[Contents] [Next]
[Comments or questions]

Copyright © 2005 jsd

Modern Thermodynamics
John Denker

 0  Introduction
0.1  Overview
0.2  Availability
0.3  Prerequisites, Goals, and Non-Goals

 1  Energy
1.1  Preliminary Remarks
1.2  Conservation of Energy
1.3  Examples of Energy
1.4  Remark: Recursion
1.5  Energy is Completely Abstract
1.6  Additional Remarks
1.7  Energy versus “Capacity to do Work” or “Available Energy”
1.7.1  Best Case : Non-Thermal Situation
1.7.2  Equation versus Definition
1.7.3  General Case : Some Energy Not Available
1.8  Conflict with the Vernacular
1.8.1  Energy
1.8.2  Conservation
1.8.3  Energy Conservation
1.9  Range of Validity
1.10  Internal Energy

 2  Entropy
2.1  Paraconservation
2.2  Scenario: Cup Game
2.3  Scenario: Card Game
2.4  Peeking
2.5  Discussion
2.5.1  States and Probabilities
2.5.2  Entropy is Not Knowing
2.5.3  Entropy versus Energy
2.5.4  Entropy versus Disorder
2.5.5  False Dichotomy, or Not
2.5.6  dQ, or Not
2.6  Quantifying Entropy
2.7  Microstate versus Macrostate
2.7.1  Surprisal
2.7.2  Contrasts and Consequences
2.8  Entropy of Independent Subsystems

 3  Basic Concepts (Zeroth Law)

 4  Low-Temperature Entropy (Alleged Third Law)

 5  The Rest of Physics, Chemistry, etc.

 6  Classical Thermodynamics
6.1  Overview
6.2  Stirling Engine
6.2.1  Basic Structure and Operations
Cooling
Warming
Expansion
Compression
6.2.2  Energy, Entropy, and Efficiency
6.2.3  Practical Considerations
6.2.4  Discussion: Reversibility
6.3  All Reversible Heat Engines are Equally Efficient
6.4  Not Everything is a Heat Engine
6.5  Carnot Efficiency Formula
6.5.1  Definition of Heat Engine
6.5.2  Analysis
6.5.3  Discussion

 7  Functions of State
7.1  Functions of State : Basic Notions
7.2  Path Independence
7.3  Hess’s Law, Or Not
7.4  Partial Derivatives
7.5  Heat Capacities, Energy Capacity, and Enthalpy Capacity
7.6  Yet More Partial Derivatives
7.7  Integration
7.8  Advection
7.9  Deciding What’s True
7.10  Deciding What’s Fundamental

 8  Thermodynamic Paths and Cycles
8.1  A Path Projected Onto State Space
8.1.1  State Functions
8.1.2  Out-of-State Functions
8.1.3  Converting Out-of-State Functions to State Functions
8.1.4  Reversibility and/or Uniqueness
8.1.5  The Importance of Out-of-State Functions
8.1.6  Heat Content, or Not
8.1.7  Some Mathematical Remarks
8.2  Grady and Ungrady One-Forms
8.3  Abuse of the Notation
8.4  Procedure for Extirpating dW and dQ
8.5  Some Reasons Why dW and dQ Might Be Tempting
8.6  Boundary versus Interior
8.7  The Carnot Cycle

 9  Connecting Entropy with Energy
9.1  The Boltzmann Distribution
9.2  Systems with Subsystems
9.3  Remarks
9.3.1  Predictable Energy is Freely Convertible; Random Energy is Not
9.3.2  Thermodynamic Laws without Temperature
9.3.3  Kinetic and Potential Microscopic Energy
9.3.4  Ideal Gas : Potential Energy as well as Kinetic Energy
9.3.5  Relative Motion versus “Thermal” Energy
9.4  Entropy Without Constant Re-Shuffling
9.5  Units of Entropy
9.6  Probability versus Multiplicity
9.6.1  Exactly Equiprobable
9.6.2  Approximately Equiprobable
9.6.3  Not At All Equiprobable
9.7  Discussion
9.8  Misconceptions about Spreading
9.9  Spreading in Probability Space

 10  Additional Fundamental Notions
10.1  Equilibrium
10.2  Non-Equilibrium; Timescales
10.3  Efficiency; Timescales
10.4  Spontaneity and Irreversibility
10.5  Stability
10.6  Relationship between Static Stability and Damping
10.7  Finite Size Effects
10.8  Words to Live By

 11  Experimental Basis
11.1  Basic Notions of Temperature and Equilibrium
11.2  Exponential Dependence on Energy
11.3  Metastable Systems with a Temperature
11.4  Metastable Systems without a Temperature
11.5  Dissipative Systems
11.5.1  Sudden Piston : Sound
11.5.2  Sudden Piston : State Transitions
11.5.3  Rumford’s Experiment
11.5.4  Simple Example: Decaying Current
11.5.5  Simple Example: Oil Bearing
11.5.6  Misconceptions : Heat
11.5.7  Misconceptions : Work
11.5.8  Remarks
11.6  The Gibbs Gedankenexperiment
11.7  Spin Echo Experiment
11.8  Melting
11.9  Isentropic Expansion and Compression
11.10  Demagnetization Refrigerator
11.11  Thermal Insulation

 12  More About Entropy
12.1  Terminology: Microstate versus Macrostate
12.2  What the Second Law Doesn’t Tell You
12.3  Phase Space
12.4  Entropy in a Crystal; Phonons, Electrons, and Spins
12.5  Entropy is Entropy
12.6  Spectator Entropy
12.7  No Secret Entropy, No Hidden Variables
12.8  Entropy is Context Dependent
12.9  Slice Entropy and Conditional Entropy
12.10  Extreme Mixtures
12.10.1  Simple Model System
12.10.2  Two-Sample Model System
12.10.3  Helium versus Snow
12.10.4  Partial Information aka Weak Peek
12.11  Entropy is Not Necessarily Extensive
12.12  Mathematical Properties of the Entropy
12.12.1  Entropy Can Be Infinite

 13  Temperature : Definition and Fundamental Properties
13.1  Example Scenario: Two Subsystems, Same Stuff
13.2  Remarks about the Simple Special Case
13.3  Two Subsystems, Different Stuff
13.4  Discussion: Constants Drop Out
13.5  Calculations
13.6  Chemical Potential

 14  Spontaneity, Reversibility, Equilibrium, Stability, Solubility, etc.
14.1  Fundamental Notions
14.1.1  Equilibrium
14.1.2  Stability
14.1.3  A First Example: Heat Transfer
14.1.4  Graphical Analysis – One Dimension
14.1.5  Graphical Analysis – Multiple Dimensions
14.1.6  Reduced Dimensionality
14.1.7  General Analysis
14.1.8  What’s Fundamental and What’s Not
14.2  Useful Proxies for Predicting Spontaneity, Reversibility, Equilibrium, etc.
14.2.1  Isolated System; Proxy = Entropy
14.2.2  External Damping; Proxy = Energy
14.2.3  Constant V and T; Proxy = Helmholtz Free Energy
14.2.4  Constant P and T; Proxy = Gibbs Free Enthalpy
14.3  Discussion: Some Fine Points
14.3.1  Local Conservation
14.3.2  Lemma: Conservation of Enthalpy, Maybe
14.3.3  Energy and Entropy (as opposed to «Heat»
14.3.4  Spontaneity
14.3.5  Conditionally Allowed and Unconditionally Disallowed
14.3.6  Irreversible by State or by Rate
14.4  Temperature and Chemical Potential in the Equilibrium State
14.5  The Approach to Equilibrium
14.5.1  Non-Monotonic Case
14.5.2  Monotonic Case
14.5.3  Approximations and Misconceptions
14.6  Natural Variables, or Not
14.6.1  The “Big Four” Thermodynamic Potentials
14.6.2  A Counterexample: Heat Capacity
14.7  Going to Completion
14.8  Example: Shift of Equilibrium
14.9  Le Châtelier’s «Principle», Or Not
14.10  Appendix: The Cyclic Triple Derivative Rule
14.10.1  Graphical Derivation
14.10.2  Validity is Based on Topology
14.10.3  Analytic Derivation
14.10.4  Independent and Dependent Variables, or Not
14.10.5  Axes, or Not
14.11  Entropy versus “Irreversibility” in Chemistry

 15  The “Big Four” Energy-Like State Functions
15.1  Energy
15.2  Enthalpy
15.2.1  Integration by Parts; PV and its Derivatives
15.2.2  More About PdV versus VdP
15.2.3  Definition of Enthalpy
15.2.4  Enthalpy is a Function of State
15.2.5  Derivatives of the Enthalpy
15.3  Free Energy
15.4  Free Enthalpy
15.5  Thermodynamically Available Energy – Or Not
15.5.1  Overview
15.5.2  A Calculation of “Available” Energy
15.6  Relationships among E, F, G, and H
15.7  Yet More Transformations
15.8  Example: Hydrogen/Oxygen Fuel Cell
15.8.1  Basic Scenario
15.8.2  Enthalpy
15.8.3  Gibbs Free Enthalpy
15.8.4  Discussion: Assumptions
15.8.5  Plain Combustion ⇒ Dissipation
15.8.6  Underdetermined
15.8.7  H Stands For Enthalpy – Not «Heat»

 16  Adiabatic Processes
16.1  Multiple Definitions of “Adiabatic”
16.2  Adiabatic versus Isothermal Expansion

 17  Heat
17.1  Definitions
17.2  Idiomatic Expressions
17.3  Resolving or Avoiding the Ambiguities

 18  Work
18.1  Definitions
18.1.1  Integral versus Differential
18.1.2  Coarse Graining
18.1.3  Local versus Overall
18.2  Energy Flow versus Work
18.3  Remarks
18.4  Hidden Energy
18.5  Pseudowork

 19  Cramped versus Uncramped Thermodynamics
19.1  Overview
19.2  A Closer Look
19.3  Real-World Compound Cramped Systems
19.4  Heat Content, or Not
19.5  No Unique Reversible Path
19.6  Vectors: Direction and Magnitude
19.7  Reversibility

 20  Ambiguous Terminology
20.1  Background
20.2  Overview
20.3  Energy
20.4  Conservation

 21  Thermodynamics, Restricted or Not

 22  The Relevance of Entropy

 23  Equilibrium, Equiprobability, Boltzmann Factors, and Temperature
23.1  Background and Preview
23.2  Example: N=1001
23.3  Example: N=1002
23.4  Example: N=4
23.5  Role Reversal: N=1002; TM versus Tµ
23.6  Example: Light Blue
23.7  Discussion
23.8  Relevance

 24  Partition Function
24.1  Basic Properties
24.2  Calculations Using the Partition Function
24.3  Example: Harmonic Oscillator
24.4  Example: Two-State System
24.5  Rescaling the Partition Function

 25  Equipartition
25.1  Generalized Equipartition Theorem
25.2  Corollaries: Power-Law Equipartition
25.3  Interpolating Harmonic Oscillator ↔ Particle in a Box
25.4  Remarks

 26  Partition Function: Some Examples
26.1  Preview: Single Particle in a Box
26.2  Ideal Gas of Point Particles
26.2.1  Distinguishable Particles
26.2.2  Indistinguishable Particles; Delabeling
26.2.3  Mixtures
26.2.4  Energy, Heat Capacity, and Entropy for a Pure Gas
26.2.5  Entropy of a Mixture
26.2.6  Extreme Mixtures
26.2.7  Entropy of the Deal
26.3  Rigid Rotor
26.4  Isentropic Processes
26.5  Polytropic Processes ⋯ Gamma etc.
26.6  Low Temperature
26.7  Degrees of Freedom, or Not
26.8  Discussion
26.9  Derivation: Particle in a Box
26.10  Area per State in Phase Space
26.10.1  Particle in a Box
26.10.2  Periodic Boundary Conditions
26.10.3  Harmonic Oscillator
26.10.4  Non-Basis States

 27  Density Matrices

 28  Summary

 29  About the Book

 30  References
[Contents] [Next]
[Comments or questions]

Copyright © 2005 jsd