
worse, as discussed in section 5.2 and reference 2. In section 7.10.1 Alfred was able to calculate the
ensemble of kinetic energy values just �ne without assigning any uncertainty to Audrey's E(v) and
E(0) numbers.

Indeed, in section 7.10.3, Gail's uncertainty numbers were in some hyper-technical sense correct, but
they were highly misleading. They were worse than nothing, because the correlations were not taken
into account.

11. It really makes me cringe when students get points taken away and get called �numerically ignorant�
for doing exactly the right thing, i.e. keeping plenty of guard digits.

7.12 Example: Signal Averaging: Extracting a Signal from Noise

There are lots of situations where the uncertainty in the �nal answer is less than the uncertainty in the raw
data.

This can be understood in terms of �signal to noise� ratio. When we process lots of data, if we do things right,
the signal will accumulate faster than the noise. (Conversely, if we don't do things right, the accumulated
errors can rapidly get out of hand.)

We now consider an example that illustrates this point. For simplicity, we assume the raw data is normally
distributed and uncorrelated, as shown in �gure 31. The spreadsheet for creating this �gure is in reference 16.
In this section we assume the analysis is done correctly; compare section 7.13.

Speci�cally, each data point is drawn from a Gaussian distribution that has a width of 0.018 units. Suppose
we run the experiment many times. On each run, we take the average of 100 points. We know the average
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Figure 31: Extracting a Signal from Noisy Data

much more accurately than we know any particular raw data point. In fact, if we look at all the runs, the
averages will have a distribution of their own, and this distribution will have a width of only 0.0018 units,
ten times narrow than the distribution of raw data points. The distribution of averages is represented by
the single black point with error bars at the top of �gure 31. (This is a cooked data point, not a raw data
point.)

We can say the same thing using fancy statistical language. Each run is o�cially called a sample. Each
sample contains N raw data points. We assume the points are IID, normally distributed. We compute
the mean of each sample. Theory tells us that the sample means behave as if they were drawn from a
Gaussian distribution, which will be narrower than the distribution of raw data, narrower by a factor of

√
N .

7.13 Example: The E�ect of Roundo� Error

Let's re-analyze the data from section 7.12. In particular, let's consider the e�ect of roundo� errors that
occur while we are calculating the average. Even though the raw data is normally distributed and IID, the
roundo� errors will not be normally distributed, and if we're not careful this can lead to serious problems.

We denote the ith raw data point by ai. It is drawn from a distribution A that has some uncertainty σA.

Next, we round o� each data point. That leaves us with some new quantity bi. These new points behave as
if they were drawn from some new distribution B.

The new uncertainty σB will be larger than σA, but we don't know how much larger, and we don't even
know that distribution B can be described as a Gaussian (or any other two-parameter model). It may be
that B is a viciously lopsided non-normal distribution (even though A was a perfectly well-behaved normal
distribution).
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For normally-distributed errors, when you add two
numbers, the absolute errors add in quadrature,
as discussed in section 7.20. That's good, because
it means errors accumulate relatively slowly, and
errors can be reduced by averaging.

For a lopsided distribution of errors, such as can
result from roundo�, the errors just plain add, lin-
early. This can easily result in disastrous accumu-
lation of error. Averaging doesn't help.

This is illustrated by the example worked out in the �roundo�� spreadsheet (reference 16), as we now discuss.
The �rst few rows and the last few rows of the spreadsheet are reproduced here. The numbers in red are
seriously erroneous.

raw data � Alice � � Bob � � Carol �
1 0.062 0.062±0.018 0.062±0.018 0.06±0.02
2 0.036 0.098±0.025 0.098±0.025 0.10±0.03
3 0.030 0.128±0.031 0.128±0.031 0.13±0.03
4 0.026 0.154±0.036 0.154±0.036 0.16±0.04
...
98 0.026 4.285±0.178 4.36 ±0.18 3.4 ±0.2
99 0.044 4.329±0.179 4.40 ±0.18 3.4 ±0.2
100 0.021 4.350±0.180 4.42 ±0.18 3.4 ±0.2

average: .0435±0.0018 .0442 .034
= .0435±4.1%

The leftmost column is a label giving the row number. The next column is the raw data. You can see
that the raw data consists of numbers like 0.048. As usual, the raw data points have no width whatsoever.
However, the distribution from which these numbers were drawn has a width of 0.018. You can see that
we are already departing from the usual �signi�cant �gures� hogwash. If you believed in sig �gs, you would
attribute considerable uncertainty to the second decimal place in each raw data point, and you would not
bother to record the data to three decimal places.

In contrast, in reality, it is important to keep that third decimal place, for reasons that will become clear
very soon. We are going to calculate the average of 100 such numbers, and the average will be known tenfold
more accurately than any of the raw inputs.

To say the same thing in slightly di�erent terms: there is in fact an important signal � a signi�cant signal
� in that third decimal place. The signal is obscured by noise; that is, there is a poor signal-to-noise ratio.
Your mission, should you decide to accept it, is to recover that signal.

This sort of signal-recovery is at the core of many activities in real research labs, and in industry. On
ordinary GPS receiver depends on signals that are hundreds of times less powerful than the noise (SNR on
the order of -25 dB). The second thing I ever did in a real physics lab was to build a communications circuit
that picked up a signal that was ten million times less powerful than the noise (SNR = -70 dB). The JPL
Deep Space Network deals with SNRs even worse than that. Throwing away the signal at the �rst step by
�rounding� the raw data would be a Bad Idea.

Take-home message #1: Signals can be dug out from the noise. Uncertainty is not the same
as insigni�cance. A digit that is uncertain (and many digits to the right of that!) may well
carry some signi�cance that can be dug out by techniques such as signal-averaging. Given just
a number and its uncertainly level, without knowing the context, you cannot say whether the
uncertain digits are signi�cant or not.

Take-home message #2: An expression such as 0.048 ± 0.018 expresses two quantities: the
value of the signal, and an estimate of the noise. Combining these two quantities into a single
numeral by rounding (according to the �signi�cant �gures rules�) is highly unsatisfactory. In cases
like this, if you round to express the noise, you destroy the signal.
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Now, returning to the numerical example: I assigned three students (Alice, Bob, and Carol) to analyze this
data. In the data table, the �rst column under each student's name is a running sum. The second column
is a running estimate of the uncertainty of the running sum.

Alice didn't round any of the raw data or intermediate results. She got an average of

0.0435±0.0018 (33)

and the main value (0.0435) is the best that could be done given the points that were drawn from the
ensemble. (The error-estimate is a worst-case error; the probable error is somewhat smaller.)

Meanwhile, Bob was doing �ne until he got to row 31. At that point he decided it was ridiculous to carry
four �gures (three decimal places) when the estimated error was more than 100 counts in the last decimal
place. He �gured that if rounded o� one digit, there would still be at least ten counts of uncertainty in the
last place. He �gured that would give him not only �enough� accuracy, but would even give him a guard
digit for good luck.

Alas, Bob was not lucky. Part of his problem is that he assumed that roundo� errors would be random
and would add in quadrature. In this case, they aren't and they don't. The errors accumulate linearly (not
in quadrature) and cause Bob's answer to be systematically high. The o�set in the answer in this case is
slightly less than the error bars, but if we had averaged a couple hundred more points the error would have
accumulated to disastrous levels.

Roundo� errors may have a lopsided distribution
even if the raw noise has a nice symmetric Gaussian distribution.

Carol was even more unlucky. She rounded o� her intermediate results so that every number on the page
re�ected its own uncertainty (one count, possibly more, in the last digit). In this case, her roundo� errors
accumulate in the �down� direction, with spectacularly bad e�ects.

The three students turned in the following �bottom line� answers:
Alice Bob Carol

.00435± 0.0018 .00442 .0034
(34)

Note that Alice, Bob, and Carol are all analyzing the same raw data; the discrepancies between their answers
are entirely due to the analysis, not due to the randomness with which the data was drawn from the ensemble.

Alice obtains the correct result. This is shown by the single black point with error bars at the top of �gure 31.
Bob's result is slightly worse, but similar. Carol's result is terrible, as shown by the red point with error
bars at the top of �gure 31.

Take-home message #3: Do not assume that roundo� errors are random. Do not assume
that they add in quadrature. It is waaaay too easy to run into situations where they accumulate
nonrandomly, introducing a bias into the result. Sometimes the bias is obvious, sometimes it's
not.

Important note: computer programs6 and hand calculators round o� the data at every step. IEEE 64-
bit �oating point is slightly better than 15 decimal places, which is enough for most purposes but not

all. Homebrew numerical integration routines are particularly vulnerable to serious errors arising from
accumulation of roundo� errors.

6... with very rare exceptions.
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One of the things that contributes to Bob's systematic bias can be traced to the following anomaly: Consider
the number 0.448. If we round it o�, all at once, to one decimal place, we get 0.4. On the other hand, if we
round it o� in two steps, we get 0.45 (correct to two places) which we then round o� to 0.5. This can be
roughly summarized by saying that the roundo� rules do not have the associative property. If you have this
problem, you might �nd it amusing to try the round-to-even rule: round the �ves toward even digits. That
is, 0.75 rounds up to 0.8, but 0.65 rounds down to 0.6. There are cases where this is imperfect (e.g. 0.454)
but it's better overall, it's easy to implement, and it has a pleasing symmetry. (This rule has been invented
and re-invented many times; I re-invented it myself when I was in high school.) Alas, it is not really an
improvement in any practical sense.

The important point is this: If �ddling with the roundo� rules produces a non-negligible change in the
results, it means you are in serious trouble. It means the situation is overly burdened by roundo� errors, and
�ddling with the roundo� rules is just re-arranging deck chairs on the Titanic. Usually the only real solution
is to use more precision (more guard digits) during the calculation ... or to use a di�erent algorithm, so that
fewer steps (hence fewer roundings) are required. If the rounding is part of a purely mathematical exercise,
keep tacking on guard digits until the result is no longer sensitive to the details of the roundo� rules. If
the rounding is connected to experimental data, consider redesigning the experiment so that less rounding
is required, perhaps by nulling out a common-mode signal early in the process. This might be done using a
bridge, or phaselock techniques, or the like.

You can play with the spreadsheet yourself. For fun, see if you can �ddle the formulas so that Bob's bias is
downward rather than upward. Save the spreadsheet (reference 16) to disk and open it with your favorite
spreadsheet program.

Notes:
1) I've got automatic recalculation turned o�; you can either turn it back on, or push your spreadsheet's

�recalculate� button (F9 or some such) when necessary.
2) Hiding in columns R, S, and T is a Box-Muller transformation to draw numbers randomly from a

Gaussian distribution. You might think any decent spreadsheet would have a built-in function to
generate a normal distribution, but some versions of Excel don't. (Sometimes it's provided by an
add-in.) In any case, it's good to know the Box-Muller trick.

Additional constructive suggestions and rules of thumb:
• Remember, uncertainty is not the same as insigni�cance.
• It is always safer to have too many digits than too few.
• Suppose you know the Nth digit is uncertain, for physics-related reasons. Any digits to the right of
that are guard digits. They can't hurt unless they become unduly laborious � but now in the era of
hand calculators and spreadsheet programs it's often easier to carry huge numbers of digits than it is
to �gure out exactly how many digits are needed at each step. The purpose of the guard digits is to
ensure that accumulated roundo� errors remain smaller than the physics-related errors.
• Before you decide to round o�, you must do some sort of theoretical and/or operational check to ensure
that rounding doesn't introduce a serious error.
• Beware that there are a lot of pseudo-experts and textbooks out there who have no understanding of
signal recovery, and blindly put complete faith in some �sig digs rules�. Just because they do it doesn't
make it right.
• If you have something worth saying, don't say it in terms of �signi�cant digits�. There are better ways.
For instance, rather than saying �this is good to 5 sig digs�, it would be better to say �this is accurate
to 10 ppm�.
• See also section 8.2, reference 8, and reference 10.

If you have something worth saying,
don't say it in terms of �signi�cant �gures�.

There exist very detailed guidelines for rounding o� if that turns out to be necessary.
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a) Here is a crude way to check whether we are carrying enough guard digits in the intermediate steps.
Ask the question: If we did this twice, rounding up at every step in one case and rounding down at
every step in the other case, would both cases give the same answer, to an acceptable approximation?
If not, we need to carry more digits.

b) Here is a more reliable check: Ask the question: If we ran the calculation N times, randomly
rounding up or down at each step in each run, would every run give the same answer, to an acceptable
approximation? If not, we need to carry more digits.

c) In the case where the roundo� errors are small, you might be able to get away with an analytic
approach. This involves looking at the �rst derivative of the �nal answer with respect to whatever
quantity you want to round o�.

This is risky in a multi-step or iterated calculation where many roundo� operations occur. That's
because you need to worry about accumulation of errors.

The main advantage is that if you have a problem and are trying to �x it, the analytic approach will
probably tell you where to focus your attention. Very commonly, some steps require extra digits while
other steps do not.

7.14 Crank Three Times�

Here's a simple yet powerful way of estimating the uncertainty of a result, given the uncertainty of the
thing(s) it depends on.

Here's the procedure, in the simple case when there is only one input variable with appreciable uncertainty:

1. Set up the calculation. Do it once in the usual way, using the nominal, best-estimate values for all the
input variables.

2. Then re-do the calculation with the uncertain variable at the end of its upper error bar.

3. Then re-do the calculation with the uncertain variable at the end of its lower error bar.

I call this the Crank Three Times� method. Here is an example:

x 1/x
=== ===
2.02 (high case) → .495
2 (nominal case) → .5
1.98 (low case) → .505

(35)

Equation 35 tells us that if x is distributed according to x = 2 ± .02 then 1/x is distributed according to
1/x = .5 ± .005. Equivalently we can say that if x = 2 ± 1% then 1/x = .5 ± 1%. We remark in passing
that the percentage uncertainty (aka the relative uncertainty) is the same for x and 1/x, which is what we
expect provided the uncertainty is small.

The Crank Three Times� method is a type of �what if� analysis. We can also consider it a simple example
of an iterative numerical method of estimating the uncertainty (in contrast to the step-by-step �rst-order
methods described in section 7.20). This simple method is a nice lead-in to fancier iterative methods such
as Monte Carlo, as discussed in section 7.16.

The Crank Three Times� method is by no means an exact error analysis. It is an approximation. The nice
thing is that you can understand the nature of the approximation, and you can see that better and better
results are readily available (for a modest price).
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One of the glories of the Crank Three Times� method is that in cases where it doesn't work, it will tell you
it isn't working, provided you listen to what it's trying to tell you. If you get asymmetrical error bars, you
need to investigate further. Something bad is happening, and you need to check closely to see whether it is
a little bit bad or very, very bad.

As far as I can tell, for every �aw that this method has, the sig-�gs method has the same �aw plus others
... which means Crank Three Times� is Pareto superior.

This method requires no new software, no learning curve, and no new concepts beyond the concept of
uncertainty itself. In particular, unlike signi�cant digits, it introduces no wrong concepts.

Crank Three Times� shouldn't require more than a few minutes of labor. Once a problem is set up, turning
the crank should take only a couple of minutes; if it takes longer than that you should have been doing
it on a spreadsheet all along. And if you are using a spreadsheet, Crank Three Times� is super-easy and
super-quick.

If you have N variables that are (or might be) making a signi�cant contribution to the uncertainty of the
result, the Crank Three Times� method could more precisely be called the Crank 2N + 1 Times� method.
Here's the procedure: Set up the spreadsheet and wiggle each variable in turn, and see what happens. Wiggle
them one at a time, leaving the other N − 1 at their original, nominal values.

If you are worried about what happens when two of the input variables are simultaneously at the ends of
their error bars, you can check that case if you want. However, beware that if there are many variables,
checking all the possibilities is exponentially laborious. Furthermore, it is improbable that many variables
would simultaneously take on extreme values, and checking extreme cases can lead you to overestimate the
uncertainty. For these reasons, and others, if you have numerous variables and need to study the system
properly, at some point you need to give up on the Crank Three Times� method and do a full-blown Monte
Carlo analysis.

In the rare situation where you want a worst-case analysis, you can move each variable to whichever end of
its error bar makes a positive contribution to the �nal answer, and then �ip them all so that each one makes
a negative contribution. In most cases, however, a worst-case analysis is wildly over-pessimistic, especially
when there are more than a few uncertain variables.

Remember: there are many cases, especially when there are multiple uncertain variables and/or correlations
among the variables and/or nonlinearities, your only reasonable option is Monte Carlo, as discussed in
section 7.16. The Crank Three Times� method can be considered an ultra-simpli�ed variation of the Monte
Carlo method, suitable for introductory reconnaissance.

Here is another example, which is more interesting because it exhibits nonlinearity:

x 1/x
=== ===
2.9 (high case) → .34
2 (nominal case) → .5
1.1 (low case) → .91

(36)

Equation 36 tells us that if x is distributed according to x = 2 ± .9 then 1/x is distributed according to
1/x = .5(+.41− .16). Equivalently we can say that if x = 2±45% then 1/x = .5(+82%−31%). Even though
the error bars on x are symmetric, the error bars on 1/x are markedly lopsided.

Lopsided error bars are fairly common in practice. Sometimes they are merely a symptom of a harmless
nonlinearity, but sometimes they are a symptom of something much worse, such as a singularity or a branch
cut in the calculation you are doing.

This is vastly superior to the step-by-step �rst-order methods discussed in section 7.20, which blissfully
assume everything is linear. That is to say, in e�ect they expand everything in a Taylor series, and keep
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only the zeroth-order and �rst-order terms. In cases where this is not a good approximation, you are likely
to get wrong answers with little or no warning.

Here is yet another example, which is interesting because it shows how to handle correlated uncertainties in
simple cases. The task is to calculate the molar mass of natural bromine, given the nuclide mass for each
isotope, and the corresponding natural abundance.

The trick here is to realize that the abundances must add up to 100%. So if one isotope is at the low end
of its error bar, the other isotope must be at the high end of its error bar. So the abundance numbers are
anticorrelated. This is an example of a sum rule. For more about correlations and how to handle them, see
section 7.16.

(The uncertainties in the mass of each nuclide are negligible.)

nuclide mass natural light case nominal case heavy case
/ dalton abundance

79Br 78.9183376(20) × 50.686+.026% = 40.02107 more
79Br 78.9183376(20) × 50.686% = 40.00055 nominal
79Br 78.9183376(20) × 50.686-.026% = 39.98003 less
81Br 80.9162911(30) × 49.314+.026% = 39.92410 more
81Br 80.9162911(30) × 49.314% = 39.90306 nominal
81Br 80.9162911(30) × 49.314-.026% = 39.88202 less

��� ��� ���
79.90309 79.90361 79.90412

So by comparing the three columns (light case, nominal case, and heavy case), we �nd the bottom-line
answer: The computed molar mass of natural bromine is 79.90361(52). This is the right answer based on a
particular sample of natural bromine. The usual �textbook� value is usually quoted as 79.904(1), which has
nearly twice as much uncertainty, in order to account for sample-to-sample variability.

Note that if you tried to carry out this calculation using �signi�cant �gures� you would get the uncertainty
wrong. Spectacularly wrong. O� by two orders of magnitude. The relative uncertainty in the molar mass is
two orders of magnitude smaller than the relative uncertainty in the abundances.

7.15 Another Example: Magnesium Mass, Preliminary Attempt

This is based on question 3:21 on page 122 of reference 17.

Suppose we want to calculate (as accurately as possible) the molar mass of natural magnesium, given the
mass of the various isotopes and their natural abundances.

Many older works referred to this as the atomic mass, or (better) the average atomic mass ...
but the term molar mass is strongly preferred. For details, see reference 18.

The textbook provides the raw data shown in table 7.

The textbook claims that the answer is 24.31 dalton and that no greater accuracy is possible. However, we
can get a vastly more accurate result.

The approach in the textbook has multiple problems:
• The textbook uses methods that vastly overestimate the halfwidth of the distribution. This damages
the estimated uncertainty.
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isotope molar mass / dalton abundance
24Mg 23.9850 78.99%
25Mg 24.9858 10.00%
26Mg 25.9826 11.01%

Table 7: Isotopes of Magnesium, Rough Raw Data

isotope molar mass / dalton abundance
24Mg 23.9850(3) 78.99(3)%
25Mg 24.9858(3) 10.00(3)%
26Mg 25.9826(3) 11.01(3)%

Table 8: Isotopes of Magnesium, Rough Data with Explicit Uncertainty

• The textbook fails to take into account the fact that the abundance variables are highly correlated, as
they must be, since they always sum to 100%. This further damages the estimated uncertainty.
• The textbook expresses the uncertainty using the dreaded �sig digs� rules, which give only a crude
indication of the halfwidth of the distribution. This does yet more damage to the estimated uncertainty.
• The textbook rounds o� the answer according to the usual foolish �sig digs� rules, which don't permit
guard digits. The roundo� error damages the nominal value.

It is tempting to blame all the problems on the �sig digs� notation, but that wouldn't be fair in this case.
The primary problem is mis-accounting for the uncertainty, and as we shall see, we are still vulnerable to
mis-accounting even if the uncertainty is expressed using proper notation.

Similarly note that even if we did manage to get good estimate of the uncertainty, the �sig digs� rules would
not have called for such drastic rounding. So the propagation-of-error issues really are primary.

Let's make a preliminary attempt to �gure out what's going on. If we clean up the notation, it will facilitate
understanding and communication. In particular, it will expose a bunch of problems that the text sweeps
under the rug.

We can start by re-expressing the textbook data so as to make the uncertainties explicit. We immediately
run into some unanswerable questions, because the �sig digs� notation in table 7 gives us only the crudest
idea of the uncertainty ... is it half a count in the last decimal place? Or one count? Or more??? If we use
only the numbers presented in the textbook, we have to guess. Let's temporarily hypothesize a middle-of-
the-road value, namely three counts of uncertainty in the last decimal place. We can express this in proper
notation, as shown in table 8.

This gives the molar mass of the 25Mg isotope with a relative accuracy of 12 parts per million (12 ppm),
while the abundance is given with a relative accuracy of 3 parts per thousand (3000 ppm). So in some sense,
the abundance number is 250 times less accurate.

If you think about the data, you soon realize that the abunance numbers are in percentages, and must add
up to 100%. We say there is a sum rule.

The sum rule means the uncertainty in any one of the abundance numbers is strongly anticorrelated with
the uncertainty in the other two. The widely-taught pseuo-sophisticated �propagation of uncertainty� rules
don't take this into account; instead, they rashly assume that all errors are uncorrelated. If you just add up
the abundance numbers without realizing they are percentages, i.e. without any sum rule, you get

78.99(3) + 10.00(3) + 11.01(3) = 100.00(5) ??? (37)
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isotope molar mass / dalton
24Mg 23.9850423(8)
25Mg 24.9858374(8)
26Mg 25.9825937(8)

Table 9: Isotopes of Magnesium, IUPAC Mass Data

with (allegedly) 500 ppm uncertainty, even though the sum rule tells us they actually add up to 100 with
essentially no uncertainty:

78.99(3) + 10.00(3) + 11.01(3) = 100.0± 0 (38)

Even if you imagine that equation 38 is not perfectly exact � perhaps because it fails to account for some
fourth, hitherto-unknown isotope � the sum must still be very nearly 100%, with vastly less uncertainty than
equation 37 would suggest.

To say the same thing another way, we are talking about three numbers (the percent abundance of the
three isotopes). Taken together, these numbers specify a point in some abstract three-dimensional space.
However, the valid, physically-signi�cant points are restricted to a two-dimensional subspace (because of the
sum rule).

Here's another fact worth noticing: All three isotope masses are in the same ballpark. That means that
uncertainties in the abundance numbers will have little e�ect on the sought-after average mass. Imagine
what would happen if all three isotopes had the same identical mass. Then the percentages wouldn't matter
at all; we would know the average mass with 12 ppm accuracy, no matter how inaccurate the percentages
were.

There are various ways to take the �ballpark� property into account.

One method, as pointed out by Matt Sanders, is to subtract o� the common-mode contribution by artfully
regrouping the terms in the calculation. That is, you can subtract 25 (exactly) from each of the masses in
table 8, then take the weighted average of what's left in the usual way, and then add 25 (exactly) to the
result. The di�erences in mass are on the order of unity, i.e. 25 times smaller than the masses themselves,
so this trick makes us 25 times less sensitive to problems with the percentages. We are still mis-accounting
for the correlated uncertainties in the percentages, but the mis-accounting does 25 times less damage.

The idea of subtracting o� the common-mode contribution is a good one, and has many applications. The
idea was applied here to a mathematical calculation, but it also applies to the design of experimental
apparatus: for best accuracy, make a di�erential measurement or a null measurement whenever you can.

To summarize, subtracting o� the common-mode contribution is a good trick, but (a) it requires under-
standing the problem and being somewhat devious, (b) in its simplest form, it only works if the problem is
linear, (c) it doesn't entirely solve the problem, because it doesn't fully exploit the sum rule.

7.16 Magnesium Mass, Monte Carlo Solution

The situation described in section 7.15 has so many problems that we need to start over.

For one thing, if we're going to go to the trouble of calculating things carefully, we might as well use the
best available data (rather than the crummy data given in the textbook, i.e. table 8). A secondary source
containing mass and abundance data for the isotopes of various elements can be found in reference 19. We
can use that for our mass data. Another secondary source is reference 20.
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abundance
isotope pair ratio 95% con�dence

25Mg/24Mg x = 0.12663 ± 0.00013
26Mg/24Mg y = 0.13932 ± 0.00026

Table 10: Isotopes of Magnesium, NBS Abundance Data

Reference 19 appears to be taking its magnesium abundances from reference 21, and it is always good to
look at the primary sources if possible, so let's do that.

The �rst thing you notice is that that the scientists to did the work report their results in the form 0.12663
± 0.00013 at 95% con�dence. The uncertainty is clearly and explicitly stated. People who care about their
data don't use sig �gs. (Beware that the 95% error bar is two standard deviations, not one.)

Another thing you notice is that they report only two numbers for the abundance data. They report the
ratio of 25Mg abundance to 24Mg abundance, and the ratio of 26Mg abundance to 24Mg abundance. They
report the uncertainty for each of these ratios. These two numbers are just what we need to span the two-
dimensional subspace mentioned in section 7.15. The authors leave it up to you to infer the third abundance
number (by means of the sum rule). Similarly they leave it up to you to infer the uncertainty of the third
number ... including its correlations. The correlations are important, as we shall see.

To �nd the percentages in terms of the ratios (x and y) as de�ned in table 10, we can use the following
formulas:

24Mg fraction = 1
1+x+y

25Mg fraction = x
1+x+y

26Mg fraction = y
1+x+y

(39)

You can easily verify that the abundances add up to exactly 100%, and that the ratios are exactly x and y,
as they should be.

The smart way to deal with this data, including the correlations, is to use the Monte Carlo technique. As
we shall see, this is simultaneously easier and more powerful than the textbook approach.

Monte Carlo has many advantages. It is a very general and very powerful technique. It can be applied
to nonlinear problems. It is �exible enough to allow us to exploit the sum rule directly. Relatively little
deviousness is required.

As mentioned in section 1.2 and section 5, we must keep in mind that there is no such thing as an �uncertain
quantity�. There is no such thing as a �random number�. Instead we should be talking about probability
distributions. There are many ways of representing a probability distribution. We could represent it para-
metrically (specifying the center and standard deviation). Or we could represent it graphically. Or (!) we
could represent it by a huge sample, i.e. a huge ensemble of observations drawn from the distribution.

The representation in terms of a huge sample is sometimes considered an inelegant, brute-force technique, to
be used when you don't understand the problem ... but sometimes brute force has an elegance all its own.
Doing this problem analytically requires a great deal of sophistication (calculus, statistics and all that) and
even then it's laborious and error-prone. The Monte Carlo approach just requires knowing one or two simple
tricks, and then the computer does all the work.

You can download the spreadsheet for solving the Mg molar mass question. See reference 22.

The strategy goes like this: As always, whenever we see an expression of the form A± B we interpret it as
a probability distribution. We start by applying this rule to the mass data in table 9 and the abundance-
ratio data in table 10. This gives a mathematical distribution over �ve variables. Then we represent
this distribution by 100 rows of simulated observations, with �ve variables on each row, all randomly and
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independently drawn from the mathematical distribution. This gives us another representation of the same
distribution, namely a sampled representation. Using these observations, on each row we we make an
independent trial calculation of the average mass, and then compute the mean and standard deviation of
these 100 trial values.

On each row of the spreadsheet, the �ve raw observations are drawn independently. The three percentage
abundance numbers are not raw data, but instead are calculated from the two abundance ratios. The means
the three percentage abundance numbers are not independent. They exhibit nontrivial correlations.

The �nal answer appears in cells M10 and M12, namely 24.30498(18), where our reported uncertainty
represents the one-sigma error bar (unlike reference 21, which reported the two-sigma error bar).

Technical notes:
• In the spreadsheet, I have the �automatic recalculation� feature turned o�. You can re-run the calcu-
lation � using a new set of random numbers � by hitting the F9 button.
• Once again Box-Muller transforms are used to generate a sample of a Gaussian normal distribution.
This is implemented by columns O through Z of the spreadsheet. You are not expected to remember
the details of this trick ... but you should remember that it exists, and can google Box-Muller to �nd
out the details whenever you need a supply of normally-distributed numbers.

If you compare my value for the average mass against the value quoted in reference 21, you �nd that the
nominal value is the same, but the estimated uncertainty is slightly less. There are a couple of explanations
for this. For one thing, they make an e�ort to account for some systematic biases that the Monte Carlo
calculation knows nothing about. Also, at one point they add some uncertainties linearly, whereas I suspect
they should have added them in quadrature. Futhermore, it's not clear to what extent they accounted for
correlated uncertainties.

7.17 Exercise

Pretend that we didn't have a sum rule. That is, pretend that the abundance data consisted of three inde-

pendent random variables, with standard deviations as given in table 8. Modify the spreadsheet accordingly.
Observe what happens to the nominal value and the uncertainty of the answer. How important is the sum
rule?

Hint: There's an entire column of independent Gaussian random numbers lying around unused in the
spreadsheet.

7.17.1 Discussion: Mg Mass

To summarize: As mentioned near the top of section 7.15, the textbook approach has multiple problems:
For one thing, it does the propagation-of-uncertainty calculations without taking the sum rule into account
(which is a huge source of error). Then the dreaded �sig digs� rules make things worse in two ways: they
compel the non-use of guard digits, and they express the uncertainty very imprecisely.

The textbook answer is 24.31 dalton, with whatever degree of uncertainty is implied by that number of �sig
digs�.

We now compare that with the our preferred answer, 24.30498(18) dalton. Our standard deviation is less
than 8 ppm; theirs is something like one part per thousand (although we can't be sure). In any case, their
uncertainty is more than 100 times worse than ours.

Their nominal value di�ers from our nominal value by something like 27 times the length of our error bars.
That's a lot.
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Last but not least, note that this whole calculation should not be taken overly seriously. The high-precision
abundance-ratio data we have been using refers to a particular sample of magnesium. Magnesium from other
sources can be expected to have a di�erent isotope ratio, well outside the error bars of our calculation.

7.18 Reporting Correlated Uncertainties

In this section, we are interested in the isotope abundance percentages (not just the average molar mass).

Recall that reference 21 reported only the two abundance ratios. In contrast, the text reported three
abundance percentages, without mentioning the sum rule, let alone explaining how the sum rule should be
enforced. So the question arises, if we wanted to report the three abundance percentages, what would be
the proper way to do it?

The �rst step toward a reasonable representation of correlated uncertainties is the covariance matrix. This
is shown in cells Q3:S5 in the spreadsheet (reference 22), and shown again in equation 40

covariance =

 9.255 −1.080 −8.175
−1.080 2.307 −1.227
−8.175 −1.227 9.402

× 10−9 (40)

For uncorrelated variables, the o�-diagonal elements of the covariance matrix are zero. Looking at the matrix
in our example we see that the o�-diagonal elements are nonzero, so we know there are correlations. Of
course we knew that already, because the sum rule guarantees there will be correlations.

Alas, it is not easy to understand the physical signi�cance of a matrix by looking at its matrix elements.
For example, it may not be obvious that the matrix in equation 40 is singular ... but if you try to invert it,
you're going to have trouble.

Ideally, if we could represent the matrix in terms of its singular value decomposition (SVD), its meaning
would become considerably clearer. Since the matrix is symmetric, the SVD is identical to the eigenvalue
decomposition (EVD).

There exist software packages for calculating the SVD. If the matrix is larger than 3× 3, it is generally not
practical to calculate the SVD by hand.

� For 2 × 2, �nd the large eigenvectors by applying the power method. Find the small eigenvector by
applying the power method to the inverse matrix.

� For 3× 3, �nd the large and small eigenvectors using the power method, as above. Then �nd the third
eigenvector by taking a cross product. (A spreadsheet formula for calculating the cross product can
be found in reference 23.)

Once you have the eigenvectors, it is trivial to get the eigenvalues.

Even in situations where you cannot readily obtain the exact SVD, you can still make quite a lot of progress
by using an approximate SVD, which I call a ballpark decomposition (BPD). This is shown in cells Q9:AA11
in the spreadsheet and shown again in equation 41.

covariance = RSR†

=

 0.707 0.408 0.577
0.000 −0.816 0.577
−0.707 0.408 0.577

  17.503 −0.128 0.000
−0.128 3.460 0.000

0.000 0.000 0.000

  0.707 0.000 −0.707
0.408 −0.816 0.408
0.577 0.577 0.577


(41)

where R is a unitary matrix and S is �almost� diagonal. Speci�cally, R consists of a set of approximate
eigenvectors of the covariance matrix, considered as column vectors, normalized and stacked side-by-side.
The approximate eigenvalues of the covariance matrix appear on the diagonal of S.
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The approximate eigenvalues can be �gured out using the following reasoning: It is a good guess that [1, 1, 1]
or something close to that is the most-expensive eigenvalue of the covariance matrix, because if you increase
all three abundance percentages, you violate the sum rule. Secondly, if you check this guess against the
computed covariance matrix, equation 40, it checks out, in the sense that it is an eigenvector with zero
eigenvalue. Thirdly, if you look at the de�nition of the covariance matrix and apply a little algebra, you can
prove that [1, 1, 1] is exactly (not just approximately) an eigenvector with zero eigenvalue.

Meanwhile, the cheapest eigenvector must be [1, 0,−1] or something like that, because that corresponds to
increasing the amount of 24Mg and decreasing the amount of 26Mg, which is cheap (in terms of Mahalanobis
distance) because of the relatively long error bar on the 26Mg/24Mg ratio as given in table 10.

The third approximate eigenvector is determined by the requirement that it be perpendicular to the other
two. (You might guess that it would be something like [1,−1, 0], but that wouldn't be perpendicular.) In
general, you can take a guess and then orthogonalize it using the Gram-Schmidt process. In the particular
case of D dimensions where D − 1 of the vectors are known, you can take the cross product (or its higher-
dimensional generalization). In the present example, the third member of the orthogonal set is [1,−2, 1].
This is middle eigenvector, neither the cheapest nor the most expensive.

We interpret this as follows: Since the o�-diagonal elements in the S-matrix in equation 41 are relatively
small, we can say that the uncertainties in the eigenvalues are almost uncorrelated. The eigenvalues are a
good (albeit not quite exact) indication of the variance associated with the corresponding eigenvector. Take
the square root of the variance to �nd the standard deviation.

For what it's worth, equation 42 gives the actual SVD. You can see that it is not very di�erent from the
ballpark decomposition in equation 41.

covariance = RSR†

=

 −0.703 0.415 0.577
−0.007 −0.816 0.577

0.711 0.402 0.577

  17.505 0 0.000
0 3.459 0.000

0.000 0.000 0.000

  −0.703 −0.007 0.711
0.415 −0.816 0.402
−0.577 −0.577 −0.577


(42)

In C++ the armadillo package can be used to perform SVD. In python the numpy package knows how to
do SVD.

7.19 Another Example: Solving a Quadratic via Monte Carlo

Consider the following scenario. Suppose we are given that:

a x2 + b x+ c = 0
a = 1 exactly
b = 2.08 ±1.0 Gaussian, IID
c = 1.08 ±0.05 Gaussian, IID

(43)

The variable x behaves as if it were drawn from some distribution X, and our goal is to �nd a description
of this distribution.

It su�ces to treat this as a mathematical puzzle unto itself, but if you would prefer to have some physical
interpretation, context, and motivation, we remark that equations like this (and even nastier equations) arise
in connection with:

� trajectory of a particle subject to uniform acceleration;

� wave propagation (re�ected wave, transmitted wave);
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� optimization problems (�nding the shortest path);

� �nding pH as a function of concentration;

� et cetera.

We can solve this equation using the smart version of the quadratic formula, as explained in reference 14.

xbig =
−b− sgnL(b)

√
b2 − 4ac

2a
xsmall = c/a

xbig

(44)

We can get a feel for the two variable coe�cients (b and c) by making a two dimensional scatter plot. The
result is a sample drawn from a two-dimensional Gaussian distribution, as shown in �gure 32.

Figure 32: Coe�cient b versus Coe�cient c

The two-dimensional Gaussian distribution from which this sample was drawn has the following properties:
The probability density is highest near the nominal value of (b, c) = (−2.08, 1.08). The density tails o� from
there, gradually at �rst and then more quickly.

Let's see what we can learn by using the Crank Three Times� method. In this case it will actually require
�ve turns of the crank, since we have two uncertain coe�cients to deal with.

The �rst crank, as always, involves setting the coe�cients a, b, and c to their nominal values and solving for
x. When we do this, we �nd two solutions, namely x = 1.00 and x = 1.08. In some sense these x values are
�centered� on the point x = 1.04. We shall see that x = 1.04 is a point of pseudo-symmetry for this system,
and we shall call it the �nominal� x-value.

In �gure 32 the region with the tan background corresponds to points (b, c)-space where the discriminant
b2 − 4ac is positive, resulting in a pair of real-valued solutions for x. Meanwhile, the region with the
gray background corresponds to points where the discriminant is negative, resulting in a conjugate pair of
complex-valued solutions.

There is zero probability of a point falling exactly on the boundary. This would result in a double
root. For example, the point (b, c) = (−2.08, 1.0816) would produce a double root at x = 1.04.
Since this is vanishingly unlikely, we will have nothing further to say about it, and will speak of
the roots as occurring in pairs.
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For present purposes, we will keep all the x-values we �nd, including both elements of each pair of roots,
and including complex as well as real values. (In some situations there could be additional information that
would allow us to discard some of the solutions as unphysical, but for now it is easier and more informative
to consider the most general case, and just keep all the solutions.)

If we (temporarily!) consider just the real-valued solutions, we �nd that x has lopsided error bars. This means
it is not safe to describe the x-distribution in terms of some nominal value plus-or-minus some uncertainty.
Lopsided error bars are a warning, telling us to investigate more closely, to see whether the problem is just
a mild nonlinearity, or whether something very very bad is going on.

When we take into account the complex-valued solutions, we immediately discover that the situation falls
into the very very bad category. The Crank Three Times� method has given us a valuable warning, telling
us that it cannot give us the full picture. To get the full picture, we need to do a full-blown Monte Carlo
analysis. The result of such an analysis can be presented as a scatter plot in the complex plane, as shown in
�gure 33.

Figure 33: Pitchfork : x-values for ∆b = 1.0, ∆c = 0.05

The distribution of x-values can be plotted in the complex plane, as shown in �gure 33. This distribution
does not even remotely resemble a two-dimensional Gaussian. It looks more like some sort of diabolical
pitchfork.

The probability density actually goes to zero at the nominal point x = 1.04.

Sprouting out from the nominal x-value are four segments, shown using four di�erent colors in the diagram.
These correspond to whether we take the plus or minus sign in front of the ± square root, and whether the
discriminant (b2 − 4ac) is positive or negative. (The sign of the discriminant depends on the luck of the
draw, when we draw values for the coe�cients b and c. The ± sign does not depend on the luck of the draw,
because except in the case of a double root, for every point in (a, b, c)-space we get two points in x-space.)

This diagram is more-or-less equivalent to something that in another context would be called a root locus

plot or root locus diagram.

In the interests of simplicity, let us consider a slightly di�erent version of the same problem. The statement
of the problem is the same as before, except that there is less uncertainty on the coe�cients. Speci�cally,
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we wish to describe the distribution X that models the behavior of the variable x, given that:

a x2 + b x+ c = 0
a = 1 exactly
b = 2.08 ±0.01 Gaussian, IID
c = 1.08 ±0.01 Gaussian, IID

(45)

The scatter plot for the coe�cients (b, c) is shown in �gure 34.

Figure 34: Coe�cient b versus Coe�cient c

The corresponding scatter plot for the solutions x in the complex plane is shown in �gure 35. The pitchfork
shape is less evident here. It looks more like a Greek cross. The curvature of the upper and lower segments
is barely visible. Compared to �gure 33, this is similar except more �zoomed in�; that is, all the points now
lie closer to the nominal x-value. The probability density is still zero at the nominal point, so the nominal
solution is by no means the best solution. It is arguably not even a solution at all.

Mathematically speaking, it is straightforward to calculate the sample mean, i.e. the mean of the points
shown in �gure 35. It comes out to very nearly the nominal x-value, namely x = 1.04.

Also mathematically speaking, it is straightforward to calculate the variance and the standard deviation of
the sample points. The standard deviation is essentially the RMS distance of the points from the mean
value. Actually I prefer to call it the RMAS, for root-mean-absolute-square, since technically speaking we
want the absolute square |x|2 rather than the plain old square x2. It comes out to be about 0.11 for this
sample.

I emphasize that calculating these numbers is easier than assigning any useful meaning to the numbers.
Speci�cally, it would be grossly misleading to describe this distribution in terms of its mean and standard
deviation. That is, it would be grossly misleading to write x = 1.04 ± 0.11 without stating the form of the
distribution. This distribution is about as non-Gaussian as anything I can imagine. For �gure 35, it might
make sense to describe the mean and standard deviation of each of the four segments separately ... but for
�gure 33, not even that would do a good job of describing the overall x-distribution.

Note that if we � hypothetically and temporarily � pretend the RMAS is a useful measure of the uncertainty,
then the relative uncertainty on x is almost 11 percent, which is more than an order of magnitude larger
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Figure 35: x-values for ∆b = ∆c = 0.01

than the uncertainty in either of the coe�cients. Non-hypothetically speaking, keep in mind that the RMAS
barely begins to describe what we know (and don't know) about the distribution of x-values.

These examples illustrate the importance of plotting the data and looking at it, rather than relying on
mathematical abstractions such as mean and standard deviation. If you just blithely calculated numerical
values for the mean and standard deviation, you would come nowhere near understanding this system.

These examples also illustrate the tremendous power of the Monte Carlo method. It works when other
methods fail.

� For the scenario given in equation 45 the Crank Three Times� method fails. It fails gracefully, in the
sense that when you try it, you get very peculiar results, including complex numbers, so you know you
that three cranks will be nowhere near su�cient. You need many, many cranks, i.e. a full-blown Monte
Carlo.

� The step-by-step �rst-order propagation approach described in section 7.20 also fails. It is guaranteed
to fail, and extending it to second order (or higher order) won't help. That's because the square-root
function is not di�erentiable at any point where its argument goes to zero, i.e. for any point along the
tan/gray boundary in �gure 34. This guarantees we will have trouble constructing a Taylor series. If we
pick any point in the (b, c) plane and construct a Taylor series there, the radius of convergence cannot
extend across the tan/gray boundary. Therefore neither the nominal point nor any other point in the
plane will give us a radius of converence large enough to encompass all the points in the sample. It
should be obvious that there is no circle that encompasses all the points without crossing the tan/gray
boundary, since the points themselves sit on both sides of the boundary.

In the introductory texts, when they lay down �rules� for propagating the uncertainty step-by-step,
they often neglect to mention that you need to systematically check the radius of convergence at every
step. If you fail to check, convergence problems will go unnoticed, and you will get seriously wrong
answers. Unfortunately, this sort of checking is quite laborious, so it is seldom done, and serious errors
are common.

Remember that there are three problems layered on top of each other: Misrepresentation, Malexpan-
sion, and Correlation. This is discussed in section 7.1.
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Bottom line: In this example, and in many similar examples, if you want a good, simple, quantitative answer
for the nominal value and uncertainty of the distribution X, you're out of luck. There is no such thing. We
need to ask a di�erent question, such as �How can we understand what's going on in this system?�

Looking at a scatter plot such as �gure 35 is a good starting point for understanding what is going on.

7.20 Step-by-Step First-Order Propagation of Uncertainty

Suppose we have a procedure, consisting of one or more steps. We start with ai and then calculate bi and
then ci et cetera. Here ai is an observation drawn from some distribution A. We assume the distribution A
can be represented by a blob of the form 〈A〉 ± [A] where 〈A〉 is the mean and [A] is the standard deviation.

The hallmark of step-by-step propagation is that at each step in the calculation, rather than keeping track
of plain old numbers such as ai, bi et cetera, we keep track of the corresponding distributions, by means of
the blobs 〈A〉 ± [A], 〈B〉 ± [B], et cetera.

This approach su�ers from three categories of problems, namely misrepresentation, malexpansion, and cor-
relation.

7.20.1 Disclaimers

People often ask for some mathematical rules for keeping track of the uncertainty at each step in a long
calculation, literally �propagating' the uncertainty on a step-by-step basis. This approach works �ne in a
few simple, ideal cases. Perhaps the biggest advantage of the step-by-step approach is that thinking about
the logic behind the rules helps give you a feel for what's going on, and allows you to predict which steps
are likely to make the largest contributions to the overall uncertainty.

On the other hand, beware: The step-by-step �rst-order approach is subject to many provisos
that often make it inapplicable to practical problems. (If you ignore the provisos, you will get
wrong answers � often with little or no warning.)

In a complicated multi-step problem, you may �nd that step-by-step �rst-order propagation works
�ne everywhere except for one or two steps. Alas, a chain is only as strong as its weakest link,
so the method fails to solve the overall problem. The quadratic formula in section 7.19 serves as
an example of just such an overall failure, even though the method worked for every step except
one, i.e. except for the step that called for extracting the square root.

Also beware that even in cases where the step-by-step method is applicable, it can become quite
laborious. For example, when stepping through the quadratic formula (as in equation 43 for ex-
ample), there is a product, then a sum, then a square root, then another sum, and then a division.
This requires repeated conversion between absolute uncertainty and relative uncertainty. In this
case, calculating the uncertainty requires about three times as many arithmetical operations as
calculating the nominal value. You can reduce the workload by using ultra-crude approximations
to the uncertainty (such as sig �gs), but this gives you the wrong answer. There is no advantage
to having an easy way of getting the wrong answer.

Generally speaking, when dealing with messy, complicated, practical cases you're better o� letting
a computer do the work for you. You can start with the Crank Three Times� method discussed
in section 7.14, and if that's not good enough, you can use the Monte Carlo7 method as discussed
in section 7.16.

7Remember, you don't have to re-invent all the Monte Carlo technology on your own; just copy the existing spreadsheet
(reference 22) and re-jigger it to do what you want.
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7.20.2 Step-by-Step Propagation Rules

These rules have some advantage and disadvantages. In situations where they are valid, they are very
convenient. For example, if you know that a certain distribution has a mean of 19 and a relative uncertainty
of 10%, then if you double every element of the ensemble you get a new distribution with a mean of 38
and the same relative uncertainty, namely 10%. This is easy and intuitive, and gets the right answer in
this situation. You don't need to understand any calculus, you don't need to worry about the radius of
convergence, and you hardly need to do any work at all.

However, beware that a collection of anecdotes is not a proof. These rules work in certain selected situations,
but they fail miserably in other situations.

I assume you already know how to add, subtract, multiply, and divide numbers, so we will now discuss how
to add, subtract, multiply, and divide probability distributions, subject to certain restrictions.

Each of the capital-letter quantities here (A, B, and C) is a probability distribution. We can write A :=
mA±σA, where mA is the mean and σA is the standard deviation.

The best way to explain where these rules come from is to use calculus, but if you don't know calculus you
can (a) start by accepting the rules as plausible hypotheses, and then (b) checking them for consistency.
More speci�cally, calculus is needed for any serious understanding of the limitations of the rules.

1. Addition and Subtraction: If you are calculating C := A+ B or C := A− B, provided that A and B
are uncorrelated, then the absolute uncertainties add in quadrature. That is:

σ2
C = σ2

A + σ2
B (46)

2. Multiplication and Division: If you are calculating C := A × B or C := A/B, provided that A and
B are uncorrelated, and provided the relative uncertainties are small (compared to unity), then the
relative uncertainties add in quadrature. That is:

(σC/mC)2 = (σA/mA)2 + (σB/mB)2 (47)

3. Powers: If you are calculating B := AN , provided N is an exact integer, and provided that A has only
a small relative uncertainty, then the relative uncertainty grows in proportion to N . That is:

σB/mB = |N |σA/mA (48)

Note that you cannot get this result by applying the product rule. The product rule is not applicable,
since taking powers involves multiplying quantities with correlated uncertainties.

If N is not an integer, equation 48 is not reliable. It might work, or it might not. For example, consider
the case where N = 1/2. Suppose we know x2 = y and the distribution on y is 81±1ppm. The problem
is, we don't know whether x ≈ 9 or x ≈ −9, so we might need to write x = 0 ± 9, in which case the
uncertainty on x is incomparably more than the uncertainty on y. For more on this, see section 7.19.

4. Functions and other operations: The general rule, roughly speaking, is to expand the function in a �rst-
order Taylor series, and then apply the �rst rule above, i.e. the �addition� rule. This assumes that the
function be well approximated by a �rst-order Taylor series, which is sometimes a very bad assumption.
As an illustration, suppose you want to calculate the tangent of 89±2 degrees. The uncertainty in the
result is for all practical purposes in�nite, far in excess of what the �rst-order approximation would
have you believe. You could imagine trying to improve the results by using a higher-order Taylor series,
but (a) that's laborious, and (b) it doesn't fully solve the underlying problem, because the Taylor series
might not converge at all. Sometimes you can �gure out the radius of convergence of the Taylor series
� as we do for instance in section 7.19 � but oftentimes it's much easier to give up on the step-by-step
approach entirely, and just do the Monte Carlo.
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7.20.3 More Disclaimers

• There are a lot of provisos in the rules in section 7.20.2. The provisos must be taken seriously. Otherwise
you may seriously underestimate or overestimate the uncertainty.
• Please remember that the rules in section 7.20.2 are not sig-�gs rules. They are not round-o� rules.
They allow you to calculate the standard deviation σA ... but knowing σA does not oblige you to round
o� mA to any particular number of digits. The guidelines for rounding o� are given in section 8.2.
• The step-by-step approach is very laborious. It requires extra work � fussy, sophisticated work � at
every step in the calculation. This stands in contrast to the Crank Three Times� approach and the
Monte Carlo approach, where all you need to worry about are the top-line inputs and the bottom-line
outputs (unless there are correlations or other complications). All the intermediate steps are taken
care of by the computer, and you can calculate the uncertainties using the same program that you
were already using for calculating the nominal values.

• Despite all the limitations, the step-by-step propagation approach can sometimes be made to work.
Thinking about the logic behind the rules helps give you a feel for what's going on, and allows you to
predict which steps are likely to make the largest contributions to the overall uncertainty. This in turn
may suggest ways of redesigning the whole experiment, so as to make it less sensitive to noise.

Bottom line: As a practical matter, step-by-step �algebraic� propagation of uncertainty calculation is usually
not the best approach. Usually Monte Carlo is both better and easier. The more steps in the calculation,
the more you gain from the Monte Carlo approach.

7.21 OK Example: Step-by-Step Propagation

Here is an example where the propagation rules give the correct answer. For a counterexample, see sec-
tion 7.23.

Suppose somebody asks you to carry out the computation indicated on the RHS of equation 49. If you wish,
for concreteness you may imagine that the �rst number is a raw observation, the second number is some
scale factor or conversion factor, and the third number is some baseline that must be subtracted o�.

x = 4.4[/]× 2.617[/]− 9.064[/] (49)

As always, the [/] indicates that the uncertainty results from roundo�, and is a half-count in the last decimal
place. That means we can restate the problem as 4.4±.05× 2.617±.0005− 9.064±.0005, with due regard for
the fact that roundo� errors are never Gaussian distributed. In this example, for simplicity, we assume the
roundo� errors follow a rectangular distribution.

Using the usual precedence rules, we do the multiplication �rst. According to the propagation rules in
section 7.20, we will need to convert the absolute uncertainties to relative uncertainties.

That gives us: 4.4±1.14%×2.617±0.02%. When we carry out the multiplication, the result is 11.5148±1.14%.
Note that the uncertainty in the product is entirely dominated by the uncertainty in the �rst factor, because
the uncertainty in the other factor is relatively small.

Next we convert back from relative to absolute uncertainties, then carry out the subtraction. That results
in 11.5148±0.131− 9.064±.005 = 2.4508±0.131.

Now we have to decide how to present this result. One reasonable possibility would be to round it to
2.45±0.13 or equivalently 2.45(13). One could maybe consider heavier rounding, to 2.5(1). Note that this
version di�ers from the previous version by 39% of an error bar, which seems like a nasty thing to do to your
data.

Trying to express the foregoing result using sig digs would be a nightmare, as discussed in more detail in
section 17.5.4. Expressing the result properly, e.g. 2.45(13), is no trouble at all.
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7.22 Ampli�cation of Uncertainty

The calculation set forth in equation 49 is an example of what we call a noise ampli�er. We started with
three numbers, one of which had about 1% relative uncertainty, and the others much less. We ended up with
more than 5% relative uncertainty.

This is not a problem with the step-by-step approach; Monte Carlo would have given you the same result.

It appears that the uncertainty grew during the calculation, but you should not blame the calculation in
any way. The calculation did not cause the uncertainty; it merely made manifest the uncertainty that was
inherent in the situation from the beginning.

As a rule of thumb: Any time you compute a small di�erence between large numbers, the relative uncertainty
will be magni�ed.

If you have a noise ampli�er situation that results in unacceptable uncertainty in the �nal answer, you will
need to make major changes and start over. In some cases, it su�ces to a more precise measurement of the
raw data. In other cases, you will need to make major architectural changes in the experimental apparatus
and procedures, perhaps using some sort of �null� technique (electrical bridge, acoustical beats, etc.) so that
subtracting o� such a large �baseline� number is not required.

7.23 Counterexample: Step-by-Step Propagation

Let's carry out the calculation of the pH along the lines suggested in section 7.8. We assume a dilute solution
of a weak-ish acid:

CHA = 10−5 ±1%
Ka = 10−3 ±10%

(50)

We can �nd the pH by direct application of the lame �textbook� version of the quadratic formula. If you
understand what's going on, you know that the actual relative uncertainty in the pH is one percent. The
Crank Three Times� method gives the correct answer, namely one percent.

In this section we will compare the correct result with the result we get from propagating the uncertainty
step-by-step, using the rules set forth in section 7.20.2 ... except that we will not pay attention to the
provisos and limitations that are contained in the rules.

Here is a snapshot of the spreadsheet (reference 24) used to carry out the calculation. The �nal pH has
a calculated uncertainty, highlighted with boldface, that is o� by about three orders of magnitude. The
explanation is that in one of the steps, we subtracted two numbers with highly correlated uncertainties,
violating one of the crucial provisos.
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symbol meaning numerical abs uncertainty rel uncertainty

a 1 1 0 �> 0.00%
b Ka 0.001 0.0001 <� 10.00%

Cha 1e-05 1e-07 <� 1.00%
c -Ka Cha -1e-08 1.005e-09 <� 10.05%
b**2 1e-06 2e-07 <� 20.00%
4ac -4e-08 4.02e-09 <� 10.05%
b**2 - 4ac 1.04e-06 2e-07 �> 19.23%
sqrt(..) 0.00102 9.808e-05 <� 9.62%

-b + sqrt() 1.98e-05 0.0001401 �> 707.28%
../2 pH 9.902e-06 7.003e-05 �> 707.28% �<

-b - sqrt() unphysical -0.00202 0.0001401 �> 6.93%
../2 big root -0.00101 7.003e-05 �> 6.93%

There are two parts to the lesson here:

� The step-by-step propagation rules contain lots of provisos that must be taken seriously.

� In practice, if the provisos are being violated, it is not necessarily easy to notice until it is too late.

In this example, the problem is so large as to be obvious. However, beware that in other situations,
you could easily make a mistake that is not quite so conspicuous ... just wrong enough to be fatal, but
not wrong enough to be noticeable until it is too late.

Hint: If you want to see some less-obvious mistakes, try modifying this example by increasing the concen-
tration and/or decreasing the uncertainty on the concentration.

Note that the more numerically-stable version of the quadratic formula, equation 17, does slightly better,
but still does not play nicely with the step-by-step propagation rules. It gets an uncertainty that is o� by
�only� about one order of magnitude.

Also keep in mind that no matter what you are doing, you can always make it worse by using sig �gs.
Section 7.8 shows how sig �gs can do insane amounts of damage to the quadratic formula in general and pH
calculations in particular.

7.24 Curve Fitting � Least Squares and Otherwise

The basic scenario goes like this: We start with some raw data. The distribution over raw data has some
uncertainty. We choose a model that has some adjustable parameters. We run the data through the curve-
�tting process. This gives us a set of best-�t parameters. There will be some uncertainty associated the
parameters.

There are methods for estimating the uncertainty, based on what we know about the model and the distribu-
tion of raw data. This can be considered a form of step-by-step analytic propagation of the kind considered
in section 7.20. As such, it might work or it might not. It is, as the saying goes, a checkable hypothesis.
After doing the calculation, it is rather easy to wiggle the parameters and con�rm that the �tted model is
behaving in a way that is consistent with the estimated uncertainties.

For the next level of detail on this, see reference 25.
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7.25 Choosing a Method of Propagation

There are some simple situations where simple approaches provide accurate propagation and/or provide
useful insight. In these situations the simple approaches should be used and fancier methods would be a
waste of e�ort. For example, as mentioned in section 7.20.2, if you know that a certain distribution has a
mean of 19 and a relative uncertainty of 10%, then if you double every element of the ensemble you get a new
distribution with a mean of 38 and the same relative uncertainty, namely 10%. This is easy and intuitive
and gets the right answer in this situation.

Consider the following multi-way contrast:

A) If you are dealing with pointlike raw data points, you shouldn't be doing any propagation anyway. The
raw data points never had any error bars to begin with, as discussed in section 4.3.

In this case, the right answer is less laborious than step-by-step propagation, by at least a factor of 2.

B) Now suppose we are dealing with a cooked data blob of the form A±B.

B1) In cases where step-by-step �rst-order propagation is valid and seems convenient, go ahead and
use it.

However, there are lots of situations where the hard part is checking the validity. After you �gure
that out, the calculation is probably easy ... but you have to account for all the work, not just
the calculational crank-turning work.

If you skip the validation step, you are very likely to get the wrong answer with no
warning.

B2) There are some cases where an exact analytic solution exists, and you might as well use it. For
example, we didn't need to do a Monte Carlo to �nd the Maxwell-Boltzmann distribution, because
Mr. M. and Mr. B. have already worked it out for us.

Even when an analytic solution exists, it might be a good idea to check it against the Monte Carlo
solution. Analytic calculations are not infallible.

� It is altogether too easy to drop a minus sign or a factor of two.

� If you grab the Maxwell-Boltzmann equation for the speed when you wanted the energy (or
vice versa) you will get the wrong answer.

� If you grab the Maxwell-Boltzmann equation for 3D and apply it in 2D (or vice versa) you
will get the wrong answer.

Errors of this kind can be exceedingly hard to catch. However, the Monte Carlo solution provides
a very powerful check.

B3) There are plenty of cases where Monte Carlo is just plain easier. You only need one equation,
namely the equation for analyzing an individual data point.

This contrasts with the step-by-step approach, where (at a minimum) you need two equations:
one equation for the nominal value 〈X〉 and another very-di�erent equation for the uncertainty
[X]. Just not having to derive (and check!) this second equation may be a signi�cant savings.
The fact that you need 1000 iterations to collect the Monte Carlo statistics is a negligible cost,
because you don't do that work yourself; the computer does it.

Last but not least, there are plenty of situations where Monte Carlo is the only option.
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8 How Much Accuracy Is Enough? How Much Data Is Enough?

8.1 Why is this hard?

Suppose you are taking data. How many raw data points should you take? How accurately should you
measure each point? There are reliable schemes for �guring out how much is enough. However, the reliable
schemes are not simple, and the simple schemes are not reliable. Any simple rule like �Oh, just measure
everything to three signi�cant digits and don't worry about it� is highly untrustworthy. Some helpful
suggestions will be presented shortly, but �rst let's take a moment to understand why this is a hard problem.

First you need to know how much accuracy is needed in the �nal answer, and then you need to know how
the raw data (and other factors) a�ect the �nal answer.

Sometimes the uncertainties in the raw data can have less e�ect than you might have guessed, because of
signal-averaging or other clever data reduction (section 7.12) or because of anticorrelated errors (section 7.16).
Conversely, sometimes the uncertainties in the raw data can be much more harmful than you might have
guessed, because of correlated errors, or because of unfavorable leverage, as we now discuss.

As an example of how unfavorable leverage can hurt you, suppose we have an angle theta that is approxi-
mately 89.3 or 89.4 degrees. If you care about knowing tan(theta) within one part in a hundred, you need
to know theta within less than one part in ten thousand.

Whenever there is a singularity or near-singularity, you risk having unfavorable leverage. The proverbial
problem of small di�erences between large numbers falls into this category, if you care about relative error
(as opposed to absolute error).

8.2 How To Do It Right � Basic Recommendations

If you are recording some points:

� Use many enough digits to avoid unintended loss of signi�cance.
� Use few enough digits to be reasonably convenient.

� When using a calculator, leave intermediate results in the machine.
� Keep all the raw data.

� If you think the points have come from some underlying distribution,
�rst write down the points, then

separately say what you know about the distribution.

If you are describing a distribution, and you think it can be described in terms of its center and halfwidth:

� Express the center and halfwidth separately.
Do not try to use one numeral to express two numbers.

� Explicitly state the form of the distribution, unless it is obvious from context.
Don't assume all distributions are Gaussian.

There are several equally good ways of expressing the mean and halfwidth of a distribution. It usually
doesn't matter whether the uncertainty is expressed in absolute or relative terms, so long as it is expressed
clearly. For example, here is one common way to express the relative uncertainty of a distribution:

0.048±25% (51)

Meanwhile, there are multiple ways to express the absolute uncertainty of a distribution. The following are
synonymous:

0.048(12) (52a)
0.048±0.012 (52b)
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Another way of expressing absolute uncertainty is:

[0.036, 0.060] (53)

The �interval� or �range� notation in equation 53 has the connotation that the probability is �at and goes
to zero outside the stated interval. A �at distribution can result from roundo�, or from other quantization
phenomena such as discrete drops coming out of a burette. You could use either of the forms in equation 52
for such a distribution, but then there would be questions as to whether the stated error bars represented
the HWHM or the standard deviation.

Sometimes the uncertainty can be expressed indirectly, for example by giving a rule that applies to a whole
family of distributions. See section 6.1 for an example.

There are a couple of additional special rules for raw data, as described in section 8.4. Otherwise, all these
recommendations apply equally well to measured quantities and calculated quantities.

Remember that a distribution has width, but an individual point sampled from that distribution does not.
For details on this, see section 5.2 and reference 2.

Therefore, if you are recording a long list of points, there is normally no notion of uncertainty attached to
the individual points, so the the question of how to express uncertainty on a per-point basis does not arise.
If you want to describe the distributional properties of the whole collection of points, do that separately.
Note the contrast:

The Wrong Way: write down 1000 points using
2000 numbers, i.e. one mean and one standard de-
viation per point.

The Right Way: Write down the points and de-
scribe the distribution using 1002 numbers, i.e.
one number per point, and then one mean and
one standard deviation for the distribution as a
whole.

Note that there is a distinction between the mean and standard deviation of the sample, and the sample-based
estimate of the mean and standard deviation of the population. For an explanation of this, see reference 2.

You should report the form of the distribution, as discussed in section 8.5. Once the form of the distribution
is known, if it is a two-parameter distribution, then any of the expressions in equation 51 or equation 52 or
perhaps equation 53 su�ce to complete the description of the distribution.

Returning to the basic recommendations given at the start of this section: These recommendations do not
dictate an �exactly right� number of digits. You should not be surprised by this; you should have learned by
now that many things � most things � do not have exact answers. For example, suppose I know something
is ten inches long, plus or minus 10%. If I convert that to millimeters, I get 254 mm, ±10%. I might choose
to round that o� to 250 mm, ±10%, or I might choose not to. In any case I am not required to round it o�.

Keep in mind that there are plenty of numbers for which the uncertainty doesn't matter, in which case you
are free to write the number (with plenty of guard digits) and leave its uncertainty unstated. For example,
an experiment might involve ten numbers, one of which makes an obviously dominant contribution to the
uncertainty, in which case you don't need to obsess over the others.

When comparing numbers, don't round them before comparing, except maybe for qualitative, at-a-glance
comparisons, and maybe not even then, as discussed in section 8.7.

When doing multi-step calculations, whenever possible leave the numbers in the calculator between steps,
so that you retain as many digits as the calculator can handle.8 Leaving numbers in the calculator is
vastly preferable to copying them from the calculator to the notebook and then keying them back into the
calculator; if you round them o� you introduce roundo� error, and if you don't round them o� there are so
many digits that it raises the risk of miskeying something.

8These days, most calculators and virtually all spreadsheets use IEEE 64-bit �oating-point, which rounds things o� slightly
beyond 15 decimal digits, as you can easily verify by evaluating the expression 1 + .115 − 1.
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Leave the numbers in the calculator
between steps.

Similarly: When cut-and-pasting numbers from one program to another, you should make sure that all the
available digits get copied. And again similarly: When a program writes numbers to a �le, to be read back
in later, it should ordinarily write out all the available digits. (In very exceptional cases where this would
incur unacceptable ine�ciency, some sort of careful data compression is needed. Simple rounding does not
count as careful data compression.)

Note that the notion of �no unintended loss of signi�cance� is meant to be somewhat vague. Indeed the
whole notion of �signi�cance� is often hard to quantify. You need to take into account the details of the task
at hand to know whether or not you care about the roundo� errors introduced by keeping fewer digits. For
instance, if I'm adjusting the pH of a swimming pool, I suppose I could use an analytical balance to measure
the chemicals to one part in 105, but I don't, because I know that nobody cares about the exact pH, and
there are other far-larger sources of uncertainty.

When thinking about precision and roundo�, it helps to think about the same quantity two ways:
• From an operational point of view, counting digits is where the roundo� rubber means the road. You
have direct control of how many digits you keep.
• From a conceptual, data-centric point of view, it is natural to think about roundo� errors in terms of
percent or ppm or the like. Talking about 10 ppm or 100 ppm is often vastly more expressive than
talking about 5 decimal places � not least because you can nicely express 30 ppm if you need to,
whereas writing �ve and half digits is remarkably ugly.

Therefore it makes sense to use a two-step process: First �gure out how much roundo� error you can a�ord,
and then use that to give you a lower bound on how many digits to use.

Beware that the terminology can be confusing here: N digits is not the same as N decimal places. Let's
temporarily focus attention on numbers in scienti�c notation (since the sig-digs rules are even more confusing
otherwise). A numeral like 1.234 has four digits, but only three decimal places. Sometimes it makes sense
to think of it in four-digit terms, since it can represent 104 di�erent numbers, from 1.000 through 9.999
inclusive. Meanwhile it sometimes makes sense to think of it in three-decimal-place terms, since the stepsize
(stepping from one such number to the next) is 10−3.

If you want to keep the roundo� errors below one part in 10 to the Nth, you need N decimal places, i.e.
N + 1 digits of scienti�c notation. For example numbers near 1.015 will be rounded up to 1.02 or rounded
down to 1.01. That is, the roundo� error is half a percent.

Also beware that roundo� errors are not normally distributed, as discussed in section 8.3. In multi-step
calculations, roundo� errors accumulate faster than normally-distributed errors would. Details on this prob-
lem, and suggestions for dealing with it, can be found in section 7.12. Additional discussion of roundo�
procedures can be found in reference 8.

The cost of carrying more guard digits than are really needed is usually very small. In contrast, the cost
of carrying too few guard digits can be disastrously large. You don't want to do a complicated, expensive
experiment and then ruin the results due to roundo� errors, due to recording too few digits.

When in doubt, keep plenty of guard digits.

8.3 Indicating Roundo� and Truncation

In the not-too-unusual situation where the uncertainty of a distribution is dominated by roundo� error or
some similar quantization error, the situation can be expressed using a slash in square brackets:

0.087[/] (54)
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This can be viewed as shorthand for 0.087[1/2] i.e. a roundo� error of at most half a count in the last place.
Although it is tempting to think of this as roughly equivalent to 0.0870(5), you have to be careful, because
the distribution of roundo� errors is nowhere near Gaussian, and roundo� errors are often highly correlated.

� If you start with an exact number such as 5.432 and round it to one decimal place, the roundo� error
is the same every time.

� If you have relatively narrow Gaussian distribution such as 5.432(3), if you round it to one decimal
place, the roundo� error will be nearly the same almost every time.

� At the other extreme, if you have a very noisy distribution such as 5.432(99) and round it to two
decimal places, the distribution of roundo� errors is very nearly a �at distribution. Beware that the
standard deviation will markedly smaller than the halfwidth, as discussed in connection with �gure 19.

Similarly, if the uncertainty is dominated by a one-sided truncatation error (such as rounding down), this
an be expressed using a plus-sign in square brackets:

0.087[+] (55)

It is tempting to think of this as roughly equivalent to 0.0875(5), but you have to be careful, as discussed
above.

If you have a situation where there is some combination of more-or-less Gaussian noise plus roundo� error,
there is no simple way to describe the distribution.

8.4 Keep All the Original Data

When you are making observations, the rule is that you should record all the original data, just as it comes
from the apparatus. Do not make any �mental conversions� on the �y.
1) Don't round o� readings. If you think the last-place digit is insigni�cant, record it anyway. One reason

is that there is too much chance of mistakes during mental roundo�. Another reason is that there is
the chance that roundo� could throw away some useful information. (Remember, uncertainty is not
the same as signi�cance, as discussed in section 14.)

2) Don't convert scale factors. For example, if the instrument is showing 12.34 millivolts, record the
reading as 12.34 mV. The reason is that if you try to make a mental conversion from mV to V, there
is too much chance of mistakes.

3) Be sure to write down the units (such as mV) explicitly. This is particularly important with auto-
ranging meters. That's because later, during the analysis phase, it is really embarrassing to see an
entry of 12.34 and not be sure whether it is in V or mV. (If there is a large group of readings all with
the same units, you can save some writing if you omit the units from individual readings, provided
you include a clear annotation stating the units for the group. This uses the same principle as the
distributive law of algebra.)

4) Record the non-varying quantities as well as the varying quantities. For example, if you are measuring
the (I, V ) characteristic of the collector on a bipolar transistor, don't just record collector current
versus collector voltage; you need to record things like the base current. If it's the same for all (I, V )
readings, you only need to record it once, but you need to record it.

5) Don't discard readings just because you �think� they won't be needed.9

9By way of exception, there are some advanced experiments that separate the sheep from the goats, and only record
measurements of the goats . . . but this only applies to very sophisticated, carefully designed experiments. This sort of thing
has no place in introductory-level work. It is far beyond the scope of the present discussion.
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6) Never, never, never discard readings that you think are �wrong�. If a reading seems wild, record it
anyway. Record it as is. (Mark it with a �?� or a �???� if you wish, but record the value as is.) If you
think the sample is contaminated, make a note to that e�ect in the logbook, but record the reading as
is.

7) Never, never, never erase or obliterate readings from the log book. If you decide a reading is wrong,
add a note explaining why it is wrong, but leave the raw data as is. The reason is that you might
change your mind about what's right and what's wrong.

8) If you are measuring a peak that sits on a baseline, don't just record the peaky part of the peak;
include enough of the wings so that you will be able to con�dently establish the baseline.

We are making a distinction between the raw data and the calculations used to analyze the data. The point
is that if you keep all the raw data, if you discover a problem with the calculation, you can always redo the
calculation. Redoing the calculation may be irksome, but it is usually much less laborious and much less
costly than redoing all the lab work.

There is a wide class of analog apparatus � including rulers, burettes, graduated cylinders etc. � for which
the following rule applies: It is good practice to record all of the certain digits, plus one estimated digit. For
example, if the �nest marks on the ruler are millimeters, in many cases you can measure a point on the ruler
with certainty to the nearest millimeter . . . and then you should try to estimate how far along the point is
between marks. If you estimate that the point is halfway between the 13 mm and 14 mm marks, record it
as 13.5 mm. This emphatically does not indicate that you know the reading is exactly 13.5 mm. It is only
an estimate. You are keeping one guard digit beyond what is known with certainty, to reduce the roundo�
errors. You don't want roundo� errors to make any signi�cant contribution to the overall uncertainty of the
measurement. [Also, if possible, include some indication of how well you think you have estimated the last
digit: perhaps 13.5(5)mm or 13.5(3)mm or even 13.5(1)mm if you have really sharp eyes.]

There is a class of instruments, notably analog voltmeters and multimeters, where in order to make sense
of the reading you need to look at the needle and at the range-setting knob. (This is in contrast to digital
meters, where the display often tells the whole story.) I recommend the following notation:

Reading Scale
2.88 /3*300mV
2.88 /10*1V

which is to be interpreted as follows:

Reading Scale Interpretation
2.88 /3*300mV �2.88 out of three on the 300mV scale�
2.88 /10*1V �2.88 out of ten on the 1V scale�

Note that both of the aforementioned readings correspond to 0.288 volts.

There are two things going on here: First of all, converting on-the-�y from what the scale says (2.88) to SI
units (0.288) is too error prone, so don't do it that way; record the 2.88 as is, and do the conversion later.
Secondly, there are two ways of getting this reading, either most of the way up on the 300mV scale (the �rst
line in the table above) or partway up on the 1V scale (the second line). It is important to record which
scale was used, in case the two scales are not equally well calibrated.

Note that the notation �/3*300mV� also tells you the algebraic operations needed to convert the raw data
to SI units: in this case divide by 3, and multiply by 300mV.
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8.5 Report the Form of the Distribution

Whenever you are describing a distribution, it is important to specify the form of the distribution, i.e. the
family from which your distribution comes. For instance if the data is Gaussian and IID, you should say
so, unless this is obvious from context. Only after the family is known does it make sense to report the
parameters (such as position and halfwidth) that specify a particular member of the family.

On the other side of the same coin, people have a tendency to assume distributions are Gaussian and IID,
even when there is no reasonable basis for such an assumption. Therefore if your data is known to be � or
even suspected to be � non-Gaussian and/or non-IID, it is doubly important to point this out explicitly. See
section 13.8 for more on this.

8.6 The E�ect of Rounding

As mentioned in section 2.1, whenever you write down a number, you have to round it to �some� number
of digits. As mentioned in section 1.1, you should keep many enough digits so that roundo� error does not
cause any unintended loss of signi�cance. Therefore, we need to understand the e�ect of roundo� error.

� Some numbers can be represented exactly and conveniently using decimal notation. For example, the
number of items in a dozen is 12.

� Some numbers cannot be represented exactly in decimal notation, so any decimal representation must
involve some amount of roundo� error. For example, the reciprocal of 12 has no exact decimal repre-
sentation. We can approximate it by 0.08333[/].

8.6.1 Rounding O� a Gaussian

Figure 36 shows how a Gaussian distribution is a�ected by roundo�. It shows an �original� distribution and
two other distributions derived from that by rounding o�, as follows:

distribution representation remark
3.8675309 ± 0.1 solid blue line original
3.87 ± 0.1 dashed yellow line rounded to two places
3.9 ± 0.1 dotted red line rounded to one place

Obviously, the blue curve is the best. It is the most faithful representation of the real, original distribution.

As I see it, the dashed yellow curve is not better, but it's not much worse than the original. Its Kullback-
Leibler information divergence (relative to the original) is about 0.0003. You can see that even if you keep
more digits than are called for by the sig-�gs rules, the roundo� error is not entirely negligible.

The dotted red curve is clearly worse. You can see at a glance that it represents a di�erent distribution.
It's K-L information divergence (relative to the original) is more than 0.05. You can see that following the
sig-�gs rules de�nitely degrades the data.

8.6.2 Rounding O� a Histogram

To show the e�ect of rounding, let's do the following experiment, which can done using nothing more than a
spreadsheet program: We draw a sample consisting of N = 100 numbers, drawn from a source distribution,
namely a Gaussian centered at 1.17 with a standard deviation of 0.05.
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Figure 36: The E�ect of Rounding O�

Figure 37: Scatter Plot of Raw Data
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As usual, the �rst thing to do is look at a scatter plot of the data, as shown in �gure 37. We calculate a mean
of 1.164 and a standard deviation of 0.0510, so the sample is not too dissimilar from the source distribution.

Next we round each data point to the nearest 0.01, and histogram the results. This is shown in �gure 38.

Figure 38: Histogram of Lightly Rounded Data

Next we round o� this data to the nearest 0.1 units and histogram the results. This is shown in �gure 39.
The mean and standard deviation of the rounded data are 1.157 and 0.0624 ... which means that the roundo�
has increased the spread of the data by more than 20%.

Figure 39: Histogram of Heavily Rounded Data

Rather than plotting the probability density, which is what these histogram are doing, it is often smarter
to plot the cumulative distribution. This is generally a good practice when comparing two distributions, for
reasons discussed in reference 2. This is shown in �gure 40. The green curve is the theoretical distribution,
namely the integral of a Gaussian, which we recognize as a scaled and shifted error function, erf(...), as
discussed in reference 2.

You can see that the raw data (shown in black) does a fairly good job of sticking to the theoretical distribution.
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The data that has been rounded to the nearest 0.01 (shown in blue) does a slightly worse job of sticking to
the theoretical curve, and the data that has been rounded to the nearest 0.1 (shown in red) does a much,
much worse job.

Figure 40: Cumulative Distribution, With and Without Rounding (100 data points)

Now let's see what this looks like if we use a larger sample, namely N = 1000 points, as shown in �gure 41.
You can see that the raw data (shown in black) is smoother, and sticks to the theoretical curve more closely.

In the limit, by using ever-larger samples, we can make the black curve converge to the green curve as closely
as desired. The convergence works like this: Each of the N raw data points in �gure 37 can be considered a
delta function with measure 1/N . When we integrate to get the cumulative distribution, as in �gure 40 or
�gure 41, each data point results in a step, such that the black curve rises by an amount 1/N . If you look
closely, you can see 100 such steps in �gure 40. For arbitrarily large N , the steps become arbitrarily small.

In contrast, the rounded data will always be a series of stair-steps, due to the rounding, and the steps
do not get smaller as we increase N . In this example, the red curve will never be much better than a
two-step approximation to the error function, and the blue curve will never be much better than a 20-step
approximation. The only way to get the rounded data to converge would be to use less and less rounding,
i.e. more and more digits.

8.6.3 Nonuniform Relative Error

If we think in terms of relative error, aka percentage error, we see that roundo� does not a�ect all numbers
the same way. Figure 42 shows the percentage error introduced by rounding X to one signi�cant digit,
plotted as a function of X. The function is periodic; each decade looks the same.

For numbers near 150, the roundo� error is 33%. For numbers near 950, the roundo� error is barely more
than 5%.

The situation does not improve when the number of digits gets larger, as you can see from �gure 43. For
numbers near 105, the roundo� error is 5%. Meanwhile, for numbers near 905, the roundo� error is an order
of magnitude less.

When some quantity has been observed repeatedly and the ensemble of observations has an uncertainty
of 1%, there is an all-too-common tendency for people to say the measurement is �good to two signi�cant
�gures�. This is a very sloppy �gure of speech, and should be avoided.
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Figure 41: Cumulative Distribution, With and Without Rounding (1000 data points)

Figure 42: Rounding to 1 Sig Fig

Figure 43: Rounding to 2 Sig Figs
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As always, the rule should be: Say what you mean, and mean what you say.

� If you mean that a measurement is good to 1%, say it is good to 1%. (This is not the same as two sig
�gs, or any other number of sig �gs.)

� If you mean a certain voltage measurement has been rounded o� to the nearest 0.01 volts, say it has
been rounded o� to the nearest 0.01 volts. (This should not be expressed in terms of signi�cant �gures,
because when the voltage is small, rounding to the nearest .01 volts will have fewer signi�cant digits
than when the voltage is larger.)

As a rule, whenever you are tempted to say anything in terms of signi�cant digits, you should resist the
temptation. There is almost certainly a better way of saying it.

8.6.4 Roundo� Error is Not Necessarily Random

Note the following contrast:

Sometimes roundo� error looks somewhat ran-
dom. If we start with a bunch of random num-
bers and round them o�, the roundo� errors will
exhibit some degree of randomness.

Sometimes roundo� error is completely non-
random. If we start with 1.23 and round it o�
to one decimal place, we get 1.2 every time.

In some cases, the roundo� errors will be uni-
formly distributed.

In some cases, even if the roundo� errors are some-
what random, the distribution will be highly non-
uniform.

As a slight digression, let us look at some random data (�gure 44). We shall see that it does not look
anything like roundo� errors (�gure 42 or �gure 43).

Suppose we conduct an experiment that can be modeled by the following process: For a given value of λ, we
construct a Poisson random process with expectation value λ. We then draw a random number from this
process. We calculate the residual by subtracting o� the expected value. We then express the residual in
relative terms, i.e. as a percentage of the expected value. All in all, the normalized residual is:

r := Poi(λ)−λ
λ × 100% (56)

For selected values of λ we collect ten of these normalized residuals, and plot them as a function of λ, as
shown in �gure 44. The magenta curves in the �gure represent ±σ, where σ is the standard deviation of the
normalized residuals.

Figure 44: Poisson Normalized Residuals

Our purpose here is to compare and contrast two ideas:

� roundo� error, as in �gure 42, and
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� experimental uncertainty, as in �gure 44.

In both cases, the ordinate in the �gure is the percentage �discrepancy�. The style of representation is the
same, to facilitate comparing the two ideas.

Now, when we make the comparison, we �nd some glaring dissimilarities.

1. Figure 42 shows a function. That is, there is a unique ordinate for every abscissa. That is because
every time we round o� a given number, it rounds o� the same way.

Roundo� errors are not uniformly random.
Sometimes they're not random at all.

In contrast, the random data plotted in �gure 44 is not a function. There are ten di�erent residuals
(the ordinate) for each value of λ (the abscissa).

2. The roundo� error incurred when rounding o� X is a periodic function of log10(X). In contrast, the
relative uncertainty in a Poisson process is a smooth monotone decreasing function of λ.

8.6.5 Correlations

Here is a good estimate for the mass of the earth, as discussed in section 9.3:

M⊕ =

(
5.9725801308

± 0.00071

)
×1024kg (57)

Looking at this value, you might be tempted to think that the nominal value has several insigni�cant digits,
�ve digits more than seem necessary, and six or seven digits more than are allowed by the usual idiotic
sig �gs rules. It turns out that we will need all those �extra� digits in some later steps, including forming
products such as GM⊕ and ratios such as M⊕/M�, as discussed in section 9.

Part of the fundamental problem is that the uncertainty indicated in equation 57 only tells us about the
variance, and doesn't tell us about the covariance between M⊕ and other things we are interested in.

Indeed, the whole idea of associating a single uncertainty with each variable is Dead on Arrival, because
when there are N variables, we need on the order of N2 covariances to describe what is going on.

Using decent terminology, as in equation 57, we
are allowed to write down enough digits. We are
allowed to keep the roundo� error small enough,
even to the point where it is several orders of mag-
nitude smaller than the standard deviation.

The usual stupid sig �gs rules would require us
to round things o� until the roundo� error was
comparable to the standard deviation. If we went
on to calculate GM⊕ orM⊕/M�, the result would
be an epic fail. The result would be several orders
of magnitude less accurate than it should be.

Indeed, decent terminology allows us take a multi-step approach, which is usually preferable: First, write
down M⊕ = 5.9725801308 × 1024kg, with no indication of uncertainty. Similarly, write down all the other
quantities of interest, with no indication of uncertainty. In a later step, write down the full covariance matrix,
all in one place.

It is permissible to write something like M⊕ = (5.9725801308 ± 0.00071) × 1024kg, but indicating the
uncertainty in this way is possibly misleading, and at best redundant, because you are going to need to write
down the covariance matrix eventually. The variances are the diagonal elements of the covariance matrix,
and this is usually the best way to present them.

In the exceptional case where all the variables are uncorrelated, the covariance matrix is diagonal, and we
can get away with using simple notions of �the� uncertainty �associated� with a particular variable.

See section 9.
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8.7 Comparisons, with or without Rounding

One of the rare situations where rounding o� might arguably be helpful concerns eyeball comparison of
numbers. In particular, suppose we have the numbers

a b
1.46 1.45883
1.46 1.48883

(58)

and we are sure that a half-percent variation in these numbers will never be signi�cant. From that we
conclude that on the �rst line there is no signi�cant di�erence between a and b, while on the second line
there is. Super�cially, it seems �easier� to compare rounded-o� numbers, since rounding makes the similarities
and di�erences more immediately apparent to the eye:

a b
1.46 1.46
1.46 1.49

(59)

However, rounding is de�nitely not the best way to facilitate comparisons. Rounding can get you into
trouble. For example, if 3.4997 gets rounded down to 3 and 3.5002 gets rounded up to 4, you can easily get a
severely false mismatch. On the other side of the same coin, if 3.5000 gets rounded up to 4, and 4.4997 gets
rounded down to 4, you get a false match. Once again, we �nd that aggressive rounding produces wrong
answers. Note that the sig-�gs rules require aggressive rounding.

It is far more sensible to subtract the numbers at full precision, tabulate the results (as in equation 60), and
then see whether the magnitude of the di�erence is smaller than some appropriate amount of �fuzz�.

a b b− a �ag
1.46 1.45883 −0.00117
1.46 1.48883 +0.02983 <<<

(60)

If you are doing things by computer, computing the deltas is no harder than computing the rounded-o�
versions, and you should always write programs to display the deltas without rounding. (Here �delta� is
shorthand for the di�erence b− a.) While you are at it, you might as well have the computer display a �ag
whenever the delta exceeds some con�gurable threshold.

Compared to equation 58 or even equation 59, the advantage goes to equation 60. It makes it incomparably
less likely that important details will be overlooked.

Even if you are doing things by hand, you should consider calculating the deltas, especially if the numbers
are going to be looked at more times than they are calculated. It is both easier and less error-prone to
look for large-percentage variations in the deltas than to look for small-percentage variations in the original
values.

8.8 Guard Digits

Guard digits are needed to ensure that roundo� error does not become a signi�cant contribution to the
overall uncertainty. An introductory example is discussed in section 7.3. The need for guard digits is also
connected to the fact that uncertainty is not the same as insigni�cance. The distinction between signi�cance,
overall uncertainty, and roundo� error is well illustrated by examples where there are uncertain digits whose
signi�cance can be revealed by signal averaging, such as in section 7.12, section 17.4.4, section 12, and
especially �gure 51 in section 14.

Another phenomenon that drives up the need for guard digits involves correlated uncertainties. A familiar
sub-category comprises situations where there is a small di�erence between large numbers. As an example
in this category, suppose we have a meter stick lying on the ground somewhere at NIST, in Gaithersburg,
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oriented north/south. We wish to record this in a Geospatial Information System (GIS). Let point A and
point B represent the two ends of stick. We record these in the database in the form of latitude and longitude
(in degrees), as follows:

A = (39.133 430 0000± 0.002N, 77.221 484 000± 0.002W)
B = (39.133 439 0075± 0.002N, 77.221 484 000± 0.002W)

(61)

The uncertainty of ±0.002 represents the fact that the location of the stick is known only approximately,
with an uncertainty of a couple hundred meters.

You may be wondering why we represent these numbers using nine decimal places, when the sig-�gs doctrine
says we should use only three. The answer is that the di�erence between these two vectors is known quite
accurately. The di�erence |A−B| is 0.000 009 0075(90) degrees of latitude, i.e. one meter, with an uncertainty
of ±1 millimeter or less.

We emphasize that the absolute uncertainty in A − B is on the order of a millimeter or less, whereas the
uncertainty in A or B separately is several orders of magnitude greater, on the order of hundreds of meters.

Remember: As mentioned in section 2.1, section 6.3, section 8.8, and section 17.1, roundo� error is only one
contribution to the overall uncertainty. The uncertainty in A or B separately is on the order of 0.002, but
that does not tell you how much precision is needed. The sig �gs approach gets the precision wrong by a
factor of a million. Situations like this come up all the time the real world, including GIS applications and
innumerable other applications.

8.9 �Final� Results : Guard Digits; Actual Signi�cance

There are two situations that must be considered. In one case your best e�orts are required, and in the other
case maybe not.

� We start by considering the case where your best e�orts are required. For example, suppose you are
a metrologist, and your job is to measure this-or-that fundamental constant to high precision. You
wouldn't be bothering to do that if the published �handbook� value was good enough. You are part of
a team, and the downstream members of the team need all the precision you can give them.

Here's another scenario that leads to the same conclusion: Sometimes you measure something before you
know what it's going to be used for. Many fundamental constants are in this category. Again, common
sense says you should report your best results; you should not degrade your results by rounding. In
other words, your �nal results should have plenty of guard digits.

Suppose you have a calculation with a great many intermediate steps. This this is quite common,
especially when using an iterative algorithm. In this case you may need an extra-large number of
guard digits on the intermediate results, to prevent an accumulation of roundo� error. You still need
some guard digits on the bottom-line result, but perhaps not quite so many.

Hypothetically, sometimes people imagine they
can quote their ��nal� result using sig �gs
(even though they used plenty of guard digits
on the intermediate results).

In reality, you have to assume somebody is go-
ing to use your result. Therefore your ��nal
output� is somebody else's input. An example
of this can be seen in the teamwork scenario
in section 7.10.3. In any case, from an over-
all point of view, all results are intermediate
results, and all of them need guard digits.

Applying sig �gs to the supposedly ��nal� re-
sult is a blunder. It does horrendous damage to
the ��nal� result (both the nominal value and
the uncertainty). Don't do it.
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Hypothetically, if you tried to make guard dig-
its compatible with sig �gs, you would need to
invent some new notation so that at each step
of the calculation you could distinguish the so-
called signi�cant digits from the guard digits.

In reality, I've never seen anybody try to dis-
tinguish guard digits from other digits. It's too
much work for too little bene�t. Anybody who
cares enough to go to that much trouble pre-
sumably knows about easier and better meth-
ods.

In reality, you do not need to keep track of ex-
actly how many guard digits there are, so long
as there are enough.

Hypothetically, sometimes people imagine the
following excuse for rounding o� the ��nal� an-
swer: Suppose there is an academic busywork
assignment, where nobody really cares about
the answer. The teacher unwisely decides that
it is OK for everybody to get an unrealistic an-
swer, so long as everybody gets the same an-
swer. In this situation, conformity is more im-
portant than integrity.

In reality, this is a terrible lesson. Don't do it.
Instead, accept the fact that real-world num-
bers have guard digits, and the guard digits will
be noisy. Accept the fact that not all correct an-
swers will be numerically identical. Make aca-
demic exercises as authentic as possible. Insist
on integrity in all that you do.

� Here's a slightly arti�cial scenario: Suppose you work in the Quality Assurance department in a large
manufacturing plant. A batch of widgets has arrived from your supplier. You test them to see whether
they conform to speci�cations. The contract gives you only two options: Accept or reject the batch.
Pass or fail. Green light or red light. In other words, after all your measurements, the �nal result
necessarily gets rounded to a single bit ... not even one decimal digit, just one bit. Any additional
resolution would be insigni�cant in the strict sense, i.e. it would be immaterial.

In this scenario, the appropriate roundo� is determined by what happens downstream of your decision.
This stands in stark contrast to the �propagation of error� techniques that are used in conjunction
with sig �gs, where the amount of rounding is determined by what happens upstream of your result.
The �g-�gs minions refer to this as �signi�cance� but that's an abuse of the word; when you calculate
the uncertainty using propagation-of-error (or Crank Three Times� or any other method), that does
not tell you whether or not the uncertainty is signi�cant in the strict sense. Real signi�cance depends
details of what happens downstream.

This QA scenario is slightly arti�cial, for the following reason: If the supplier had any sense, they would
negotiate a better contract. They would ask you to report your testing results in detail, in addition to
the pass/fail grade. This is particularly important in the case of a fail or a marginal pass, to help the
supplier tighten up their process.

You can argue both sides of this forever:

� Sometimes there are categorical, discrete decisions: pass or fail, ball or strike, rocket-launch go or
no-go, et cetera.

� Even so, in the case of a close call, it is worth recording in detail the factors that went into the
decision, for later analysis.

Furthermore, even in situations that appear discrete, it is sometimes necessary to have tie breakers.
For example, things like graduation or promotion to a higher rank are to a �rst approximation
yes/no decisions. However, if there are two military o�cers with the same rank, the one who has
held that rank longer is senior to the other ... and in rare occasions this actually matters.

Bottom line: In most cases, you should record your �nal answer with plenty of guard digits, to protect it
from roundo� error. If there is the slightest doubt, keep plenty of guard digits.
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In other words: sometimes quantizing the ��nal� result is the right thing to do ... but sometimes it isn't.
Do not make a habit of throwing away the guard digits.

It should go without saying that sig �gs is never the right reason or the right method for rounding your
results. If/when you need to state the uncertainty, state it separately and explicitly, perhaps using the
notation 1.234(55) or 1.234± 0.055 or the like.

8.10 Too Many Digits, Oh My!

I often get questions from people who are afraid there will be an outbreak of too many insigni�cant digits.
A typical question is:

�What if a student divides 10 meters by 35 seconds and reports the result as 0.285714286
m/s? Isn't that just wrong? In the absence of other information, it implies an uncertainty
of 0.0000000005 m/s, which is a gross underestimate, isn't it?�

My reply is always the same: No, those �extra� digits are not wrong, and they do not imply anything about
the uncertainty.

Yes, I see nine digits, but no, that doesn't tell me the uncertainty. The uncertainty might be much greater
than one part in 109, or it might be much less. If the situation called for stating the uncertainty, I might
fault the student for not doing so. However, there are plenty of cases where the uncertainty does not need
to be expressed, and may not even be knowable, in which case the only smart thing to do is to write down
plenty of guard digits.

Suppose we later discover that the overall relative uncertainty was 10%. Then I interpret 0.285714286 as
having eight guard digits. Is that a problem? I wish all my problems were as trivial as that.

If you think excess digits are a crime, we should make the punishment �t the crime. Let's do the math:
• Black&white printing costs about a penny a page;
• There are about 500 words to a page;
• Each over-long numeral such as 0.285714286 means there will be an entire word less that �ts on the
page.
• Therefore each student who perpetrates such a crime will be �ned 20 microbucks for each o�ense.
• I �gure if a student does that twice a day, every day, all term, at the end of the term he will have to
give me one gummi-bear, to pay o� the accumulated �nes.

My time is valuable. The amount of my time wasted by people who are worried about the �threat� of excess
digits greatly exceeds the amount of my time wasted reading excess digits.

My advice: Breathe in. Breathe out. Relax already. Excess digits aren't going to hurt you. They might
even help you.

The cost of keeping a few guard digits is often very very small.
The value of keeping a few guard digits is often very very great.

8.11 How To Avoid Introducing Sig Figs

In an introductory course, the most sensible approach is to adopt the following rules:
• Record the observed raw data to full precision.
• Unless/until you are told otherwise, in this course it su�ces to:

• � do all intermediate calculations to 6-digit precision or better



8 HOW MUCH ACCURACY IS ENOUGH? HOW MUCH DATA IS ENOUGH? 97

• � round the �nal answer to 3 digits, as the very last step.

This is much simpler than dealing with sig �gs. It also more honest. Reporting no information about the
uncertainty is preferable to reporting wrong information about the uncertainty (which is what you get with
sig �gs).

If the students are �mathematically challenged� and even �reading challenged�, it is a safe bet that they
are not doing multi-digit calculations longhand. And they probably aren't using slide rules either. So let's
assume they are using calculators. Therefore the burden of keeping intermediate results to 6-digit precision
or better (indeed much better) is negligible. It has the advantage of getting them in the habit of keeping
plenty of guard digits.

Yes, some of those digits will be insigni�cant. So what? Extra digits will not actually kill anybody.

At some point in the course, we want the students to develop �some� feeling for uncertainty. So let's do
that. We can do it easily and correctly, using the Crank Three Times� method as described in section 7.14.
(Apply it to selected problems now and then, not every problem.) It requires less sophistication, requires
less e�ort, and produces better results � compared to anything involving sig �gs.

Using sig �gs is like trying to eat a bowlful of clear soup using a fork. It's silly, especially since spoons are
readily available. Even if somebody has a phobia about spoons, the fork is still silly; they'd be better o�
throwing it away and using no utensil at all.

8.12 Psychological Issues

In an introductory course, some students (especially the more thoughtful students) will be appalled by the
crudity and unreliability of the sig �gs doctrine, and will appreciate the value of guard digits.

On the other hand, there will also be some students (especially the more insecure students) for whom
various psychological issues make it hard to appreciate the necessity for guard digits. These issues include
the following:

� First, there is something I call barnyard ethology. One of the rules of the barnyard is to never admit
weakness. For example, an injured sheep will go to amazing lengths to conceal its injury. This makes
sense, because if a sheep is seen to be injured, not only will the wolves pick on it, the other sheep will
pick on it. (This leads to the old farmer's saying that �a sick sheep is a dead sheep�. That saying arises
because by the time it becomes obvious that a sheep is ill, it is very gravely ill.)

This rule of barnyard ethology applies to some spheres of human activity, including lawyering, politics,
and military combat. Never admit weakness, and never admit uncertainty.

However ... students need to realize that science is not like lawyering, or politics, or combat. Scientists
do admit uncertainty. The surest way to be recognized as a non-scientist is to pretend to be certain
when you're not.

It may seem ironic or even paradoxical, but it is true: One of the most basic steps toward reducing
uncertainty is to admit that there is some uncertainty, and to account for it. For example, it would
always be wrong to say that the true voltage is 1.23 volts, whereas we might be quite con�dent that
the true voltage is in the range bewteen 1.22 and 1.24 volts. For more on this, see reference 26.

Being able to admit uncertainty requires some emotional maturity, some emotional security, some
grownupness. This is an important part of why students go to school, to learn such things.

� As mentioned in section 5.6, some students think that being wrong is Wrong with a capital W, in the
same way that lying and stealing are Wrong, i.e. sinful. They tell themselves, perhaps unconsciously,
that if they write down a number with guard digits, there will be uncertainty in the guard digits,
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which is to say those digits might be wrong, i.e. Wrong, i.e. sinful. Therefore they refuse to write into
their logbooks anything that has the slightest uncertainty. They adore the sig �gs doctrine, especially
the half-count sect, because it allows them to keep rounding until all the uncertain digits have been
eliminated.

This is spectacularly unscienti�c. By rounding o� the number to the point where it is not �uctuating,
they have arranged to get the same number every time ... but it is wrong every time. It is wrong
because of excessive roundo� error. Evidently they would rather be wrong with certainty than right
with uncertainty.

� Some students have been trained to not say anything or write anything unless they are sure that it is
�true�.

They need to realize that when they write down raw observations, with or without guard digits, they
are recording the indicated values, not the true values. The indicated value represents the range of
true values, but it is not the same thing.

When describing a distribution, don't worry about the fact that the description is non-unique. There
are lots of ways of describing the same distribution. If it makes you feel better, �rst write down the
width of the distribution, and then write down the nominal value. If the distribution has a half-width
of ±7%, it doesn't matter whether you express the nominal value as 51, or 51.13, or 51.1394744. The
fact that the trailing digits are uncertain and non-unique doesn't make these numbers wrong. They
are all equivalent, for almost all practical purposes.

If you were to claim that any number such as 51, or 51.13, or 51.1394744 (with or without guard digits)
represented an exact measurement, that would be wrong. So don't pretend it's exact. Say it has an
uncertainty of ±7%. Once you've said that, you are free to write down as many guard digits as you
like. (You need at least some uncertain digits, to guard against roundo� errors.)

� Students want certainty. Indeed, everybody wants certainty. Alas, you can't always get what you want.

The real world does not o�er certainty. Students should not blame themselves for uncertainty, and
should not blame the teacher. We live in an uncertain world. The goal is not to eliminate all uncertainty;
the goal is to learn how to live in an uncertain world.

One of the crucial techniques for dealing with uncertainty is to represent things as distributions rather
than as plain numbers.

� We turn now from the normal range of uncertainty to outright mistakes.

The goal is not to avoid all mistakes. Everybody makes mistakes. Students are expected to make more
mistakes than professionals, but even professionals make mistakes. The goal is to (a) minimize the cost
of the mistakes, and (b) learn from the mistakes. For example, real-world engineers commonly build
pilot plants and/or carry out pilot programs, so they can learn from mistakes relatively cheaply, before
they commit to a multi-billion-dollar full-scale program. For more along this line, see section 8.14.

I have seen students go to great lengths to avoid having the slightest imperfection in their lab books.
These students need to realize that real science involves approximation, including what we call succes-
sive re�nement. That is, we �rst make a rough measurement, and then based on what we just learned,
we make successively more re�ned measurements. If the �rst measurement were perfect, we wouldn't
need the later measurements. Learning is not a sin.

8.13 How To Survive an Attack of Sig Figs

There are two issues: writing sig �gs, and reading sig �gs.
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If you ever feel you need to write something using sig �gs, you should lie down until the feeling goes away.
Figure out what you are trying to say, and �nd a better way of saying it. If you are going to express the
uncertainty at all, express it separately. See also section 8.11.

The rest of this section is devoted to reading sig �gs. That is, suppose you are given a bunch of numbers
and are required to interpret them as having signi�cant digits.

If that's all you have to go on, it is not necessary � and not possible � to take the situation seriously. If the
authors had intended their uncertainties to be taken seriously, they would have encoded the data properly,
not using signi�cant digits.

Sometimes, though, you do have more information available.

One good strategy, if possible, is to simply ask the authors what they think the data means. If the data is
from a book, there may be a statement somewhere in the book that says what rules the authors are playing
by. Along similar lines, I have seen blueprints where explicit tolerance rules were stated in the legend of the
blueprint: one example said that numbers with 1, 2, or 3 decimal places had a tolerance of ±0.001 inches,
while numbers with 4 decimal places had a tolerance of ±0.0001 inches. That made sense.

Another possibility is to use your judgment as to how much uncertainty attaches to the given data. This
judgment may be based on what you know about the source of the data. For instance, if you know that the
data results from a counting process, you might decide that 1100 is an exact integer, even though the sig
�gs rules might tell you it had an uncertainty of ±50 or even ±500 or worse.

As a next-to-last resort, you can try the following procedure. We need to attribute some uncertainty to
each of the given numbers. Since we don't know which sect of the sig-digs cult to follow, we temporarily

and hypothetically make the worst-case assumption, namely just shy of ten counts of uncertainty in the last
place. For example, 1.23 becomes 1.23±0.099, on the theory that 1.23±0.10 would have been rounded to 1.2
according to the multi-count sect. (The multi-count sect is generally the worst case when you are decoding

numbers that are already represented in sig-�gs notation. Conversely, the half-count sect is generally the
worst case when you are encoding numbers into the sig-�gs representation, because it involves the greatest
amount of destructive rounding.)

Now turn the crank. Do the calculation, using plenty of guard digits on the intermediate results. Propagate
the uncertainty using the methods suggested in section 7.

Now there are two possibilities:

� If you are lucky, you will �nd that the uncertainty in the �nal result is so small as to be immaterial, i.e.
insigni�cant in the given context, for the given application of the result. That is, if the data is �good
enough� by a wide margin, you don't care exactly how wide the margin is. This takes the pressure
o� you, meaning you don't need to bother re-examining the worst-case assumptions that we used in
getting to this point. You don't really know the uncertainty � you merely hypothesized something
� but you don't need to know it. (This is another illustration of the fundamental di�erence between
uncertainty and insigni�cance.)

� The other possibility is that the calculated uncertainty is signi�cant. Then you must do a great
deal of additional work. Start by seeing which of the input variables make the most contribution
to the uncertainty of the result. (If there are many input variables, typically only a few make large
contributions.) Then you need to get better information about those variables. Perhaps you can
�nd out which sect's sig-dig rules to apply, thereby eliminating one source of uncertainty about the
uncertainty. Or, in the spirit of the Crank Three Times�method, you could consider the whole range of
sectarian di�erences, and then choose a middle-of-the-road value, as was done in going from table 7 to
table 8 in section 7.15. This choice may be partly guided by your opinion as to whether overestimating
the uncertainty is worse than underestimating it, or vice versa.
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At some point you might well decide that the given data is inadequate for the purpose. Go back to
Square One and obtain some better data.

I categorically decline to suggest an explicit convention as to what sig �gs �should� mean. There are two
reasons for this: First of all, the sectarian di�erences are too huge; anything I could say would be wildly
wrong, one way or the other, according to one sect or another. Secondly, as previously mentioned, what's
safest when writing sig �gs is not what's safest when reading and trying to interpret sig �gs. Last but not
least, sig �gs �should� not be used at all; I don't want to say anything that could be misinterpreted as
endorsing their use.

8.14 Sensitivity Analysis, On-Line Analysis, and Cross-Checking

Spreadsheets are great. You need to analyze the data one way or another, so you might as well do it on
a spreadsheet. This gives you a big bonus: you can do some �what-if� analysis. You don't need to do a
full-blown Monte Carlo analysis as in section 7.16; instead just wiggle a few of your data points to see how
that a�ects the �nal answer. The same goes for other quantities such as calibration factors: �nd out how
much of a perturbation is needed to signi�cantly a�ect the �nal answer.

If good-sized changes in a data point have negligible e�ect on the �nal answer, it means you can relax a bit;
you don't need to drive yourself crazy measuring that data point to extreme precision. Conversely, if you �nd
that smallish changes in a single data point have a major e�ect on the answer, it tells you that you'd better
measure each such data point as accurately as you can, and/or you'd better take a huge amount of data (so
you you can do some signal-averaging, as discussed in section 7.12). You can also consider upgrading the
apparatus, perhaps using more accurate instruments, and/or redesigning the whole experiment to give you
better leverage.

There is a lesson here about procedures: It is a really bad idea to take all your data and then do all your
analysis. Take some data and do some analysis, so you can see whether you're on the right track and so you
can do the sensitivity analysis we just discussed. Then take some more data and do some more analysis.
This is called on-line analysis.

This is quite important. As mentioned in section 8.12, real-world engineers commonly build pilot plants
and/or carry out pilot programs, so they can learn what the real issues are before they commit to full-scale
production. Once the program is in operation, they do a lot of trend monitoring, so that if a problem starts
to develop about it they learn about it sooner rather than later.

You should also �nd ways to make internal consistency checks. If there are good theoretical reasons why the
data should follow a certain functional form, see if it does. Exploit any sum rules or other constraints you
can �nd. Make sure there is enough data to overconstrain the intended interpretation. By that I mean do
not rely on two points to determine a straight line; use at least three and preferably a lot more than that,
so that there will be some internal error checks. Similarly, if you are measuring something that is supposed
to be a square, measure all four sides and both diagonals if you can. Measure the angles also if you can.

There are few hard-and-fast rules in this business. It involves tradeo�s. It involves judgment. You have to
ask: What is the cost of taking more data points? What is the cost of making them more accurate? What
is the cost of a given amount of uncertainty in the �nal answer?

Additional good advice can be found in reference 27.
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9 Correlation and Covariance

9.1 Example: Electron Charge-to-Mass Ratio

If you want to calculate the electron e/m ratio, correlations must be taken into account. This is discussed
in section 7.7.

9.2 Example: Common Mode versus Di�erential Mode

Consider the simpli�ed ohmmeter circuit shown in �gure 45

Figure 45: Common-Mode and Di�erential-Mode Signals

In such a circuit, it would not be uncommon to �nd the following voltages:
VA = 0.51 ± 1V relative to chassis ground
VB = 0.5 ± 1V relative to chassis ground

(62)

The question arises, what is the di�erential-mode signal VA − VB? If you thought VA and VB were uncor-
related, you would calculate

∆V = VA − VB
= 0.01± 1.4V ×◦ (63)

However, in the real world, with a little bit of work you could probably arrange for VA and VB to be very
highly correlated. It might turn out that

∆V = 0.01 ± 0.0001V (possibly) (64)

and with extra work you could do even better. There is no way to calculate the result in equation 64, not
without a great deal of additional information, but that's not the point. The point is that assuming the
voltages are uncorrelated would be a very very bad assumption. The physics of the situation is that the stray
time-dependent magnetic �ux φ̇ a�ects both VA and VB in the same way, to an excellent approximation.
Communications equipment and measuring instruments depend on this. It's not something that happens
automatically; you make it happen by careful engineering.

9.3 Example: Mass and Gravitation (I)

Let's do an example involving Newton's constant of universal gravitation (G), the mass of the earth (M⊕),
and the product of the two (GM⊕).

In order to speak clearly, we introduce the notation D(M⊕) to represent a direct measurement of M⊕. We
use the unadorned symbol M⊕ to represent our best estimate of M⊕. If necessary, we can use T (M⊕) to
represent the true, ideal, exact value, which will never be known by mortal man.

The last time I checked,

quantity direct measurement best estimate relative uncertainty
G D(G) G = D(G) 100 parts per million
GM⊕ D(GM⊕) GM⊕ = D(GM⊕) 2 parts per billion
M⊕ not available M⊕ = D(GM⊕)/D(G) 100 parts per million

(65)
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You could obtain an estimate ofM⊕ from geology and seismology, but even that wouldn't count as a �direct�
measurement, and more importantly it wouldn't be particularly helpful, since it would not be anywhere near
as accurate as D(GM⊕)/D(G).

Here are the actual nominal values and absolute uncertainties, from reference 28 and reference 29:

G =

(
6.67384

± 0.00080

)
×10−11m3kg−1s−2

GM⊕ =

(
3.9860044180

± 0.0000000080

)
×1014kg3s−2

M⊕ =

(
5.9725801308

± 0.00071

)
×1024kg

(66)

Looking at the value for M⊕ in equation 66, you might be tempted to think that the nominal value has
several insigni�cant digits, �ve digits more than seem necessary, and six or seven digits more than are allowed
by sig �gs doctrine. However, it would be a Bad Idea to round o� this number. Note the contrast:

Suppose you keep all the digits in equation 66. If
you multiply M⊕ by G, you get a good value for
the product GM⊕, accurate to 2 ppb.

Suppose you round o� the nominal value for M⊕.
If you then multiply by G, you get a much less ac-
curate value for GM⊕, accurate to no better than
100 ppm.

The fundamental issue here is the fact that M⊕ is highly correlated with G. They are correlated in such
a way that when you multiply them, the uncertainty of the product is vastly less than the uncertainty in
either one separately.

Yes, the distributions governing G and M⊕ have
considerable uncertainty.

No, you should not round o� those quantities to
the point where roundo� error becomes compara-
ble to the uncertainty; that would be ludicrously
destructive.

To better understand this situation, it may help to look at the diagram shown in �gure 46. Recall from
section 5.2 that fundamentally, an �uncertain quantity� such as G or M⊕ is really a probability distribution.
Also recall that as a general principle, you can always visualize a probability distribution in terms of a scatter
plot. In this case, it pays to plot both variables jointly, as a two-dimensional scatter plot. In �gure 46, G
is plotted horizontally and its standard deviation is shown by the magenta bar. Similarly M⊕ is plotted
vertically its standard deviation is shown by the blue bar. The standard deviation of the product GM⊕ is
represented � loosely � by the yellow bar.

In this �gure, the amount of correlation has been greatly de-emphasized for clarity. The uncertainty of the
product is portrayed as only six times less than the uncertainty of the raw variables. (This is in contrast to
the real physics of mass and gravitation, where the uncertainty of the product is millions of times less than
the uncertainty of the raw variables.)

If the probability distribution is a two-dimensional Gaussian, the contours of constant probability are ellipses
when we plot the probability as in �gure 46. If the variables are highly correlated, the ellipses are highly
elongated, and the principal axes of the ellipse are nowhere near aligned with the axes of the plot. (Conversely,
in the special case of uncorrelated variables, the axes of the ellipse are aligned with the axes of the plot, and
the ellipse may or may not be highly elongated.)

This example serves to reinforce the rule that you should not round o� unless you are sure it's safe. It's not
always easy to �gure out what's safe and what's not. When in doubt, keep plenty of guard digits.
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Figure 46: Correlated Uncertainties

9.4 Dealing with Correlations

To make progress, we need to construct the covariance matrix. It is de�ned as:

Σ(x1, x2) :=

[
〈[x1 − x1][x1 − x1]〉 〈[x1 − x1][x2 − x2]〉
〈[x2 − x2][x1 − x1]〉 〈[x2 − x2][x2 − x2]〉

]

= 〈 [ [x1 − x1][x1 − x1] [x1 − x1][x2 − x2]
[x2 − x2][x1 − x1] [x2 − x2][x2 − x2]

]〉 (67)

where angle brackets 〈· · ·〉 indicate the ensemble average, and the overbar · · · indicates the same thing; we
use two di�erent notations to improve legibility. To say the same thing another way, we can de�ne the vector
of residuals in terms of its components:

∆x(i) =

[
x1(i)− x1
x2(i)− x2

]
(68)

Then to form the covariance matrix, we take the outer product of ∆x(i) with itself, and then take the
ensemble average over all i. That is to say:

Σ(x1, x2) = 〈∆x(i)⊗∆x(i)〉
= 〈∆x(i)∆x(i)T〉

(69)

The superscript T indicates transpose, which in this case converts a column vector to a row vector.

The generalization to more than two variables is straightforward. The correlation matrix is guaranteed to
be symmetric.

We can simplify things by taking logarithms. Rather than multiplying G byM⊕ we can add ln(G) to ln(M⊕).
The new variables are:

x1 := ln(G)
x2 := ln(GM)
x3 := ln(M)

= x2 − x1

(70)
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Also, rather than writing G = A±B where B is the absolute uncertainty, we write G = A(1±B/A) where
B/A is the relative uncertainty. We will make use of the Taylor expansion, ln(1 + ε) = ε when ε is small.

x1 = x1 ± b1 where b1 = 1.2× 10−4

x2 = x2 ± b2 where b2 = 2.01× 10−9

x3 = x3 ± b3 ???
(71)

It makes sense to write x1 and x2 in the form of a nominal value plus an uncertainty, because we think these
two quantities are uncorrelated. They are measured by completely dissimilar methods; G is measured using
a Cavendish balance or something like that, while GM is measured using clocks and radar to observe the
motion of satellites.

That means the covariance matrix for x1 and x2 is:

Σ(x1, x2) =

[
b21 0
0 b22

]
=

[
1.44× 10−8 0
0 4.03× 10−18

] (72)

Now suppose we wish to change variables. Mass is, after all, directly relevant to physics. Mass is one of the
SI base units. Meanwhile G is a fundamental universal constant. So let's choose G and M as our variables,
or equivalently x1 and x3.

Σ(x1, x3) =

[
b21 −b21
−b21 b21 + b22

]
(73a)

=

[
1.43690611443× 10−8 −1.43690611443× 10−8

−1.43690611443× 10−8 1.43690611483× 10−8

]
(73b)

×◦
[

1.44× 10−8 −1.44× 10−8

−1.44× 10−8 1.44× 10−8

]
×◦ (73c)

In the numerical matrix equation 73b, the lower-right matrix element di�ers slightly from the others. It
di�ers in the tenth decimal place.

In equation 73c, we have very unwisely rounded things o� to two decimal places, which is not enough. Even
eight decimal places would not have been enough. Rounding causes the matrix to be singular. Since we plan
on inverting the matrix, this is a Bad Thing.

In fact, even equation 73b is nearly useless, for multiple reasons. Part of the problem is that the matrix
elements are rounded to machine precision (IEEE double precision), which isn't really good enough for this
application. That is, you can't multiply the numerical matrix by vectors, you can't invert it, and you can't
�nd its eigenvectors or eigenvalues. Anything you try to do runs afoul of small di�erences between large
numbers. Secondly, even if we could trust the numbers, it is not humanly possible to look at the numbers
and �gure out what they mean.

As a general rule, if you want to extract meaning from a matrix, you will be much better o� if you re-express
it using SVD i.e. singular value decomposition. In our case, we are in luck, because the matrix is real and
symmetric, hence Hermitian, so we can use EVD i.e. eigenvalue decomposition, which (compared to SVD)
is easier to compute and at least as easy to understand.

Let's take one preliminary step, to put our matix into form that is not so numerically ill-conditioned. We
start by rotating the matrix 45 degrees:

R(−45)Σ(x1, x3)R(45) =

[
1 1
−1 1

]
Σ(x1, x3)

[
1 −1
1 1

]
(74a)

=

[
2b21 + b2/2 −b22/2
−b22/2 b22/2

]
(74b)

=

[
2.8738 ×10−8 −2.0141 ×10−18

−2.0141 ×10−18 2.0141 ×10−18

]
(74c)
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We can do things with this matrix, without being plagued by small di�erences between large numbers. We
still have work to do, because the 45 degree rotation did not exactly diagonalize the matrix.

In general, the power method is a good way to �nd the eigenvector associated with the largest eigenvalue. The
power method applied to the inverse matrix will �nd the eigenvector associated with the largest eigenvalues
of that matrix, which is of course the smallest eigenvalue of the non-inverted matrix. Also remember that if
you have found N − 1 of the eigenvectors, you can construct the last one using the fact that it is orthogonal
to all the others.

In our example, the eigenvectors of the matrix in equation 74c are:[
1

−7.00835× 10−11

]
and

[
7.00835× 10−11

1

]
(75)

These vectors are orthonormal. They may not look normalized, but they are, as closely as possible within
the IEEE double precision representation, which is close enough for present purposes.

We can arrange these side-by-side to de�ne a unitary matrix

U :=

[
1 7.00835× 10−11

−7.00835× 10−11 1

]
(76)

This can be thought of as a rotation matrix, with a rather small rotation angle. We use it to rotate the
covariance matrix a little bit more. We also make use of the fact that rotation matrices are unitary, which

means R(−θ) = RT(θ) = R−1(θ).
A := U−1R−1(45)Σ(x1, x3)R(45)U

=

[
2.8738 ×10−8 0

0 2.0141 ×10−18

]
(77)

which is diagonal. The matrix elements are the eigenvalues of the covariance matrix.

To say the same thing the other way, we can write:

Σ(x1, x3) = UR(45)ART(45)UT (78a)

= V AV T (78b)
whereV := R(45)U (78c)

where A is a diagonal matrix of eigenvalues, and V is the matrix of eigenvectors of the original covariance
matrix. Equation 78b is the standard way of writing the singular value decomposition, and in this case also
the eigenvalue decomposition.

In the SVD representation, it is exceedingly easy to �nd the inverse covariance matrix:

Σ−1(x1, x3) = V A−1V T (79)

where V is the same as in equation 78c, and we can invert the diagonal elements of A one by one:

A−1 = =

[
3.4797 ×107 0

0 4.9651 ×1017

]
(80)

The fact that we could so easily invert the covariance matrix gives you some idea of the power of SVD.

In general, the inverse covariance matrix is quite useful. For instance, this is what you use for weighting the
data when doing a least-squares �t. Speci�cally: In terms of the residuals as de�ned by equation 68, the

unweighted sum-of-squares is given by the dot product ∆x(i)T∆x(i), whereas the properly weighted sum is:

DM := ∆x(i)TΣ−1∆x(i) (81)

which is known as the Mahalanobis distance.

It pays to look at the eigenvalues of the covariance matrix and/or the inverse covariance matrix. If all
the eigenvalues are comparable in magnitude, it means the correlations are not particularly signi�cant.
Conversely, if some eigenvalues are very much smaller or larger than others, it means that the correlations
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are very signi�cant. You can visualize this in terms of a highly elongated error ellipsoid, as illustrated in
�gure 46.

In the example we are considering, one of the eigenvalues is ten orders of magnitude larger than the other.
This helps us to understand why the matrix in equation 73 is so ill-conditioned. If we wrote out the inverse
covariance matrix explicitly (without SVD) it would be equally ill-conditioned.

It also pays to look at the eigenvectors.

We refer to an eigenvector of the inverse covari-
ance matrix Σ−1 as being �cheap� or �expensive�
according to whether the associated eigenvalue is
small or large.

The same vectors are eigenvectors of the plain
old covariance matrix Σ, in which case the cheap
eigenvectors have a large eigenvalue (long error
bars) and the expensive eigenvectors have a small
eigenvalue (short error bars).

The idea is that in �gure 46, if you move away from the center in an expensive direction (in the direction
of the yellow line), the Mahalanobis distance goes up rapidly, whereas if you move in a cheap direction
(perpendicular to the yellow line), the Mahalanobis distance goes up only slowly.

This tells us something about the physics. If you just look at the variance, it tells you that in some sense
G is not well determined, but that does not mean you can cheaply vary the value of G all by itself. If you
don't want a big penalty, you have to vary G and vary M⊕ at the same time, in opposite directions, so as to
move along a contour of constant GM⊕.

9.5 Example: Mass and Gravitation (II)

The example presented in section 9.3 was simpli�ed for pedagogical reasons. In real-world situations, there
are usually many more variables to worry about. For example:

G =

(
6.67384

± 0.00080

)
×10−11m3kg−1s−2 (82a)

Sun:GM� =

(
1.32712442099

± 0.00000000010

)
×1020kg3s−2 (82b)

Earth:GM⊕ =

(
3.9860044180

± 0.0000000080

)
×1014kg3s−2 (82c)

Moon:G% =

(
4.90280080

± 0.00000009

)
×1012kg3s−2 (82d)

M� =

(
1.98854695496

± 0.00023

)
×1030kg (82e)

M⊕ =

(
5.9725801308

± 0.00071

)
×1024kg (82f)

% =

(
7.346296585

± 0.00088

)
×1022kg (82g)

The uncertainties indicated in equation 82e, equation 82f, and equation 82g take into account only the
associated variance, without regard to any of the covariances. The trailing digits in the nominal values are
necessary for some purposes, including forming products such as GM⊕ and ratios such as M⊕/M�.

If we choose G and the three masses as our variables, the covariance will be a 4 × 4 matrix, with lots of
nontrivial correlations.
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10 �Correctness� versus Agreement

10.1 Your Data is Your Data

In classroom settings, people often get the idea that the goal is to report an uncertainty that re�ects the
di�erence between the measured value and the �correct� value. That idea certainly doesn't work in real life
� if you knew the �correct� value you wouldn't need to make measurements.

In all cases � in the classroom and in real life � you need to determine the uncertainty of your measurement
by scrutinizing your measurement procedures and your analysis.

Given two quantities, you can judge how well they agree.

For example, we say the quantities 10 ± 2 and 11 ± 2 agree reasonably well. That is because there is
considerable overlap between the probability distributions. It is more-or-less equivalent to say that the two
distributions are reasonably consistent. As a counterexample, 10 ± .2 does not agree with 11 ± .2, because
there is virtually no overlap between the distributions.

If your results disagree with well-established results, you should comment on this, but you must not fudge
your data to improve the agreement. You must start by reporting your nominal value and your uncertainty
independently of other people's values. As an optional later step, you might also report a �uni�ed� value
resulting from combining your results with others, but this must be clearly labeled as such, and in no way
relieves you of your responsibility to report your data �cleanly�. The reason for this is the same as before:
There is always the possibility that the your value is better than the �established� value. You can tell whether
they agree or not, but you cannot really tell which (if either) of them is correct.

Of course, if a beginner measures the charge of the electron and gets an answer that is wildly inconsistent with
the established value, it is overwhelmingly likely that the beginner has made a mistake as to the value and/or
the uncertainty. Be that as it may, the honorable way to proceed is to report the data �as is�, without fudging
it. Disagreement with established results might motivate you to go back and scrutinize the measurement
process and the analysis, looking for errors. That is generally considered acceptable, and seems harmless,
but actually it is somewhat risky, because it means that answers that agree with expectations will receive
less scrutiny than answers that don't.

The historical record contains bad examples as well as good examples. Sometimes people who could have
made an important discovery talked themselves out of it by fudging their data to agree with expectations.
However, on other occasions people have done the right thing.

As J.W.S. Rayleigh put it in reference 30:

One's instinct at �rst is to try to get rid of a discrepancy, but I believe that experience shows
such an endeavour to be a mistake. What one ought to do is to magnify a small discrepancy with
a view to �nding out the explanation....

When Rayleigh found a tiny discrepancy in his own data on the molar mass of nitrogen, he did not cover
it up. He called attention to it, magni�ed it, and clari�ed it. The discrepancy was real, and led to the
discovery of argon, for which he won the Nobel Prize in 1904.

Whenever possible, raw data should be taken �blind�, i.e. by someone who doesn't know what the expected
answer is, to eliminate the temptation to fudge the data. This is often relatively easy to arrange, for instance
by applying a scale factor or baseline-shift that is recorded in the lab book but not told to the observer.

Bottom line: Your data is your data. The other guy's data is the other guy's data. You should discuss
whether your data agrees with the other guy's data, but you should not fudge your data to improve the
agreement.
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10.2 Measurement Errors versus Modeling Errors

You should not assume that all the world's errors are due to imperfect measurements.

Consider the situation where we are measuring the properties of, say, a real spring. Not some fairy-tale ideal
spring, but a real spring. It will exhibit some nonlinear force-versus-extension relationship.

Now suppose that we do a really good job of measuring this relationship. The data is reproducible within
some ultra-tiny uncertainty. For all practical purposes, the data is exact.

Next, suppose we want to model this data. Modeling is an important scienti�c activity. We can model the
data using a straight line. We can also model it using an Nth-order polynomial. No matter what we do,
there will always be some �error�. This is an error in the model, not in the observed data. It will lead to
errors in whatever predictions we make with the model.

Proper error analysis will tell us bounds on the errors of the predictions.

Is this an example of �if it doesn't work, it's physics�? No! An inexact prediction is often tremendously
valuable. An approximate prediction is a lot better than no prediction.

I mention this because far too many intro-level science books seem to describe a fairy-tale axiomatic world
where the theorists are always right and the experimentalists are always wrong. Phooey!

It is very important to realize that error analysis is not limited to hunting for errors in the data. In the above
example, the data is essentially exact. The spring is not �at fault� for not adhering to Hooke's so-called law.
Instead, the reality is that Hooke's law is imperfect, in that it does not fully model the complexities of real
springs.

A huge part of real-world physics (and indeed a huge part of real life in general) depends on making ap-
proximations, which includes �nding and using phenomenological relationships. The thing that sets the big
leagues apart from the bush leagues is the ability to make controlled approximations.

11 Samples, Sets, Groups, or Clusters of Observations

11.1 Particles and Clusters

When dealing with sets or clusters of measurements, we must deal with several di�erent probability distri-
butions at once, which requires a modicum of care. The conventional terminology in this area is a mess, so
I will use some colorful but nonstandard terminology.

a) We can consider one individual measurement. You can think of this as a �particle�.
b) We can consider a �cluster� of N particular measurements, i.e. a cluster of particles.
c) We have the underlying distribution U from which particles are drawn.
d) We can consider the derived distribution V from which clusters are drawn. Note that V is

derived from U .

This gives us two equivalent ways of forming a cluster: We can draw a cluster directly from V , or we can
draw N particles from U and then group them to form a cluster.

Therefore:
a) The ith particle drawn from U is associated with a measured value xi.
b) The jth cluster drawn from V is associated with a value yj formed by taking the cluster mean. For

any given cluster, this is not an estimated quantity; we calculate it exactly by averaging the N particles
in the cluster. See reference 2 for a careful de�nition of mean, variance, and standard deviation.
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c) The distribution of particles U has some mean µU and some standard deviation σU , which we
might never know exactly.

d) The distribution of clusters V has some mean µV and some standard deviation σV , which we
might never know exactly. In principle there is a distinction between a distribution of clusters and a
distribution of y-values, but since each cluster has a y-value, we choose to blur this distinction.

e) We can estimate µU based on one particular measurement.
f) We can estimate µU based on a cluster of N measurements.
g) We cannot estimate σU from one particular measurement.
h) We can estimate σU from one multi-particle cluster.

See also the de�nition(s) of sample mean and sample standard deviation in section 11.4.

Linearity guarantees that µV will always be equal to µU . In contrast, the de�nition of σ is nonlinear, and
σV will be smaller than σU by a factor of

√
N , where N is the number of particles per cluster. And thereby

hangs a tale: all too commonly people talk about �the� standard deviation, and sometimes it is hard to �gure
out whether they are talking about σU or σV .

Given a single cluster consisting of N measurements, we can form an estimate (denoted µ′U ) of the center
(µU ) of the underlying distribution. In fact, for a well-behaved distribution, we can set µ′U = y = 〈x〉C , i.e.
we can let the y-value of the cluster serve as our estimate of µU . Meanwhile, we can also form an estimate
(σ′U ) of the width (σU ) of the underlying distribution, as discussed below.

Given a group consisting of M clusters, we can form an estimate (µ′V ) of the center of the distribution of
y-values. Similarly we can form an estimate (σ′V ) of the width of the distribution of y-values.

To say the same things more formally:
µU = 〈x〉U (average over all particles)s
yj = 〈x〉Cj

(average over the jth cluster)
µV = 〈y〉V (average over all clusters)
µV = µU

(83)

Among other things, we note the following:
• If we increase N (the number of particles per cluster), there should not be any systematic drift in µ′

i.e. our estimate of µU . (The estimate wander around randomly, but should not systematically drift.)
• If we increase N , there should not be any systematic drift in σ′U i.e. our estimate of σU .
• If we increase N , there will de�nitely be a systematic decrease in σ′V i.e. the uncertainty of our estimate
of σV .

Note: Commonly we use [x] as our σ′U i.e. our estimate of σU , using the [· · ·] notation de�ned in section 11.4.

When you report the results of a cluster of measurements, you have a choice:
1) If you choose to consider the underlying distribution U to be the object of interest, then you should

report your best estimate of µU and your best estimate of σU . That is, you should report < x > ±[x]
. . . which happens to be equal to y ± [x]. This re�ects the uncertainty associated with drawing one
more particle from the distribution U .

2) If you choose to consider y itself to be the object of interest, then you should report your best estimate
of y and the uncertainty of this estimate. That is, you should report y ± [y]. This re�ects the
uncertainty associated with reproducing your entire experiment, i.e. drawing another entire cluster
from the distribution V .

In either case, you should be very explicit about the choice you have made. If you just report 4.3± 2.1 it's
ambiguous, since [x] di�ers from [y] by a factor of

√
N , which creates the potential for huge errors.

The relationships among the quantities of interest are shown in �gure 47.
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Figure 47: Particle, Cluster, and Group

11.2 Estimators

Conceptually, [y] would manifest itself in connection with drawing multiple clusters from the distribution V .
However, you have enough information within a single cluster to calculate [y]. Just divide [x] by

√
N .

For a given cluster of data:

〈x〉 aka y is our estimate of µU and also of µV .

[x] is our estimate of σU .

[y] = [x]/
√
N is our estimate of σV .

11.3 Terminology

The �eld of statistics, like most �elds, has its own terminology and jargon.

Here are some terms where the statistical meaning is ambiguous and/or di�ers from the homespun meaning.

� In statistics, a sample is a set of elements, i.e. the thing we have been calling a cluster. This is a
source of confusion, because non-statisticians commonly use �sample� to refer to a single element, i.e.
the thing we have been calling a particle. I introduced the term �cluster� speci�cally to avoid this
confusion.

In statistics, sample mean refers to y = 〈x〉, i.e. the mean of a given sample i.e. a given cluster. This
is a natural consequence of the de�nition of sample.

� The standard deviation of a sample (aka sample standard deviation) is ambiguous. It may refer
either to the bias-corrected standard deviation [x], or to the uncorrected standard deviation [x]b, or
possibly even [x]d. See section 11.4 and reference 31.

In contrast, the standard deviation of a distribution is unambiguous. That's because [x] and [x]b

converge in the large-sample limit, and we can draw and arbitrarily-large sample from the distribution.

� The standard error of a sample is the standard deviation of the sample means. This inherits the
aforementioned ambiguity in the de�nition of standard deviation, so the standard error could be [y],
[y]b, or possibly even [y]d. See reference 32.

� One sometimes sees the expression standard error of the mean which I believe means the same
thing as the plain old standard error. I don't know whether �of the mean� in this context is supposed
to refer to the mean of the sample or the mean of the distribution . . . but I suppose it doesn't matter;
we can just accept the phrase as jargon and not worry too much about the etymology.

� An event is a set of outcomes. This usage is standard in statistics, but is confusing to non-experts
since it con�icts with the homespun usage of the terms.

If an event is a set with only one element, it is called a simple event; if it contains multiple elements,
it is called a compound event.
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To repeat: When dealing with �standard deviation� in connection with clusters (samples) of size N , there
are at least six ideas in play:

[x] [x]b [x]d

[y] [y]b [y]d
(84)

For large N , note that the left-to-right variation is rather small within each row, but the row-to-row variation
is huge.

11.4 Mean, Variance and Standard Deviation

See reference 2 for a careful de�nition of mean, variance, and standard deviation.

12 Contributions to the Uncertainty

The modern approach is to use uncertainty as a catch-all term. I recommend this approach. Sometimes it
is useful to separate out various contributions to the overall uncertainty ... and sometimes not.

A few common sources of uncertainty include:
• Thermal noise.
• Quantum noise (aka zero-point motion).
• Statistical �uctuations, e.g. shot noise. See section 12.1
• Calibration errors.
• Readability.
• Roundo� error. See section 12.2.
• Series truncation error. See section 12.3.

The �rst �ve items on this list are often present in real-world measurements, sometimes to a nontrivial and
irreducible degree. In contrast, the last two items are equally applicable to purely theoretical quantities and
to experimentally measured quantities.

Neither readability nor roundo� error are usually considered �irreducible� sources of experimental error, since
they can usually be reduced by redesigning the experiment.

12.1 Statistical Fluctuations

As an example of statistical �uctuations, suppose you have a tray containing 1000 coins. You randomize
the coins, and count how many �heads� turn up. Suppose the �rst time you do the experiment, you observe
x1 = 511, the second time you observe x2 = 493, et cetera.

There are several points we can make about this. First of all, there is no uncertainty of measurement
associated with the individual observations x1, x2, etc. after they have been carried out. These are exact
counts. On the other hand, if you want to describe the entire distribution X = {xi} from which such
outcomes are drawn, it has some mean and some standard deviation. Similarly if you want to predict the
outcome of the next observation, there will be some uncertainty. For fair coins, we expect x = 500 ± 16
based on theory, so this is not necessarily an �experimental� uncertainty, unless you want to consider it a
Gedanken-experimental uncertainty. If you do the actual experiment with actual coins, then experimental
uncertainty would be the correct terminology.

See section 13.6 for more on this.
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In some contexts (particularly in electronics), the statistical �uctuations of a counting process go by the
name of shot noise.

12.2 Roundo� Error

As an example of roundo� error unrelated to measurement error, consider rounding o� the value of π or the
value of 1/81. We use the notation and concepts discussed in section 8.3.

π = 3.14159265[/]
π = 3.14159[/]
π = 3.1[/]

(85)

1/81 = .0123[/]
1/81 = .012[/]
1/81 = .01[/]

(86)

The point is that neither π nor 1/81 has any uncertainty of measurement. In principle they are known
exactly, yet when we express them as a decimal numeral there is always some amount of roundo� error.

Roundo� error is not statistical. It is not random. See section 12.4 for more on this.

12.3 Series Truncation Error

Consider the celebrated series expansion
exp(x) = 1 + x+ x2/2! + x3/3! + · · ·
exp(x) = 1 + x+ x2/2! + · · ·
exp(x) = 1 + x+ · · ·

(87)

This is a power series, in powers of x. That is, the Nth term of the series is equal to some power of x times
some coe�cient.

Note that in a certain sense, the decimal representation of any number (e.g. equation 85 or
equation 86) can be considered a power series. The digits in front of the decimal point are a
series in powers of 10, counting right-to-left. Similarly the digits after the decimal point are a
series in powers of 1/10, counting left-to-right, such that the contribution from the Nth digit to
the overall number is equal to 1/10N times some coe�cient.

Similar words apply to other bases, not just base 10. Base 2, base 8, base 10, and base 16 are all
commonly used in computer science. They are called binary, octal, decimal, and hexadecimal.

There are many situations in science where it is necessary to use a truncated series, perhaps because the
higher order terms are unknown in principle, or simply because it would be prohibitively expensive to evaluate
them. Such situations arise in mathematical analysis and in numerical simulations.

Every time you use a truncated series you introduce some error into the calculation. In an iterative calcula-
tion, such errors can add up, and can easily reach troublesome levels.
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12.4 Ignorance versus Randomness

Starting from equation 87, whenever you truncate the power series by throwing away second-order and higher
terms, you are left with 1 +x every time. Therefore the truncation error is (exp(x)−1−x) every time. This
is not random. It is 100% reproducible.

Similarly, as mentioned in section 12.2, whenever you round o� π to �ve decimal places you get 3.14159 every
time. Therefore the roundo� error is (π− 3.14159) every time. This is not random. It is 100% reproducible.

As a third example, consider the force F (x) developed by a spring, as a function of the extension x. We can
expand F (x) as a power series. In accordance with Hooke's law we expect the second-order and higher terms
to be small, but in the real world they won't be zero. And for any given spring, they won't be random.

The third example is important, because you don't know what the truncation error is. This stands in contrast
to the previous two examples, in the sense that even if you don't know the value of (π − 3.14159) at the
moment, you could �gure it out.

So now we come to the point of this section: If you don't know the value of y at the moment, that doesn't
mean y is random. Even if you don't know y and cannot possibly �gure it out, that does not mean it
is random. More importantly, even if y contains �some� amount of randomness, that does not mean that
successive observations of y drawn from some distribution Y will be uncorrelated.

Ignorance is not the same as randomness.

This is important because many of the statistical methods that people like to use are based on the assumption
that the observations are statistically independent.

� Roundo� errors are generally not random. If you assume they are statistically independent, you are
likely to get spectacularly wrong answers. See e.g. section 7.12.

� Series truncation errors are generally not random. If you assume they are statistically independent,
you are likely to get spectacularly wrong answers.

13 Categories of Uncertainty � and Related Notions

In Appendix D of TN1297 (reference 10) you can �nd a discussion of some commonly-encountered terms for
various contributions to the overall uncertainty, and various related notions. I will now say a few words say
about some of these terms.

13.1 Tolerance

A tolerance serves somewhat as the mirror image of uncertainty of measurement. Tolerances commonly
appear in recipes, blueprints, and other speci�cations. They are used to specify the properties of some
manufactured (or about-to-be manufactured) object. Each number on the speci�cation will have some
stated tolerance; for example in the expression e.g. 5.000 ± .003 the tolerance is ±.003. The corresponding
property of the �nished object is required to be within the stated tolerance-band; in this example, greater
than 4.997 and less than 5.003.

The idea of tolerance applies to a process of going from numbers to objects. This is the mirror image of a
typical scienti�c observation, which goes from objects to numbers.

The notation is somewhat ambiguous, since tolerance is expressed using exactly the same notation as used to
express the uncertainty of a measurement. The notations are the same, but the concepts are very di�erent.
There are at least three possibilities:
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� The widget speci�cation calls for a length of 1 ± 0.010 inches. The uncertainty here is called the
tolerance.

� The 17th widget has a length of 1 ± 0.0005 inches. The uncertainty here re�ects how accurately this
widget was measured.

� The set of widgets manufactured today has a length of 1 ± 0.004 inches. The uncertainty here is
dominated by the scatter that arises because not all widgets are the same.

This illustrates a subtle but important conceptual point: Whenever you are talking about a cooked data blob
or any other probability distribution, it is important to ascertain what is the ensemble. Note the contrast:

If the ensemble consists of measuring the 17th wid-
get over and over again, the uncertainty is the
uncertainty of the measurement process, 0.0005
inches.

If the ensemble consists of measuring every widget
in today's production run, the uncertainty is dom-
inated by the widget-to-widget variability, 0.004
inches. (The uncertainty of the measurement pro-
cess makes some contribution, but it is small by
comparison.)

When specifying tolerances, the recommended practice is to explain in words what you want. That is, very
commonly the desired result cannot be expressed in terms of simple �A ± B� terminology. For example, I
might walk into the machine shop and say that I would like a chunk of copper one inch in diameter and one
inch long. The machinists could machine me something 1± 0.0001 inches in diameter and 1± 0.0001 inches
long, but that's not what I want; I don't want them to machine it at all. In this context they know I just
want a chunk of raw material. In all likelihood they will reach into the scrap bin and pull out a piece of
stock and toss it to me. The diameter is roughly 1 inch but it's out-of-round by at least 0.010 inches. The
length is somewhere between 1 inch and 6 inches. This is at least ten thousand times less accuracy than the
shop is capable of, but it is within tolerances and is entirely appropriate. They know that at the end of the
day I will have turned the material into a set of things all very much smaller than what I started with, so
the size of the raw material is not important.

As another example, a surface-science experiment might require a cylinder very roughly one inch in diameter
and very roughly one inch long, with one face polished �at within a few millionths of an inch.

It is also quite common to have correlated tolerances. (This is roughly the mirror image of the correlated
uncertainties of measurement discussed in section 7.16.) For example, I might tell the shop that I need some
spacers one inch in diameter and one inch long. I explain that since they are spacers, on each cylinder the
ends need to be �at and parallel ... but I'm not worried about the diameter and I'm not even worried about
the length, so long as all three spacers have the same length ±0.001 inch. That is, the lengths can be highly
variable so long as they are closely correlated.

A common yet troublesome example of correlated uncertainties concerns the proverbial round peg in a
round hole. To a �rst approximation, you don't care about the diameter of the peg or the diameter of the
hole, provided the peg �ts into the hole with the proper amount of clearance. The amount of clearance
is the proverbial small di�erence between large numbers, which means that the relative uncertainty in the
clearance will be orders of magnitude larger than the relative uncertainty in the diameters. For a one-
of-a-kind apparatus you can customize one of the diameters to give the desired clearance ... whereas in
a mass-production situation controlling the clearance might require very tight tolerances on both of the
diameters. In some cases you'd be better o� using a tapered pin in a tapered hole, or using a sellock pin
(aka spring pin).

13.2 Precision

Nowadays experts generally avoid using the term �precision� except in a vague, not-very-technical sense, and
concentrate instead on quantifying the uncertainty.
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Multiple con�icting meanings of �precision� can be found in the literature.

One rather common meaning corresponds roughly to �an empirical estimate of the scatter�. That is, suppose
we have a set of data that is empirically well described by a probability distribution with a half-width of
0.001; we say that data has a precision of 0.001. Alas that turns the commonsense meaning of precision on
its head; it would be more logical to call the half-width the imprecision, because a narrow distribution is
more precise.

For more discussion of empirical estimates of uncertainty, see section 13.6.

It is amusing to note that Appendix D of TN1297 (reference 10) pointedly declines to say what precision is,
�because of the many de�nitions that exist for this word�. Apparently �precision� cannot be de�ned precisely.

Similarly, it says that accuracy is a �qualitative concept�. Apparently �accuracy� cannot be de�ned accurately.

This is particularly amusing because non-experts commonly make a big fuss about the distinction between
accuracy and precision. A better strategy is to talk about the overall uncertainty versus an empirical estimate
of the scatter, as discussed in section 13.6.

For another discussion of terminology, see reference 33.

13.3 Accuracy

The term �accuracy� su�ers from multiple inconsistent de�nitions.

One of the most-common meanings is as a general-purpose antonym for uncertainty. Nowadays experts
by-and-large use �accuracy� only in an informal sense. For careful work, they focus on quantifying the
uncertainty. For more on this, see section 13.6.

It is neither necessary nor possible to draw a sharp distinction between accuracy and precision, as discussed
in section 13.2 and section 13.6.

13.4 Readability and Reproducibility

On a digital instrument, there are only so-many digits. That introduces some irreducible amount of roundo�
error into the reading. This is one contribution to the uncertainty.

A burette is commonly used as an almost-digital instrument, because of the discreteness of the drops. Drop
formation introduces quantization error.

On an analog instrument, sometimes you have the opportunity to interpolate between the smallest gradu-
ations on the scale. This reduces the roundo� error, but introduces other types of uncertainty, due to the
vagaries of human perception. You also have to ask whether you should just replace it with an instrument
with �ner graduations.

As another example, suppose you are determining the endpoint of a titration by watching a color-change.
This su�ers from the vagaries of human perception. Often, determining the color-change point is the domi-
nant source of uncertainty; interpolating between graduations on the burette won't help, and using a more
�nely graduated burette won't help. In this case, if more resolution is needed, you might consider using a
photometer to quantify the color change, and if necessary use curve �tting to make best use of the photometer
data.

On a digital instrument, the number of digits does not necessarily dictate the readability or the resolution.
This is obvious in the case where there is autoranging or manual range-switching going on. Also, I have
a scale where the lowest-order digit counts by twos. I'm not quite sure why; it makes the data �look� less
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uncertain (i.e. more reproducible) at the cost of making it actually more uncertain (i.e. more roundo� error).
In any case, the fact remains: the number of digits does not control the resolution.

The ultimate limit � the fundamental limit � to readability is noise. If the reading is hopping around all
over the place, roundo� error is not the dominant contribution to the noise. Interpolating and/or using a
�ner scale won't help.

13.5 Systematic versus Non-Systematic Uncertainty

Roughly speaking, uncertainties can be classi�ed as follows:

Non-systematic uncertainties are random, with a
well-behaved distribution, and will average out if
you take enough data.

Systematic biases don't average out.

This classi�cation leaves open a nasty gray area
when there are random errors that don't average
out, as discussed below. This is a longstanding
problem with the terminology, and with the un-
derlying concepts.

For example: An instrument with a lousy temperature coe�cient might be reproducible from minute to
minute but not reproducible from season to season.

As another example: Suppose you measure something using an instrument that is miscalibrated, and the
miscalibration is large compared to the empirical scatter that you see in your readings. As far as anybody
can tell, today, your results are reproducible, because there is no scatter in the data . . . yet next month we
may learn that your colleagues � using a di�erent instrument � are not able to reproduce your results. An
example of this is discussed in section 6.5.

On the third hand, if you kept all the raw data, you might be able to go back and recalibrate the data
without having to repeat the experiment.

This illustrates a number of points:

1. Scatter (i.e. lack of reproducibility) is not the only contribution to the uncertainty.

2. You should keep all the raw data.

3. When you write down a number, you quite commonly do not know how uncertain it is. You might not
know the actual uncertainty until months or years later. Indeed, the uncertainty is likely to change
from month to month, depending on what calibrations etc. are applied.

4. The notion of �signi�cant digits� would automatically associate an uncertainty with every number that
you write down, and therefore would utterly fail to represent the truth of the matter.

So the question is, how do we describe this situation? The fundamental issue is that there are multiple
contributions to the uncertainty. As usual, it should be possible to describe this in statistical terms.

We are in some formal sense �uncertain� as to how well your instrument is calibrated, and we would like
to quantify that uncertainty. There is, at least in theory, an ensemble of instruments, some of which are
calibrated, and some of which are miscalibrated in various ways, with a horribly abnormal distribution of
errors. Your instrument represents an example drawn from this ensemble. Since you have drawn only one
example, you have no empirical way of estimating the properties of this ensemble. So we've got a nasty
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problem. There is no convenient empirical method for quantifying how much overall uncertainty attaches to
your results.

When we take a larger view, the situation becomes slightly clearer. Your colleagues have drawn additional
examples from the ensemble of instruments, so there might be a chance of empirically estimating the distri-
bution of miscalibrations.

However, the empirical approach will never be entirely satisfactory, because even including the colleagues,
a too-small sample has been drawn from the ensemble of instruments. If there is any nontrivial chance
that your instrument is signi�cantly miscalibrated, you should recalibrate it against a primary standard, or
against some more-reliable secondary standard. For instance, if you are worried that your meter stick isn't
really 1m long, take it to a machine shop. Nowadays they have laser interferometers on the beds of the
milling machines, so you can reduce the uncertainty about your stick far beyond what is needed for typical
purposes.

The smart way to proceed is to develop a good estimate of the reliability of the instrument, based on
considerations such as how the instrument is constructed, whether two instruments are likely to fail in the
same way, et cetera. This requires thought and e�ort, far beyond a simple histogram or scatter-plot of the
data.

Also keep in mind that sometimes it is possible to redesign the whole experiment to measure a dimensionless
ratio, so that calibration factors drop out. As a famous example, the ratio of (moon mass)/(earth mass) is
known vastly better than either mass separately. (The uncertainty of any measurement of either individual
mass would be dominated by the uncertainty in Newton's constant of universal gravitation.)

It is possible to make an empirical measurement of the scatter in your data, perhaps by making a histogram
of your data and measuring the width. However, the point remains that this provides only a lower bound on
the true uncertainty of your results. This may be a tight lower bound, or it may be a serious underestimate
of the true uncertainty. You can get into trouble if there are uncontrolled variables that don't show up in
the histogram. This can happen if you have inadvertently drawn a too-small sample of some variables.

Also beware that �random� errors may or may not average out. Consider the contrast:

There is a category of random errors that will av-
erage out, if you take enough data.

There is a category of random errors that will
never average out, no matter how much data you
take.

If your measuring instrument has an o�set, and
the o�set is undergoing an unbiased random walk,
then we can invoke the central limit theorem to
convince ourselves that the average of many mea-
surements will converge to the right answer.

If the o�set in your measuring process is undergo-
ing a biased random walk, there will be an overall
rate of drift, and the longer you sit there taking
measurements the more the drift will accumulate.
You may have seen an example of this in high-
school chemistry class, when you tried to weigh a
hygroscopic substance.

Bias is not the only type of badly-behaved ran-
domness. Consider for example 1/f noise (�pink
noise�), which will never average out, even though
it is not biased, as discussed in reference 34. (The
statement of the central limit theorem has some
important provisos, which are not satis�ed in the
case of 1/f noise.)
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Averaging can be considered a simple type of dig-
ital �lter, namely a boxcar �lter. Long-time aver-
aging results in a �lter with a narrow bandwidth,
centered at zero. White noise has a constant power
per unit bandwidth, so decreasing the bandwidth
decreases the amount of noise that gets through.

As the name suggests, 1/f noise has an exceed-
ingly large amount of noise power per unit band-
width at low frequencies. A narrow �lter centered
at zero is never going to make the noise average
out. You might be able to solve the problem by
using a more sophisticated �lter, namely a narrow-
band �lter not centered at zero. Hint: lock-in am-
pli�er.

13.6 Scatter

Given any set of data, we can calculate the standard deviation of that data, as mentioned in section 13.2.
This is a completely cut-and-dried mathematical operation on the empirical data. It gives a measure of the
scatter in the data.

Things become much less clear when we try to make predictions based on the observed scatter. It would
be nice if we could predict how well our data will agree with future measurements of the same quantity ...
but this is not always possible, and is never cut-and-dried, because there may be sources of uncertainty that
don't show up in the scatter.

Note that what we have been calling �scatter� is conventionally called the �statistical� uncer-
tainty. Alas, that is at best an idiomatic expression, and at worst a misleading misnomer, for
the simple reason that virtually anything can be considered �statistical� in the following sense:
Even absolute truth is statistical, equivalent to 100% probability of correctness, while falsity is
statistical, equivalent to 0% probability of correctness.

It might be slightly better to call it an empirical estimate or even better an internal estimate of
one contribution to the uncertainty. The informal term scatter is as good as any. However, even
this is imperfect, for reasons we now discuss:

Niels Bohr once said �Never express yourself more clearly than you are able to think�. By that
argument, it is not worth coming up with a super-precise name for the distinction between scatter
and systematic bias, because it is not a super-precise concept. It depends on the details of how the
experiment is done. Suppose we have a set of voltmeters with some uncertainty due to calibration
errors. Further suppose one group measures something using an ensemble of voltmeters, while
a second group uses only a single voltmeter. Then calibration errors will show up as readily-
observable scatter in the �rst group's results but will show up as a hard-to-detect systematic bias
(not scatter) in the second group's results.

Figure 48: Scatter versus Systematic Bias

An oversimpli�ed view of the relationship between scatter and systematic bias is presented in �gure 48. In
all four parts of the �gure, the black data points are essentially the same, except for scaling and/or shifting.
Speci�cally: In the bottom row the spacing between points is 3X larger than the spacing in the top row,
and in the right-hand column the pattern is o�-center, i.e. shifted to the right relative to where it was in the
left-hand column.
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The data is a 300-point sample drawn from a two-dimensional Gaussian distribution. That is, the density
of points falls of exponentially as a function of the square of the distance from the center of the pattern.

Figure 48 is misleading because it suggests that you can with one glance estimate how much the centroid
su�ers from systematic bias. In contrast, in the real world, it is very very hard to get a decent estimate of
this. You can't tell at a glance how far the data is from the target, because you don't know where the target
is. (If you knew the location of the target, you wouldn't have needed to take data.) The real-world situation
is more like �gure 49.

Figure 49: Systematic Bias is Not Obvious

Remark: Some terminological equivalences are presented in the following table. It is, alas, hard to quantify
these terms, as discussed in section 13.2 and section 13.3.

statistics: variance vs. bias
lab work: random error vs. systematic error

low precision vs. low accuracy
hybrid: scatter vs. systematic bias

Here's another issue: Sometimes people imagine there is a clean dichotomy between precision and accuracy,
or between scatter and systematic bias ... but this is not right. Scatter is not the antonym or the alternative
to systematic bias. There can perfectly well be systematic biases in the scatter!

In particular, moving left-to-right in �gure 48 illustrates a systematic o�set of the centroid. In contrast,
moving top-to-bottom in �gure 48 illustrates a systematic 3x increase of the standard deviation.

Here's how such issues can arise in practice: Suppose you want to measure the Brownian motion of a small
particle. If the raw data is position, then the mean position is meaningless and the scatter in the data tells
you everything you need to know. If you inadvertently use a 10x microscope when you think you are using
a 30x microscope, that systematically decreases the scatter by a factor of 3. This is a disaster, because it
introduces a 3x systematic error in the main thing you are trying to measure.

As another example in the same vein, imagine you want to measure the noise �gure of a radio-frequency
preampli�er. The raw data is voltage. The mean of the data is meaningless, and is zero by construction in
an AC-coupled ampli�er. The scatter in the data tells you everything you need to know.

On the other hand, in the last two examples, it might be more practical to shift attention away from the
raw data to a slightly cooked (�parboiled�) representation of the data. In the Brownian motion experiment,
let the parboiled data be the di�usion constant, i.e. the slope of the curve when you plot the square of the
distance traveled versus time. Then we can talk about the mean and standard deviation of the measured
di�usion constant.

Here's a two-part constructive suggestion:

1. Remember that a cooked data blob is not a plain number; it is a probability distribution. Analyzing
such things means adding, subtracting, multiplying, dividing, and comparing di�erent probability
distributions.
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2. To describe a simple theoretical probability distribution such as a Gaussian, you need two numbers:
The mean and standard deviation. Both numbers are important! Two distributions with the same
mean and di�erent standard deviations are di�erent distributions, as illustrated by the green and
black curves in �gure 50. You need both the mean and the standard deviation. You should avoid
and/or account for systematic biases in both numbers, not one or the other. (For more complicated
distributions, there is even more to worry about.)

Figure 50: Gaussians with Di�erent Widths

Scatter is one contribution to our uncertainty about the nominal value. The measured scatter provides a
lower bound on the uncertainty. It tells you nothing about possible systematic o�sets of the nominal value,
and tells you nothing about possible systematic errors in the amount of scatter itself (as in the microscope
example above).

When reporting the uncertainty, what really matters is the total, overall uncertainty. Breaking it down into
separate contributions (scatter, systematic bias, or whatever) is often convenient, but is not a fundamental
requirement.

Quantifying the scatter is easy ... much easier than estimating the systematic biases in the mean and
standard deviation. Do your best to estimate the total, overall uncertainty.

In an introductory class, students may not have the time, resources, or skill required to do a meaningful
investigation of possible systematic biases. This naturally leads to an emphasis on analyzing the scatter
... but this emphasis should not become an overemphasis. Remember, the scatter is a lower bound on
the uncertainty, and should be reported as such. There is nothing wrong with saying �We observed σX to
be such-and-such. This provides a lower bound on the uncertainty of 〈X〉. There was no investigation of
possible systematic biases�.

The scatter provides a lower bound on the uncertainty.

Remark: Notation: Sometimes you see a measurement reported using an expression of the form A±B ±C,
where A is the nominal value, B is the observed scatter, and C is an estimate of the systematic bias of the
centroid. This notation is not very well established, so if you're going to use it you should be careful to
explain what you mean by it.
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13.7 �Experimental Error�

The title of this section is in scare quotes, because you should be very wary of using the term �experimental
error�. The term has a couple of di�erent meanings, which would be bad enough ... but then each meaning
has problems of its own.

By way of background, note that the word �error� has the same ancient roots as the word �errand� or
�knight errant�, referring to wanderings and excursions, including ordinary, normal, and even commendable
excursions. However, for thousands of years, the word �error� has also denoted faults, mistakes, or even
deceptions, which are all undesirable, reprehensible things that �should� have been avoided.

Sometimes the term �experimental error� is applied to unavoidable statistical �uctuations, and sometimes
it is applied to avoidable mistakes and blunders. These two meanings are dramatically di�erent. They are
both problematic, but for di�erent reasons:

� Statistical �uctuations (as discussed in section 12.1 and section 13.6) must not be considered mistakes
or blunders. It is better to call them noise, excursions, or �uctuations � not errors. Some amount of
�uctuation is unavoidable, required by the laws of physics and/or mathematics. Complaining about
statistical �uctuations makes as much sense as complaining that the square root of two is irrational.
The square root of two is irrational because it has to be. By the same logic, statistical �uctuations
are present in sampling-type experiments because they have to be. In section 12.1, there is nothing
�erroneous� � i.e. nothing mistaken � about the observations x1 = 511, x2 = 493, et cetera.

� If you are talking about mistakes and blunders, it is arguably possible to categorize them as �exper-
imental error� ... but doing so would not be very useful. In particular you should not pretend that
mentioning this category is, by itself, a su�cient explanation. It is only a broad, general category. If
you believe a mistake has been made, you should describe the mistake as speci�cally as possible, rather
than trying to sweep it under the rug by using vague, catch-all terminology. For example:

� If you think there is a typographical error in the data, explain why you think so, and explain how
this is expected to a�ect the results.

� If one of the samples was dropped on the �oor and/or spilled, say so, and explain how this is
expected to a�ect the results.

� Et cetera.

Consider the contrast:

Negative example: Saying �our result di�ers
from the accepted value by 15% due to ex-
perimental error� is not a explanation. Often
graders, reviewers, and/or editors will automat-

ically reject a report that contains such a state-
ment.

In contrast, you might get away with using �Ex-
perimental Error� as the headline of a section
in which the speci�c sources of error were ana-
lyzed. Even that is not recommended; a better
headline would be �Sources of Uncertainty� or
some such.

Last but not least, we should mention that the term �error bar� has entered the language as an idiomatic
expression. Logically it should be called an �uncertainty bar� but nobody actually says that. So we will
continue to call it an error bar, with the understanding that it measures uncertainty.

13.8 Other Limits to the Notion of Uncertainty

Beware that you cannot always describe a distribution in terms of some �nominal value� and some �uncer-
tainty�. There is a whole litany of things that could go wrong.
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� It may be that you have a mildly skewed distribution, leading to mildly lopsided error bars. So, rather
than writing 400± 15% it might su�ce to write something like 400(+10%,−20%). Sometimes this is
su�cient, but sometimes not, depending on the actual form of the distribution. If the Crank Three
Times� method gives you lopsided error bars, you need to investigate further, because it might be a
warning that you are operating near a singularity.

� Sometimes you have a bimodal distribution, such that the typical values are nowhere near the median
value.

� Sometimes you have a multi-dimensional probability distribution. In such cases, there will almost
always be correlations, in which case you cannot describe the distribution using two numbers per
dimension, even if we restrict attention to Gaussian normal distributions . . . except special cases as
discussed below.

� It could be even worse than that, as illustrated by the example in section 7.19.

An example of correlated data is shown in �gure 46 as discussed in section 9.3.

For a moment, let's restrict attention to Gaussian distributions. In D dimensions, a Gaussian can be
described using a vector with D components (to describe the center of the distribution) plus a symmetric
D ×D matrix (to describe the uncertainties). That means you need D + D(D + 1)/2 numbers to describe
the Gaussian.

In the special case where the uncertainties are all
uncorrelated, the matrix is diagonal, so we can get
by with only 2D numbers to describe the whole
Gaussian, and we recover the simple description
in terms of �nominal value ± uncertainty� for each
dimension separately. Such a description provides
us with the 2D numbers that we need. Obviously
D = 1 is a sub-case of the uncorrelated case.

If the uncertainties are correlated, we need more
than 2D numbers to describe what is going on. It
is impossible in principle to describe the situation
in terms of �nominal value ± uncertainty� because
that only gives us 2D numbers.

In the real world, sometimes the uncertainties are uncorrelated, but sometimes they are not. See section 7.16
and section 9.3 for examples where correlations must be taken into account. See section 7.16 for an example
of how you can handle correlated data.

Also, beware that not everything is Gaussian. Other distributions � including square, triangular, and
Lorentzian among others � can be described using using two parameters, and represented using the �value�
± �uncertainty� notation. More-complicated distributions may require more than two parameters.

If you know that your data has correlations or has a non-normal distribution, be sure to say so explicitly.

14 Signi�cance

14.1 Signi�cant ≡ Worth Knowing

The signi�cance of data depends on how the data is being used. Value judgments are involved. Let's start
by examining some examples.

1. I buy a pound of beans, it may contain a great number of small beans, or a lesser number of larger
beans. If desired, I could determine the number of beans with essentially zero uncertainty, simply by
counting. However, if I just intend to cook and eat the beans, the cost of counting them far exceeds
the value of knowing the count. The total mass is more signi�cant than the count (unless the count is
wildly large or wildly small).
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2. Suppose a market-maker (such as a broker) sets the price of beans at 100 dollars per ton, and identi�es
a buyer and a seller. To the seller, the most signi�cant feature of this data is that the price is above
80, because that allows him to make a pro�t. To the buyer, the most signi�cant feature of this data is
that the price is below 120, which allows him to make a pro�t.

Of course the most signi�cant feature of the data is usually not the only signi�cant feature of the data.

3. When driving in good weather on a deserted highway, the posted speed limit is a signi�cant factor in
deciding how fast to drive. On the other hand, when driving in tra�c in dark, rainy, foggy conditions,
the posted speed limit has no immediate signi�cance, because you are obliged to drive much slower
than that.

From this we see that true signi�cance is highly dependent on the details of the application. In particular,
one feature of the data that might be signi�cant to one user, while another feature is signi�cant to another
user.

All this can be summarized by saying some feature of the data is signi�cant if and when it is worth knowing.
We take this as our de�nition of �signi�cance�.

Formerly it some authorities used the term �signi�cance� as a general-purpose antonym for uncertainty, but
nowadays this is considered a bad idea.

14.2 Users Decide

Generally it is up to each user of the data to decide which features of the data are signi�cant, and how
signi�cant they are. In contrast, the data-producers generally do not get to decide how signi�cant it is.

It is, however, important for the data-producers to have an estimate of the signi�cance, to help guide and
motivate the data-production process. Here's how it often works in practice: Before attempting to measure
something, you ought to identify one or two signi�cant applications of the data. This gives you at least a
lower bound on the signi�cance of the measurement. You don't need to identify all applications, just enough
to convince yourself � and convince the funding agencies � that the measurement will be worth doing.

Note the distinction: the data-producers do not get to decide the signi�cance, but they should obtain an
estimate (or at least a lower bound) for the signi�cance.

This explains why in, say, a compendium of fundamental constants, there is much discussion of uncertainty
but almost no mention of signi�cance.

14.3 Signi�cance versus Uncertainty

Signi�cance is important, and uncertainty is important, but you must not confuse the two. Signi�cance is
not even a category or component of the uncertainty. (This is in contrast to, say, roundo� error, which is
one component of the overall uncertainty.)

Signi�cance is not the opposite of uncertainty. Uncertainty is not the opposite of signi�cance. We can see
this in the following examples:

� As mentioned above, �bean counting� is proverbial for having low signi�cance, despite its low uncer-
tainty.

� At the opposite extreme, data that is highly uncertain may nevertheless be highly signi�cant. Hidden
signi�cance can be extracted by signal averaging or other data-reduction techniques, e.g. as demon-
strated in section 7.12.
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Figure 51: Signi�cance versus Uncertainty

Various combinations of signi�cance and/or uncertainty are summarized in �gure 51.

When only a single scalar is being measured, and only a single �nal application is contemplated, it is
sometimes tempting to arrange things so that the uncertainty of the measurement process is well matched
to the inverse of the signi�cance of the �nal application. Sometimes that is a good idea, but sometimes not.

In this connection, it must be emphasized that the signi�cant-�gures rules are a very crude way of representing
uncertainty. Also, despite the name, they are not used to represent signi�cance! This should be obvious
from the fact that the sig-�gs rules as set forth in the chemistry textbooks deal with roundo� error and
other sources of uncertainty, which are under control of the data-producers. The rules say nothing about
the data-users, who always determine the true signi�cance.

The signi�cant-�gures rules
do not even attempt

to represent signi�cance.

The foregoing remarks apply to the signi�cant-digits rules, not to the digits themselves. In contrast, if/when
we choose to operate under a completely di�erent set of rules, we can arrange for the number of of digits to
be related to the true signi�cance. A simple example of this can be found in section 2.1.

Let us now discuss a more interesting example. Suppose we have a chemical plant that unfortunately releases
a certain level L of pollutants into the air. The government has established a threshold, and requires that
the actual level of pollutants remain below the threshold.

Let us consider the quantities
x = L− threshold
y = L− threshold + safety margin

(88)

On a day-to-day basis, from the point of view of the plant supervisor, the most signi�cant feature of the
data is that x remain less than zero, with high con�dence. In many situations it is convenient to replace this
with a statement that our best estimate of y is less than zero, where y contains a built-in safety margin.

Note that the assertion that y is less than zero is a one-bit binary statement. The value of y is being expressed
using less than one signi�cant digit.

The error bars on x, y, and L don't matter so long as they are short enough, i.e. so long as the distribution
on L does not cross the threshold to any appreciable extent.

The plant supervisor may wish to conceal the true value of L from competitors. Therefore it may be desirable,
when �ling reports, to include only the most severely rounded-o� approximation to L.

We have seen multiple reasons why the plant supervisor might �nd it convenient to round things o� very
heavily. This roundo� is based on true signi�cance, competitive considerations, and other considerations ...
none of which are directly related to the uncertainty of the measurement. To say the same thing another way,
the signi�cance-based roundo� completely swamps any uncertainty-based roundo� that you might have done.
This signi�cance-based roundo� is not carried out using the �sig-�gs� rules that you �nd in the chemistry
textbook ... not by a long shot. This should be obvious from the fact that the sig-�gs rules are (at best) a
crude way of expressing uncertainty, not signi�cance. The fact that extreme signi�cance-based roundo� is
possible is not an excuse for teaching, learning, or using the sig-�gs rules.

Meanwhile we must keep in mind that features that are insigni�cant for one purpose may be very signi�cant
for other purposes.
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� First and foremost, if we ever get into a situation where L is not far below the threshold, the plant
supervisor is going to get very excited. He will call in the operating engineer, and maybe the design
engineer and other folks, and they will all want to know an accurate value for L and the uncertainty
of the distribution from L was drawn. They will not settle for some crudely rounded-o� version of L.

� The design engineer who is designing an upgrade to the plant almost certainly wants to know the
actual L-value (not rounded-o� approximation to L) and wants to know the actual uncertainty.

� Similarly an epidemiologist who is considering whether to raise or lower the threshold almost certainly
wants to know the L-value and the uncertainty.

15 Analysis Plus Synthesis � Closing the Loop

Figure 52 shows a rough outline of how people generally approach data analysis. They start with some raw
data. They perform some analysis, perhaps curve �tting of the sort described in section 7.24. The curve is
a model, or rather a parameterized family of models, and analysis determines the parameters. The hope is
that the �tted parameters will have some meaning that promotes understanding.

Figure 52: Analysis + Synthesis

The parts of the �gure shown in gray express an idea that is not often thought about and even less often
carried out in practice, namely the idea that the model could be used to generate data, and given the right
parameters it could generate data that is in some ill-speci�ed sense �equivalent� to the data we started with.
We will not pursue this idea, because it's not the best way to do things.

A better strategy is shown in �gure 53. We start by choosing some parameters that seem plausible, in the
right ballpark. We feed those into the model, to generate some fake data. We then analyze the fake data
using our favorite data-analysis tools. The reconstructed parameters really ought to agree with the chosen
parameters. This is a valuable check on the validity of the model and the validity of the analysis methods.

Figure 53: Synthesis + Analysis

Passing this test is necessary but not su�cient. It is necessary because if the analyzer cannot handle fake
data, it certainly cannot handle real data. It is not su�cient because sometimes the analyzer works �ne on
fake data but fails miserably on real-world data � perhaps because both the model and the analyzer embody
the same misconceptions.

16 The De�nition of Probability

Please see reference 2 for a discussion of fundamental concepts of probability.
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17 More than You Ever Wanted to Know about Sig Figs

17.1 Supposed Goals

The term �signi�cant �gures� is equivalent to �signi�cant digits�. Such terms are commonly encountered in
introductory science books. At last check they were more common in chemistry books than in physics or
biology books. They appear to be gradually becoming less common overall, which is a good thing.

The meaning of these terms is remarkably muddled and inconsistent. There are at least three categories of
ideas involved. These include:
a) a) Rounding o�.
b) b) Attempting to use roundo� to express uncertainty.
c) c) Propagating uncertainty from step to step during calculations.

No matter what goal we are trying to achieve, sig �gs are never the right way to do it. Consider the following
contrast between goals and means, in each of the three categories mentioned above:

a) Roundo�: Whenever you write down a num-
ber, you need to write some de�nite number of
digits, so some sort of roundo� rules are neces-
sary. Basic practical rules for rounding o� are
given in section 1.1. In more advanced situations,
you can apply the Crank Three Times� method
(section 7.14) to each step in the calculation to
con�rm that you are carrying enough guard dig-
its.

The sig �g rules are the wrong roundo� rules.
They require the roundo� to be far too aggressive.
There are plenty of important cases where follow-
ing the usual �signi�cant �gures� rules would in-
troduce unacceptable and completely unnecessary
errors into the calculations. See section 7.2 and
section 17.4.3 for simple examples of this.

b) Describing distributions: Basic practical meth-
ods for describing probability distributions are
outlined in section 1.2. The width of a given dis-
tribution can be interpreted as the uncertainty of
that distribution.

Beware that roundo� is only one contribution to
the overall uncertainty. One of the fundamen-
tal �aws in the sig-�gs approach is that it blurs
the distinction between roundo� and uncertainty.
This is a serious blunder. Sometimes roundo�
error is the dominant contribution to the over-
all uncertainty, but sometimes not. Indeed, in a
well-designed experiment, roundo� error is almost
never the dominant contribution.
Furthermore, the sig �gs rules do a lousy job of
representing the uncertainty. See section 17.5.2
and section 8.8 for examples where sig �gs wildly
overstate or wildly understate the width of the dis-
tribution.
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c) Propagation: Often you perform some calcula-
tions on the raw data in order to obtain a result.
We need a way of estimating the uncertainty in
the result. Practical methods for doing this are
discussed in section 7.14 and section 7.16.

The technique of propagating the uncertainty from
step to step throughout the calculation is a very
bad technique. It might sometimes work for super-
simple �textbook� problems but it is unlikely to
work for real-world problems. Commonly propa-
gation works for some steps in a calculation but
not others, and since a chain is only as strong as
its weakest link, the overall calculation fails. See
section 7.20 for additional discussion and examples
of this. Step-by-step propagation does a particu-
larly bad job when dealing with correlations. It is
also quite laborious and error-prone.
This is not intrinsically a sig-�gs problem; step-
by-step propagation is a bad idea whether or not
the uncertainty is represented by sig �gs. On the
other hand, no matter what you are doing, you
can always make it worse by using sig �gs.

People who care about their data don't use signi�cant �gures. Anything you might do with sig �gs can be
done much better (and more easily!) by other means.

The sig �gs method
is needlessly di�cult

and gets wrong answers.

It is not safe to assume that counting the digits in a numeral implies anything about the signi�cance, uncer-
tainty, accuracy, precision, repeatability, readability, resolution, tolerance, or anything else. See section 17.5.2
for more discussion of this point, including an example.

On the other hand, beware that some people use the term �signi�cant �gures� as an idiomatic expression, referring

to the topic of uncertainty in the broadest sense ... even though they would never take the sig �gs rules literally.

This broad idiomatic usage is a bad practice because it is likely to be misunderstood, but we should not assume that

every mention of the term �signi�cant �gures� is complete nonsense.

Also beware that the meaning of the term �signi�cant �gures� has changed over the course of history. See section 17

for various ways the term was used in times past.

17.2 OK: Sig �gs ↔ Place Value

The number 120 can be considered the �same� as 1200 except for place value. This is useful when multiplying
such numbers: we can multiply 12 by 12 and then shift the result three places to obtain 144000. This has
absolutely nothing to do with roundo� or with any kind of uncertainty. All the numbers mentioned here are
exact.

Similar ideas are useful when computing the characteristic (as opposed to mantissa) of a logarithm. Again
this has nothing to do with roundo� or uncertainty; the characteristic is the same no matter whether you
are using four-place logarithms or seven-place logarithms.

These ideas have been around for hundreds of years. They are harmless provided you do not confuse them
with other ideas, such as the disastrous ideas discussed in section 17.4.
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17.3 Mostly OK: Sig �gs ↔ Roundo�

Given a number in scienti�c notation, if you know it has been rounded o� to a certain number of digits, then
you know the magnitude of the roundo� error distribution.

This idea is OK as far as it goes, but there are several important caveats:

� You cannot necessarily tell by looking at a number whether it has been rounded o�. For example, the
number of centimeters in an inch is 2.54 exactly; this number has not been rounded o�.

� Given a number that is not in scienti�c notation, you cannot necessarily tell by looking at it whether
it has been rounded o� at all, let alone how much it has been rounded o�. For example, the number
1200 might be an exact integer, or it could be an inexact quantity rounded o� to four digits ... or three
digits ... or two digits.

� Roundo� error is not the same as overall uncertainty. Sometimes it is the dominant contribution to
the overall uncertainty, but sometimes not. Since roundo� error is almost always avoidable, in a well
designed experiment it is never the dominant contribution to the uncertainty.

We have a serious problem, because nowadays when most people speak of �signi�cant �gures� they are
referring to a set of rules that require you to keep rounding o� until roundo� error is dominant, or at
least comparable to the overall uncertainty. This is an abomination, as we discuss in section 17.4.

17.4 Abomination: Sig Figs ↔ Uncertainty

17.4.1 If You Mean Place Value, Say Place Value

See section 17.2 and section 18 for a discussion of the mathematical notion of place value and signi�cance.

17.4.2 Observations versus Distributions

As discussed in section 5 and section 6.4, there is a crucial distinction between a distribution and some
observation drawn from that distribution. An expression of the form 12.3±0.5 clearly refers to a distribution.
One problem with the whole idea of signi�cant �gures is that in an expression such as x = 12.3, you can't
tell whether it is meant to describe a particular observation or an entire distribution over observations. In
particular: Does it refer to an indicated value, or to the entire distribution over true values?

17.4.3 Example of Sig-Figs and Roundo�: Calculating Density

A chemistry teacher once asked 1000 colleagues the following question:

Consider an experiment to determine the density of some material:

mass = 10.065 g and volume = 9.95 mL

Should the answer be reported as 1.01 g/mL or 1.011 g/mL?

Soon another teacher replied

Maybe I missed something, that's a very straightforward problem.

The answer should be reported as 1.01 g/mL.
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The claim was that since one of the givens is only known to three sig �gs, the answer should be reported
with only three sig �gs, strictly according to the sig-�gs rules.

Shortly thereafter, a third teacher chimed in, disagreeing with the previous answers and saying that the
answer should be reported as 1.011 g/mL. He asserted that the aforementioned digit-counting rules were
�simplistic� and should be discarded in favor of the concept of relative uncertainty. His �nal answer, however,
was expressed in terms of sig �gs.

Eventually a fourth teacher pointed out that if you do the math carefully, you �nd that 1.012 is a better
answer than either of the choices o�ered in the original question.

Remarkably, none of these responses attached an explicit uncertainty to the answer. Apparently they all
hoped we could estimate uncertainty using the �sig �gs� doctrine. As a result, we don't know whether 1.01
means 1.01[1/2] or 1.01(5). That's distressingly inde�nite.

At this point you may be wondering whether this ambiguity is the whole problem. Perhaps we should accept
all three answers � 1.01[1/2], 1.011(5), and 1.012(5) � since they are all close together, within the stated error
bars.

Well, sorry, that doesn't solve the problem. First of all, the ambiguity is a problem unto itself, and secondly
there is a deeper problem that should not be swept under the rug of ambiguity.

The deeper problem is that if you solve the problem properly � for instance using the Crank Three Times�
method as described in section 7.14 � you �nd it might be reasonable to report a density of 1.0116(5) g/mL,
which is a very di�erent answer. This is a much better answer. It is represented by the blue trapezoid in
�gure 54.

In the previous paragraph, and in the next several paragraphs, we assume the mass and density started
out with a half-count of absolute uncertainty, such as might result from roundo�. Speci�cally, if we do the
calculation properly, we have:

mass = 10.065[1/2]g : 5e− 5relative uncertainty
volume = 9.95[1/2]mL : 5e− 4relative uncertainty
density = 1.0116(5)mL : 5e− 4relative uncertainty

(89)

Note that if we count the signi�cant digits and compare the mass to the volume, the mass has two digits
more. In contrast, in terms of relative uncertainty, the mass has only one order of magnitude less. This gross
discrepancy between the number of sig �gs and the relative uncertainty is discussed in section 8.6.3. Given
that roundo� errors have a peculiar distribution (as seen in e.g. �gure 42), and given a mass just above 10
and a volume just below 10, you should expect a �asco if you try to do this calculation using signi�cant
�gures.

Figure 54 shows the various probability distributions we are considering. It shows each distribution as a
histogram. The best answer is represented by the blue trapezoid. The center of the correct distribution is
shown by the black line.

1. You can see at a glance that the answer based on the sig �gs rules, namely 1.01[1/2], bears hardly any
resemblance to the correct answer. The distribution is far too spread out, and is not centered in the
right place. This is shown in red in the �gure.

2. The second answer that was o�ered was 1.011. If we are generous and interpret that as 1.011[1/2], it's
not completely crazy, but it's not very good, either. It is shown in magenta in the �gure. Relative
to the true center, the alleged center of the distribution is shifted by more than the HWHM of the
distribution, as you can see in �gure 54. (If we are ungenerous and interpret it as 1.011(5), the result
is terrible, as discussed in item e below.)
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Figure 54: Four Answers to the Density Question

3. The third answer, namely 1.012, is marginally better, but only marginally. If we are generous and
interpret it as 1.012[1/2], the alleged center of the distribution is shifted by slightly less than theHWHM

of the distribution. This is shown in yellow in the �gure. That's still a substantial degradation.

4. Therefore it is much better to report 1.0116(5), as shown in blue in the �gure. This answer complies
with the recommendations in section 8.2: it uses few enough digits to be reasonably convenient, it uses
many enough digits to keep the roundo� errors from causing problems, and it states the uncertainty
separately and explicitly.

Tangential remark: Ths blue distribution is shown as a trapezoid. That's a re�nement that results
from considering the uncertainty of the mass (not just the uncertainty on the volume). This causes
the distribution of density-values to be slightly more spread out. The peak is correspondingly slightly
lower. In most situations you could safely ignore this re�nement.

5. The answers of 1.011(5) and 1.012(5) are just as terrible as the sig-�gs result in item a above. They
are not shown explicitly in the �gure, but they would look similar to the aforementioned 1.01[1/2] as
shown in red. We see that appealing to ambiguity does not even begin to solve the problem.

This example illustrates the following point:

It is fairly common for the smart answer to have
two more digits than the sig-�gs answer would have.

Additional discussion: It must be emphasized that the original question was predicated on assuming
bad laboratory practice. For starters, in a well-designed experiment, roundo� error is virtually never the
dominant contribution to the overall uncertainty. As a partially-related point, there should always be a way
of �guring out the uncertainty that does not depend on signi�cant digits.

At an even more fundamental, conceptual level, it is a mistake to attribute uncertainty to a single measure-
ment of the mass or volume. The only way there can be any meaningful concept of uncertainty is if there is
an ensemble of measurements. If you were serious about measuring the density, you would measure several
di�erent samples of the same material. In such a case, it would be madness to calculate the mean and
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standard deviation of the masses and the mean and standard deviation of the volumes. The rational thing
to do would be to plot all the data in mass-versus-volume space and do some sort of curve �t to determine
the volume. The basic idea is shown in �gure 55.

Figure 55: Scatter Plot of Density Measurements

Sig-�gs discussion: Sig �gs is guaranteed to give the wrong answer to this question, no matter what
version of the sig-�gs rules you apply, if you apply the rules consistently.

� Suppose you adhere to the sig-�gs sect that says numbers have a half-count of uncertainty in the last
place. If you apply this rule consistently to the givens and to the answer, the uncertainty in the answer
is an order of magnitude too big.

� Suppose you adhere to the sig-�gs sect that says numbers have a few counts of uncertainty in the last
place. If you apply this rule consistently to the givens and to the answer, the uncertainty in the answer
is an order of magnitude too big.

The sig-�gs rules are not merely ambiguous,
they are self-inconsistent.

This sort of �asco is very likely to occur when one or more of the numbers is slightly greater than a power of
10, or slightly less. If you want to get the right answer, you should stay far away from the sig-�gs cesspool.

17.4.4 Uncertainty, Insigni�cance, and Guard Digits

Recall that uncertainty is not the same as insigni�cance; see section 7.12, section 8.8, and section 12 especially
�gure 51 in section 14.

The usual �sig �gs rules� cause you to round things o� far too much. If possible, do not round intermediate
results at all. If you must round, keep at least one guard digit.

As an illustration of the harm that �sig �gs� can cause, let's re-do the calculation in section 7.21. The only
di�erence is that when we compute the quotient, 11.5136, we round it to two digits ... since after all it was
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the result of an operation involving a two-digit number. That gives us 12, from which we subtract 9.064 to
obtain the �nal �result� ... either 2.9 or 3. Unfortunately neither of these results is correct. Not even close.

Oddly enough, folks who believe in signi�cant digits typically use them to represent uncertainty. Hmmmm. If
they use signi�cant digits to represent uncertainty, what kind of digits do they use to represent signi�cance?

Reference 35 gives additional examples. It summarizes by saying: �The examples show that the conventional
rules of thumb for propagating signi�cant �gures frequently fail.�

17.4.5 Bogus Apology: �Rough Uncertainty�

It is sometimes claimed that the sig-digs rules are only intended to give a �rough� estimate of the uncertainty.
That sort of apology is crazy and very unhelpful, because even if you believe what it says, it doesn't make
it OK to use sig �gs.

Keep in mind that sig �gs cause multiple practical problems and multiple conceptual problems, as discussed
in section 1.3. Apologizing for the �rough uncertainty� tends to make people lose sight of all the other
problems that sig �gs cause.

Even if we (temporarily!) focus just on the uncertainty, the apology is often not acceptable, because the so-
called �rough� estimate is just too rough. Even ignoring the sectarian di�erences discussed in section 17.5.1,
the �sig-digs rules� convey at best only a range of uncertainties. The top of the range has ten times more
uncertainty than the bottom of the range. If you draw the graph of two distributions, one of which is tenfold
lower and tenfold broader than the other, you will see that they don't resemble each other at all. They are
radically di�erent distributions. A milder version of this is shown in �gure 50.

If you do your work even moderately carefully, you will know your uncertainties much more precisely than
that. Furthermore, if you are doing data analysis with anything resembling professionalism and due diligence,
you will need to know your uncertainties much more precisely than that. One reason is that you will be using
weighted averaging and weighted curve �tting � weighted inversely according to the variance � and accurate
weighting is important. This leads us yet again to a simple conclusion: Don't use signi�cant �gures. Instead,
follow the guidelines in section 8.2.

Returning now to even larger issues: Given something that is properly expressed in the form A±B, sig �gs
do a lousy job of representing the nominal value A ... not just the uncertainty B. This is important!

Sig �gs degrade both the nominal value and the uncertainty.

To say the same thing another way: The sig �gs rules forbid people to use enough guard digits. They require
too much rounding. They require excessive roundo� error.

This is a big deal, because all too often, the �sig-�gs rules� are taught as if they were mandatory, to the
exclusion of any reasonable way of doing business. It is really quite astonishing what some authors say about
the �importance� of sig �gs.

In addition to the immediate, practical, quantitative damage that sig �gs do to the values of A and B, sig
�gs also lead to multiple conceptual problems, as mentioned in section 1.3.

17.5 Excessively Rough Uncertainty

The �signi�cant digits rules� cannot represent the uncertainty more accurately than the nearest power of
ten. For example, they represent the distribution 45±3 in exactly the same way as the distribution 45±1,
but as we can see in �gure 50, these are markedly di�erent distributions. In the �gure, the heavy black curve
represents 45±1 while the thin green curve represents 45±3. These curves certainly look di�erent. In this
example the uncertainties di�er by a factor of three; if the di�erence had been closer to a factor of ten the
contrast would have been even more extreme.
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17.5.1 Sectarian Di�erences

Within the sig-digs cult, there are sects that hold mutually-incompatible beliefs. There is no consensus. You
cannot get a group of teachers to agree within an order of magnitude what �signi�cant �gures� mean.

� The multi-count sect says that you should write down all the certain digits, plus one estimated digit.

That makes a certain amount of sense when you are recording readings from laboratory apparatus and
instruments. The point is that you want the quantization error (i.e. roundo� error) to be smaller than
the the intrinsic uncertainty of the instrument. You want the uncertainty of the recorded reading to
be dominated by the intrinsic uncertainty of the instrument, and not needlessly increased by rounding.

As is always the case with any form of signi�cant digits, we run into trouble because of the coarseness
of the encoding; it is impossible to know by looking at the number how much uncertainty there is in
the last digit.

Things get even worse when we consider calculated (rather than observed) numbers. For example,
consider the distribution 5.123(9). Nine counts of uncertainty in the third decimal place not only
makes the third place uncertain, it makes the second place �somewhat� uncertain. There is no logical
basis for deciding how much uncertainty is �too much�, i.e. deciding when to drop a digit.

For present purposes, let's assume that this sect puts the cuto� just shy of ten counts, so that 1.234(9)
will be expressed as 1.234, while 1.234(10) will be rounded to 1.23. (We ignore sub-sects that put the
cuto� elsewhere.)

This sect has the advantage, relatively speaking, of requiring less rounding than the other sects men-
tioned below ... but in absolute terms it still requires too much rounding. It can seriously degrade
your data, as discussed in section 7.12.

� The percent sect holds as follows:
• A one-digit number has an uncertainly between 10% and 100%.
• A two-digit number has an uncertain between 1% and 10%.
• A three-digit number has an uncertain between 0.1% and 1%.
• Et cetera.

� The half-count sect holds that there is only half a count of uncertainty in the last digit.

This rule actually makes sense provided you know that the quantity has been rounded o�, and that
roundo� error is the dominant contribution to the uncertainty.

On the other hand, there are innumerable important situations where roundo� should not the dominant
contribution, in which case this is the worst of all the sects. It causes the most data destruction, because
it demands the most rounding. It demands an order of magnitude more rounding than the few-count
sect. It basically forces you to keep rounding o� until the roundo� error becomes a large contribution
to the uncertainty.

Let's try applying these �rules� and see what happens. Some examples are shown in the following table.

0.10 0.99
multi-count sect: 0.100(10) · · · 0.100(99) 0.990(10) · · · 0.990(99)
percent sect: 0.100(1) · · · 0.100(10) 0.990(10) · · · 0.990(99)
half-count sect: 0.100(5) 0.990(5)
overall range: 0.100(1) · · · 0.100(99) 0.990(5) · · · 0.990(99)
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Let's consider 0.10, as shown in the table. If we interpret 0.10 according to the multi-count sect's rules,
we get something in the range 0.100(10) to 0.100(99). Meanwhile, if we interpret that according to the
percent-sect's rules, we get something in the range 0.100(1) to 0.100(10). Ouch! These two sects don't even
overlap; that is, they don't have any interpretations in common, except on a set of measure zero. Last but
not least, the half-count sect interprets 0.10 as 0.100(5), which is near the middle of the range favored by
the percent-sect ... and far outside the range favored by the multi-count sect.

Next, let's consider 0.99. If we interpret 0.99 according to the multi-count sect's rules, we get something
in the range 0.990(10) to 0.990(99). Meanwhile, if we interpret it according to the percent sect's rules and
convert to professional notation, we get something in the range 0.990(10) to 0.990(99). So these two sects
agree on the interpretation of this number. However, the half-count sect interprets 0.99 as 0.990(5), which
is somewhere between 2x and 20x less uncertainty than the other sects would have you believe.

As shown in the bottom row of the table, when we take sectarian di�erences into account, there can be two
orders of magnitude of vagueness as to what a particular number represents. If you draw the graph of two
distributions, one of which is a hundredfold lower and a hundredfold broader than the other, the di�erence
is shocking. It's outrageous. You cannot possibly consider one to be a useful approximation to the other.

17.5.2 Exact Numbers Are Not Describable Using Sig Figs

Consider the notion that one inch equals some number of centimeters. If you adhere to the sig-�gs cult,
how many digits should you use to express this number? It turns out that the number is 2.54, exactly, by
de�nition. Unless you want to write down an in�nite number of digits, you are going to have to give up on
the idea of sig �gs and express the uncertainty separately, as discussed in section 8.2.

Suppose you see the number 2.54 in the display of a calculator. How much signi�cance attaches to that
number? You don't know! Counting digits will not tell you anything about the uncertainty. Calculators are
notorious for displaying large numbers of insigni�cant digits, so counting digits might cause you to seriously
underestimate the uncertainty (i.e. overestimate the precision). On the other hand, 2.54 might represent
the centimeter-per-inch conversion factor, in which case it is exact, and counting digits will cause you to
spectacularly overestimate the uncertainty (i.e. underestimate the precision).

17.5.3 Null Experiments Are Not Describable Using Sig Figs

A number such as 4.32±.43 expresses an absolute uncertainty of .43 units. A number such as 4.32±10%
expresses a relative uncertainty of 10%. Both of these expressions describe nearly the same distribution,
since 10% of 4.32 is nearly .43.

Sometimes relative uncertainty is convenient for expressing the idea behind a distribution, sometimes absolute
uncertainty is convenient, and sometimes you can do it either way.

It is interesting to consider the category of null experiments, that is, experiments where the value zero lies
well within the distribution that describes the results. Null experiments are fairly common, and some of
them are celebrated as milestones or even turning-points in the history of science. Examples include the
di�erence between gravitational and inertial mass (Galileo, Eötvös, etc.), the luminiferous ether (Michelson
and Morley), the mass of the photon, the rate-of-change of the �ne-structure constant and other fundamental
�constants� over time, et cetera.

The point of a null experiment is to obtain a very small absolute uncertainty.

Suppose you re-do the experiment, improving your technique by a factor of ten, so that the absolute un-
certainty σA of the result goes down by a factor of ten. You can expect that the mean value of the result
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mA will also go down by a factor of ten, roughly. So to a rough approximation the relative uncertainty is
unchanged, even though you did a much better experiment.

On closer scrutiny we see that the idea of relative uncertainty never did make much sense for null experiments.
For one thing, there is always the risk that the mean value mA might come out to be zero. (In a counting
experiment, you might get exactly zero counts.) In that case, the relative uncertainty is in�nite, and certainly
doesn't tell you anything you need to know.

Scientists have a simple and common-sensical solution: In such cases they quote the absolute uncertainty,
not the relative uncertainty.

Life is not so simple if you adhere to the sig-�gs cult. The problem is that the sig-�gs rules always express
relative uncertainty.

To put an even �ner point on it, consider the case where the relative uncertainty is greater than 100%, which
is what you would expect for a successful null experiment. For concreteness, consider .012±.034. How many
digits should be used to express such a result? Let's consider the choices:
• Zero digits is too few. It doesn't tell us enough about the mean value mA.
• One digit is too many, if you follow the sig-�gs rules, because they understate the uncertainty σA
by a huge factor. Exaggerating the precision and/or accuracy of your results will ruin your scienti�c
reputation.
• More than one digit is far too many, for the same reason.

Bottom line: There is an important class of distributions that simply cannot be described using the
signi�cant-�gures method. This includes distributions that straddle the origin. Such distributions are com-
mon; indeed they are expected in the case of null experiments.

17.5.4 Some Other Inexact Numbers Are Not Describable Using Sig Figs

In addition to distributions that straddle the origin (as discussed in section 17.5.3), there are some that do
not straddle the origin but are nevertheless so broad that they cannot be well described using signi�cant
digits.

Let's look again at the example of the six-sided die, as depicted in �gure 12. The number of spots can be
described by the expression x = 3.5± 2.5. There is just no good way to express this using signi�cant �gures.
If you write x = 3.5, those who believe in sig �gs will interpret that as perhaps x = 3.5[1/2] or x = 3.5(5) or
somewhere in between . . . all of which greatly understate the width of the distribution. If you round o� to
x = 3, that would signi�cantly misstate the center of the distribution.

As a second example, let's look again at the result calculated in section 7.21, namely 2.4(8). Trying to
express this using sig digs would be a nightmare. If you write it as 2.4 and let the reader try to infer how
much uncertainty there is, the most basic notions of consistency would suggest that this number has about
the same amount of uncertainty as the two-digit number in the statement of the problem ... but in fact
it has a great deal more, by a ratio of about eight to three. That is, any consistently-applied sig-digs rule
understates the uncertainty of this expression. The right answer is about 260% of the �sig-�gs answer�.

Note that the result 2.4(8) has eight counts of uncertainty in the last digit. Another way of saying the
same thing is that there is 32% relative uncertainty. That's so much uncertainty that if you adhere to the
percent-sect (as de�ned in section 17.5.1) you are obliged to use only one signi�cant digit. That means means
converting 2.4 to 2. That result di�ers from the correct value by 57% of an error bar, which is a signi�cant
degradation of your hard-won data, in the sense that the distribution speci�ed by 2.45(79) is just not the
same as a distribution centered on 2, no matter what width you attach to the latter.

So we discover yet again that the �sig-digs� approach gives us no reasonable way of expressing what needs
to be expressed.
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17.5.5 Algebra

Consider the following contrast:

Suppose some distribution has a nominal value of
A and an uncertainty of B. We can write this as
A± B, even when we do not yet know the values
of A and/or B. We can then �nd these A and B
using algebra.

There is no way to express A±B using signi�cant
�gures, when A and/or B are abstract or not yet
known.

The same idea applies to electronic computa-
tions, including hand calculators, spreadsheets,
c++ programs, et cetera. You can use a variable
A and a variable B to represent the distribution
A±B.

I have never seen a computer represent uncertainty
using signi�cant �gures.

To approach the same idea from a di�erent direction:

Often it is important to think about numbers as
numbers, without reference to any particular sys-
tem of numerals.

The notion of signi�cant �gures, to the extent that
it means anything at all, applies to decimal numer-
als, not to numbers per se.

Therefore (unless you are going to forfeit the possibility of doing any algebra or any electronic computation)
you need to learn the �±� concept and terminology.

Once you have learned this, you might as well use it for everything, to the exclusion of anything resembling
signi�cant �gures.

17.5.6 Units Won't Solve the Problem

Suppose somebody asks you what is 4 times 2.1. If you adhere to the sig-�gs cult, you can't tell from the
statement of the problem whether the numeral 4 is trying to represent a probability distribution (centered
at 4 with one sig-�g of uncertainty), or whether it is meant to be an exact quantity (plain old 4).
• In one scenario, you write down the number 2.1 four times, and add them all up. The four is exact.
• In another scenario, your assistant has measured the aspect ratio of a piece of paper, and found it to
be approximately 4. This is a measured quantity. You may believe on theoretical grounds that this
observation was drawn from a distribution, and that the distribution has some uncertainty, but alas we
don't have a good estimate of the uncertainty because the assistant foolishly tried to express it using
the sig-�gs method.

Occasionally somebody tries to distinguish these two cases by making a fuss about units. The idea apparently
is that all inexact quantities are measured and have units, and conversely all quantities with units are
measured and therefore inexact. Well, this idea is false. Both the obverse and converse are false.

For example:

� The aspect ratio mentioned above is measured and inexact, but dimensionless.

� Conversely, in the SI system, the speed of light is exact but has dimensions. (Speci�cally, the value is
2.99792458× 108 ± 0 m/s by de�nition. See e.g. reference 36.)

To summarize: Dimensionless does not imply exact. Exact does not imply dimensionless. Trying to estimate
uncertainty by counting the digits in a numeral is a guaranteed losing proposition, and making a fuss about
units does not appreciably alleviate the problem.
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17.5.7 Decimals Are Exact By De�nition

There is no mathematical principle that associates any uncertainty with a decimal numeral such as 2.54.
On the contrary, 2.54 is de�ned to be a rational number, i.e. the ratio of two integers, in this case 254

100 or in
lowest terms 127

50 . In such ratios, the numerator is an exact integer, the denominator is an exact integer, and
therefore the ratio is an exact rational number.

By way of contrast, sometimes it may be convenient to approximate a rational number; for instance the ratio
173
68 may be rounded o� to 2.54[/] if you think the roundo� error is unimportant in a given situation. Still,
the point remains that 2.54[/] is not the same thing as 2.54.

17.5.8 Ambiguity Is Not an Advantage

Once I was discussing a distribution that had been calculated to be x = 2.1(2). A sig-�gs partisan objected
that sometimes you don't know that the uncertainty is exactly 0.2 units, and in such a case it was preferable
to write x = 2.1 using sig �gs, thereby making a vague and ambiguous statement about the uncertainty. The
fact that nobody knows what the sig �gs expression really means was claimed to be an advantage in such a
case. Maybe it means x = 2.1[1/2], or maybe x = 2.1(5), or maybe something else.

There are several ways of seeing how silly this claim is. First of all, even if the claim were technically true,
it would not be worth learning the sig-�gs rules just to handle this unusual case.

Secondly, nobody ever said the uncertainty was �exactly� 0.2 units. In the expression x = 2.1(2), nobody
would interpret the (2) as being exact, unless they already belonged to the sig-�g cult. The rest of us know
that the (2) is just an estimate.

Thirdly, it is true that the notation x = 2.1(2) or equivalently x = 2.1 ± 0.2 does not solve all the world's
problems. However, if that notation is problematic, the solution is not to switch to a worse notation such
as sig �gs. Instead, you should switch to a better notation, such as plain language. If you don't have a good
handle on the uncertainty, just say so. For example, you could say �we �nd x = 2.1. The uncertainty has
not been quantitatively analyzed, but is believed to be on the order of 10%�. This adheres to the wise, simple
rule:

Say what you mean,
and mean what you say.

Sig �gs neither say what they mean nor mean what they say.

18 Appendix: Place Value and Mantissa Digits

There exists a purely mathematical concept of �place value� which is related to the concept of signi�cance.
We mention it only for completeness, because it is never what chemistry textbooks mean when they talk
about �signi�cant digits�.

For example, in the numeral 12.345, the �1� is has the highest place value, while the �5� has the lowest place
value.

Sometimes the term �signi�cance� is used to express this mathematical idea. For example, in the numeral
12.345, the �1� is called the most-signi�cant digit, while the �5� is called the least-signi�cant digit. These
are relative terms, indicating that the �1� has relatively more signi�cance, while the �5� has relatively less
signi�cance. We have no way of knowing whether any of the digits has any absolute signi�cance with respect
to any real application.
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This usage is common, logical, and harmless. However, since the other usages of the term �signi�cant digit�
are so very harmful, it may be prudent to avoid this usage as well, especially since some attractive alternatives
are available. One option is to speak of place value (rather than signi�cance) if that's what you mean.

Another option is to speak of mantissa digits. For example, if we compare 2.54 with 2.5400, the trailing
zeros have no e�ect on the mantissa. (In fact, they don't contribute to the characteristic, either, so they
are entirely super�uous, but that's not relevant to the present discussion.) Similarly, if we compare 2.54 to
002.54, the leading zeros don't contribute to the mantissa (or the characteristic).

It is more interesting to compare .0254 with .000254. In this case, the zeros do not contribute to the mantissa
(although they do contribute to the characteristic, so they are not super�uous). This is easy to see if we
rewrite the numbers in scienti�c notation, comparing 2.54× 10−2 versus 2.54× 10−4.

To make a long story short, the mantissa digits are all the digits from the leftmost nonzero digit to the
rightmost nonzero digit, inclusive. For example, the number 0.00008009000 has four mantissa digits, from
the 8 to the 9 inclusive. In more detail, we say it has a super�uous leading zero, then four place-holder
digits, then four mantissa digits, then four super�uous trailing zeros.

Keep in mind that the number of mantissa digits does not tell you anything about the uncertainty, accuracy,
precision, readability, reproducibility, tolerance, or anything like that. If you see a number with N digits of
mantissa, it does not imply or even suggest that the number was rounded to N digits; it could well be an
exact number, as in 2.54 centimeters per inch or 2.99792458× 108 meters per second.

When the number system is taught in elementary school, mantissa digits are called �signi�cant digits�. This
causes con�ict and confusion when the high-school chemistry text uses the same term with a di�erent
meaning. For example, some people would say that 0.025400 has three signi�cant digits, while others would
say it has �ve signi�cant digits. I don't feel like arguing over which meaning is �right�. Suggestions:
• It is OK to say that 0.025400 has three mantissa digits.
• If x has 10 ppm of uncertainty, express it by saying �10 ppm�. For example, x = 0.025400± 10 ppm or
equivalently x = 0.0254± 10 ppm.
• Avoid anything involving signi�cant digits. If x has 10 ppm of uncertainty, as in the previous example,
do not attempt to express it in terms of 5 sig �gs or any other number of sig �gs.

19 Appendix: Resistor Values

This section continues the discussion that began in section 5.5. It makes the point that the relationship
between indicated value and true value does not need to be simple or evenly spaced.

Suppose you wanted to measure some 5% resistors and sort them into bins. The industry-standard bin-labels
are given in the following table, along with the corresponding intervals:
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indicated range of
value true values
1.0 : [0.95, 1.05]
1.1 : [1.05, 1.15]
1.2 : [1.15, 1.25]
1.3 : [1.25, 1.4]
1.5 : [1.4, 1.55]
1.6 : [1.55, 1.7]
1.8 : [1.7, 1.9]
2.0 : [1.9, 2.1]
2.2 : [2.1, 2.3]
2.4 : [2.3, 2.55]
2.7 : [2.55, 2.85]
3.0 : [2.85, 3.15]
3.3 : [3.15, 3.45]
3.6 : [3.45, 3.75]
3.9 : [3.75, 4.1]
4.3 : [4.1, 4.5]
4.7 : [4.5, 4.9]
5.1 : [4.9, 5.34]
5.6 : [5.34, 5.89]
6.2 : [5.89, 6.49]
6.8 : [6.49, 7.14]
7.5 : [7.14, 7.79]
8.1 : [7.79, 8.59]
9.1 : [8.59, 9.54]
10. : [9.54, 10.49]

It may not be obvious at �rst, but this table does have a somewhat logical basis. Roughly speaking, it
comes from rounding the readings to the nearest 1/24th of 20dB, exponentiating, and then rounding to one
decimal place. For what it's worth, note that even in the absence of roundo�, it would be barely possible to
cover the entire decade and still keep all the readings within 5% of the nominal bin label. That's because
1.05 is too small and/or 24 is too few. Roundo� makes it impossible. One consequence is that if you want
a resistance of 1.393 kΩ, you cannot approximate it within 5% using any standard 5% resistor. You can't
even approximate it within 7%.
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